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ABSTRACT

This application note discusses the UCC25640x LLC resonant controller's most frequently asked questions 
when used in different applications.
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1 UCC25640x Frequently Asked Questions
1.1 The recommended LLC transformer models for both time domain simulation and 
fundamental harmonic analysis
The LLC topology can be realizable with a. an external inductor and a tightly coupled transfomer or b. with a 
integrated transformer with a poor coupling which integrates both resonant and magnetizing indcutors. In both of 
these implementations, the transfomer can be modelled as T-type [1] or APR models which are shown in Figure 
1-1. These two models can be used for both time domain simulation and also for fundamental harmonic analysis. 
Equation 1, Equation 2, Equation 3 describe the behaviour of all the models given in Figure 1-1. Reference [2] 
shows the different transformer model derivations from a mutual inductance transformer model.
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Figure 1-1. Tranformer models

v1 = L1di1dt +Mdi2dt (1)

v2 = L2di2dt +Mdi1dt (2)
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k = ML1L2 (3)

where L1, L2, M, k are primary open circuit Inductance, Secondary open circuit indcutance, Mutual Inductance, 
coupling coeffcient respectively.
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Figure 1-2. T-type transformer model for LLC Design and Analysis
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Figure 1-3. APR-type transformer model for LLC Design and Analysis

The parameters of the models shown in Figure 1-1 can be calculated from the transformer datasheet parameters 
where primary open circuit Inductance (Lp) and primary inductance when secondaries are short (Llk), turns ratio 
are given.

k = 1− LlkLp (4)

L1 = Lp (5)n = turns ratio (6)

To validate models, a closed loop simplis simulation with both T-type model shown in Figure 1-2 and APR model 
shown in Figure 1-3 has been built with the same transformer parameters as that of UCC25640x EVM hardware 
[3] where integrated transformer from Wurth Electronics [4] is used. In the transformer datasheet, Lp, Llk, n 
are given as 510uH, 82uH, 16.5 respectively. From Equation 4, Equation 5, Equation 6, the parameters of the 
transfomer obtained as k =0.916, L1=510uH, n=16.5, k*n=15.115. Figure 1-4 shows the comparison between 
EVM measurements and closed loop Simplis models. We can observe that in all the cases the operating 
frequency is almost same for a given input voltage.
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Figure 1-4. Input voltage vs switching frequency from closed loop time domain simulation models and 
from the EVM measurements at 12V,15A load 
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1.2 LLC resonant circuit parameters design example (UCC25640EVM-020) with Integrated 
Transformer based on FHA
1.2.1 Fundamental Harmonic model of the LLC with T-type transformer model and voltage gain vs 
frequency relationship
The contents of this section are taken from the reference [1].

Figure 1-5 shows the fundamental harmonic model of the Figure 1-2. As explained in the Section 1.1, L1, k of the 
Figure 1-5 can be derived from transformer data sheet using Equation 4, Equation 5, Equation 6 .
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Figure 1-5. LLC linear sinusoidal model

Equation 7 shows the relation between output and input voltages of the Figure 1-2 and Figure 1-5.2 ⋅ n ⋅ VoutVin ≈ M = VoeVge (7)

where Voltage Gain: M(k, fr,Q) = 11k 1− 1− k2fr2 2 2+ 1k ⋅ Q fr − 1fr 2 (8)

Normalized frequency: fr = ωω0 (9)

Angular resonant frequency between leakge inductance (primary‐side inductance when the secondary side is completely short‐circuited) and Cr: ω0 = 1Llk ⋅ Cr (10)

Angular resonant frequency between primary inductance (self‐inductance of the primary winding) and Cr: ωs = 1Lp ⋅ Cr (11)

characteristic impedance: Z0 = LlkCr (12)

Quality factor: Q = RacZ0 = 8 ⋅ n2π2 ⋅ RLZ0 (13)

n : primary to secondary turns ratio (14)k : Coupling coeffcient between primary and secondary winding of the transformer (15)

Using Equation 8 , gain plot curves are drawn for different coupling coefficients which is shown in Figure 1-6.
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Figure 1-6. Gain frequency plots for different coupling coefficients
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1.2.2 UCC25640EVM-020 LLC resonant circuit parameters design example

Table 1-1. UCC25640EVM-020 Specifications
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS

INPUT CHARACTERISTICS
DC voltage range 365 390 410 VDC

AC voltage range 85 265 VAC

AC voltage frequency 47 63 Hz

Input DC UVLO On 365 VDC

Input DC UVLO Off 330 VDC

OUTPUT CHARACTERISTICS
VOUT Output voltage - Normal mode Burst mode threshold to full load = 

