TPS92074/ TPS92075

Non Triac Dimming LED Driver Configurations

TPS92074/075

Non-Isolated, Phase Dimmable, Buck PFC LED Driver with Digital Reference Control

Features

- Application input voltage: 120VAC, 230VAC
- Controlled Reference Derived PFC
- Topology: Non-Isolated Buck or Buck-Boost with PFC
- Constant Current Operation Using Peak Current Mode Control
- Protection Features: VCC Over-Voltage Protection, Cycleby-Cycle Over-Current Protection, UVLO, Thermal Shutdown
- TSOT6 & SO8 Package Options

- 5-30W LED Luminaires/lamps
- LED Ballasts / Troffer (T8/10 replacement)

Benefits

- Supports All Common Line Voltages
- Meets Regulatory PFC Requirements for LED Lighting
- Compact Design with Low Component Count
- Improved Line and Load Regulation
- Protects Against Fault and Abnormal Operating Conditions

TPS92074 LED Driver – Waveforms in Normal Operation

-Non-Dimming Operation: *Output Current Reference Synchronized to the input line voltage*

THD: 17.8 Power Factor: 0.984

Typical Dimmable LED Driver Main Circuit Blocks

Configuring the TPS92074 is easy!

→ Consider a few main circuit blocks

Hysteretic Control

TPS92074 Hysteretic Control

→ ASNS Signal → Digital Block and Algorithms → DAC → Comparator
→ Controlled Inductor Peak Current Reference

TPS92074 Hysteretic Control – Ton Clamp

Without Ton Clamp:

Current spikes at cycle limits are high

With Ton Clamp

Spikes are eliminated, THD lowered, Triac Compatibility increased

-Ton Clamp components are low cost

LED Driver Input Current: Ton Clamp **Not** in Use

LED Driver Input Current
Ton Clamp in Use

TPS92074 Hysteretic Control – Addition of output PNP

- -Simple circuit addition improves load regulation
- -Off-time can be generated using LED stack voltage

TPS92074 Hysteretic Control – Addition of output PNP

Hysteretic Control – Trend of Component Adjustment

VCC Information and Control

TPS92074 – VCC Options

- -Basic linear regulator provides the fastest start-up time and if VLED > 20V, no series diode or large VCC capacitor is required
- -VCC can be provided from bottom of LED stack for some designs to increase efficiency

- -Design considerations have been made to support resistive start-up methods.
- -Using AUX provides OVP

Angle Sense

TPS92074 Angle Sense Input

- Options to ensure minimal components used in Buck or Buck-Boost

Need to ensure:

- >70% duty cycle for creation of ramp
- Signal crosses 1V (rising) and 0.5V (falling) when dimming and non-dimming

TPS92074: Phase Locked Ramp

Power Conversion

TPS92074 – Power Conversion

Buck (w/DC Side Filter)		Buck - Boost
Wider Dimming Range	\leftrightarrow	Less chance for flicker
Higher Efficiency	\leftrightarrow	More load during dimming
	~	Only option if <20% THD is required with certain LEDs

Part Intelligence Features

TPS92074 – Morphing to High Power Factor Mode

CH1: Output Current Set Point CH2: Angle Sense Ch3: Rectified AC CH4: LED Current

- Internal triangular reference voltage
 - PFC > 0.9
 - Robust operation
- Reference morphing operation
 - Triangular to DC
 - Improved TRIAC dimmer compatibility

TPS92074 - EMI Filter

- -A simple EMI filter can mitigate conducted EMI.
- Proven filter pole and triac damping configurations

Design Problem using Excel Spreadsheet

Design Problem using Excel Spreadsheet – Buck Option

The design tool also supports BUCK designs

For 120Hz BUCK EVM designs, enter:

- 1) String Voltage
- 2) LED Current
- 3) Select Topology
- 4) Desired 120Hz LED **Current Ripple**

Simplified 3 Step		5 LED Driver r Specifications		
Design	Ref	Description	Typical	Units
	V _{AC}	Input voltage	120	٧
	AC _{HZ}	Line Frequency	60	Hz
1->	VLED	Nominal LED string voltage	36	>
2 ->	ILED	Average LED string current	0.36	А
	Eff _{ortimato}	Efficiency Estimate	0.85	٦
	Pout	Output Power	12.96	V
	PiN	Estimated Input Power	15.25	٧
	I _{IN(AVE)}	Average Input Current	0.13	А
	Voc	Vcc Voltage (variations: FET Vgs, Zener Voltage)	11	٧
	Valloo	Vcc Zener Voltage (Vcc+ 4V tupical Vgs drop)	15	V

Detect desti	gn Type, buck of buck-boost	В	uck-boost		
		Buck			
		Buck-E	Boost	ŀ	
					
Bulk Capa	ecitor				
LED _≢	Number of LEDs	10			
RLED	LED Dynamic Resistance	0.5		Ω	

LED String Dynamic Resistance

Output Bulk Capacitor

Line Freq Peak to Peak LED Ripple Current (Default=ILE

3->

RLED_String

LED_Ripple

CBULK

Ω

Α

0.36

312.1E-6

TPS92074 Excel Spreadsheet: Magnetic Optimization

TPS92074 Excel Spreadsheet: Check Final Design ASNS Signal

Upon powering up a new design, check the ASNS signal first!

Verify ASNS Signal:

- a) Crosses 1V Rising
- b) Crosses 0.5V Falling
- c) Duration between these levels is >70% duty cycle to engage ramp creation

APPENDIX

APPENDIX - OVP (Over Voltage Protection)

APPENDIX – (1) Analog Dimming to Output OFF

TPS92075 Analog Dimming to OFF with low THD - Preliminary Results

Vcontrol	lout %	lout	Vout	PF	THD	Pout	Pin	Efficiency
0.00	100	0.326	39.50	0.985	16.400	12.88	14.54	88.6
0.80	98	0.318	39.12	0.981	19.900	12.44	14.18	87.7
2.00	42	0.136	36.45	0.854	61.000	4.96	5.90	84.0
3.00	8	0.027	33.62	0.754	82.000	0.91	1.48	61.3

D8 used was EGL34D-E3, this will affect output current curve.

APPENDIX – (2) Analog Dimming to a Minimum (not to OFF)

TPS92075 Analog Dimming, initial testing. Buck Boost Implementation

Circuit 1, No ASNS with Ton Clamp

10 LEDs					
Vcontrol	I LED				
0	350				
0.5	348				
0.75	320				
1	277				
1.25	232				
1.5	187				
1.75	138				
2	95				
2.25	56				
2.5	26				
2.75	14				
3	13				

Schematic Tested, No ASNS Used

APPENDIX – (3) Analog Dimming to a Minimum (not to OFF)

Circuit 2 - ASNS in use, no Ton clamp

ASNS in use, R12 = 2k or 5k Ohms

Vcontrol	Vcontrol							
R12 = 2k	R12 = 5k	lout	PF	THD	Vout	Pout	Pin	n
0.00	0.00	0.363	0.945	29	35.30	12.82	14.9	0.860
0.50	0.50	0.363	0.945	29	35.30	12.81	14.9	0.860
	0.75	0.343	0.967	23	34.60	11.87	13.98	0.849
	1.00	0.314	0.957	28	34.38	10.80	12.73	0.848
	1.25	0.280	0.938	36	34.16	9.56	11.34	0.843
	1.50	0.250	0.922	42	33.97	8.49	10.05	0.845
↓	1.75	0.220	0.906	46	33.80	7.44	8.85	0.840
	2.00	0.191	0.890	52	33.63	6.42	7.75	0.829
	2.25	0.165	0.870	56	33.47	5.52	6.7	0.824
	2.50	0.140	0.852	61	33.30	4.66	5.77	0.808
	2.75	0.118	0.833	66	33.10	3.91	4.9	0.797
	3.00	0.097	0.818	71	33.00	3.20	4.1	0.781
	4.00	0.037	0.772	80	32.00	1.18	1.88	0.630
3.00	5.00	0.010	0.710	86	31.08	0.31	0.96	0.324

Schematic Tested, ASNS in Use

APPENDIX – (3) Analog Dimming to a Minimum (not to OFF)

Circuit 2 - ASNS in use, no Ton clamp

ASNS in use, R12 = 2k or 5k Ohms

Vcontrol	Vcontrol							
R12 = 2k	R12 = 5k	lout	PF	THD	Vout	Pout	Pin	n
0.00	0.00	0.363	0.945	29	35.30	12.82	14.9	0.860
0.50	0.50	0.363	0.945	29	35.30	12.81	14.9	0.860
	0.75	0.343	0.967	23	34.60	11.87	13.98	0.849
	1.00	0.314	0.957	28	34.38	10.80	12.73	0.848
	1.25	0.280	0.938	36	34.16	9.56	11.34	0.843
	1.50	0.250	0.922	42	33.97	8.49	10.05	0.845
↓	1.75	0.220	0.906	46	33.80	7.44	8.85	0.840
	2.00	0.191	0.890	52	33.63	6.42	7.75	0.829
	2.25	0.165	0.870	56	33.47	5.52	6.7	0.824
	2.50	0.140	0.852	61	33.30	4.66	5.77	0.808
	2.75	0.118	0.833	66	33.10	3.91	4.9	0.797
	3.00	0.097	0.818	71	33.00	3.20	4.1	0.781
	4.00	0.037	0.772	80	32.00	1.18	1.88	0.630
3.00	5.00	0.010	0.710	86	31.08	0.31	0.96	0.324

Schematic Tested, ASNS in Use

APPENDIX – Adding Thermal Foldback (slide 1 of 3)

TPS92074 Thermal Foldback Testing.

A TPS92074 BUCK Design with output PNP in use can implement a thermal fold back feature with the simple addition of 1 PTC resistor.

The resistor was added as shown in the schematic and test results taken and presented below.

A PTC has a much sharper knee then common NTC's and allows a sharper roll-off with temperature.

Part Number:

PRF15BG103RB6RC Manufacturer: MURATA Part Number: PRF15BE103RB6RC Manufacturer: MURATA

Real Data Curve			
Temperature (°C)		Voltage (V)	Resistance (kΩ)
25.1	405	28.06	10
29.9	405	27.7	11
33.9	405	27.4	12
39.0	405	27.3	15
44.5	402.3	27.3	20
49.1	398	27.2	27
54.1	394.4	27.2	42
58.7	380.6	27.1	77
63.7	350.2	26.8	168
68.9	294.9	26.2	436
73.8	218.8	25.1	1330
78.9	150	19.6	4700
83.6	55	20.2	15488
88.7	16.08	17.6	52723

Real Data Curve			
Temperature (°C)	Current (mA)	Voltage (V)	Resistance (kΩ)
25.1	405	28.1	10
43.9	405	27.6	11
49.3	405	27.3	12
53.8	404	27.7	14
58.9	404	27.5	17
63.8	403.2	27.4	21
68.9	398.1	27.3	28
73.7	389.2	27.3	46
78.6	371.3	27.1	79
83.5	337.6	26.7	185
88.6	268.5	25.9	434
93.2	188	24.6	1370
97.5	166.5	19.6	4700

APPENDIX – Adding Thermal Foldback (slide 2 of 3)

APPENDIX – *Adding Thermal Foldback* (slide 3 of 3)

Test Method: LED driver ambient was taken to noted temperatures, with LEDs external