15 A
12 VDC

IOUT Output load current 365 to 410 VDC 15 A

Output voltage ripple 390 VDC and full load = 15 A 120 mVpp

SYSTEM CHARACTERISTICS
Resonant frequency 100 kHz

Peak efficiency 390 VDC, load = 8 A 93%

Operating temperature Natural convection 25 °C

Nominal Input Voltage: Vin_Nom = 390V (16)Output Voltage: Vout = 12V (17)Nominal Output Power: Pout = 180W (18)Output Voltage ripple: 120mVpp (19)

Voltage drop due to power losses: Vloss = 180W93% ⋅ 7%15A = 0.9V (20)

Coupling coefficient considered for this design: k = 0.92 (21)Gain at the resonant frequency: Mfo = 1k = 1.087 (22)

Primary to Secondary turns ratio: n = Mfo ⋅ Vin_Nom2 ⋅ (Vout+ Vloss) ≅ 16.5 (23)

Equivalent Output Load Resistance: RL = 12V2180W = 0.8Ω (24)

Equivalent AC Load Resistance: Rac = 8 ⋅ n2π2 ⋅ RL = 176.542 (25)

Minimum DC Input Voltage: Vin_min = 365V (26)Maximum DC Input Voltage: Vin_min = 410V (27)

Maximum gain requirement: Mmax = 2n ⋅ (Vout_max+ Vloss)Vin_min = 2 ⋅ 16.5 ⋅ (12 + 0.06 + 0.9)365 = 1.172 (28)

Minimum gain requirement: Mmin = 2n ⋅ (Vout_min+ Vloss)Vin_max = 2 ⋅ 16.5 ⋅ (12− 0.06 + 0.9)410 = 1.033 (29)

Quality factor of 3.5 is considered for this design.
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Figure 1-7. Gain frequency plot for k=0.92 and Q=3.5

Characteristic Impedance: Z0 = RacQ = 176.5423.5 = 51.5 (30)

Resonant Frequency: fo = 100kHz (31)

Resonant Capacitor Value: Cr = 12π ⋅ Z0 ⋅ fo = 31.5nF (32)

Primary Leakage Inductance when the secondaries are short circuited: Llk = Z02πfo = 80μH (33)

Primary Inductance when the secondaries are open circuited: Lp = Llk1− k2 = 522μH (34)

Final value of resonant capacitor value selected: Cr = 30nF (35)Leakage Inductance, primary Inductance, turns ratio values givenin the transformer data sheet: Llk = 82μH, Lp = 510μH,n = 16.5 (36)

The final resonant frequency: f0 = 12π Llk ⋅ Cr = 101.5kHz (37)
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1.3 How to connect external gate drivers to the UCC25640x for high gate driver current 
capability?
Figure 1-8 shows a simpler way of connecting external gate drivers to the UCC25640x. Here two low-side 
drivers such as UCC27517A [5] is used which has a higher output current capability. Here the external high side 
driver is bootstrapped just like the internal driver of the UCC25640x.
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Figure 1-8. External Driver interface to the UCC25640x

1.4 What is the recommended power on sequence of the PFC and LLC Converters?
Normally, LLC can start switching before the PFC output voltage starts rising or vice versa depending on system 
requirement.

In general, PFC output voltage will start raising before the LLC converter starts switching. Doing so, we are 
allowing a lower current stress during the startup. UCC25640x RVCC is designed for this purpose. In case of 
UCC256402/404, once the AC input is provided and VCC reaches 26V level, RVCC voltage is generated to 
power up PFC controller for PFC to boost. Once PFC boost to a level above UCC25640x BLK setting, LLC 
DC-DC start to operate. For any reason, if the BLK voltage reaches below BLKstop, switching stops.

In case of TVs, during light load, LLC converter need to startup before PFC output voltage rises. In this kind 
of scenario, UCC256404 is recommended, since the BLK turn on threshold of this controller is only 1V. Since 
LLC transformer was designed for input voltage>300V and full load, there won’t be any issue of triggering OCP 
protection.

1.5 How to eliminate the nuisance ZCS detection during the light load?
During light load, the magnitude of resonant current will be very small during the turn off of high side or low side 
MOSFET. This can trigger the ZCS protection.

Following methods helps to avoid nuisance ZCS detection during light load:

1. Increasing the burst mode threshold (BMTH): ZCS is disabled If we make FBreplica<BMTH during light load.
2. Reducing the magnetizing inductance of the transformer to increase the magnetizing current at light load.
3. Reducing the bypass capacitor on ISNS pin

1.6 Why the UCC25640x controllers FB pin voltage maintained at constant voltage? Add figure 
FBpin voltage and current, Iout and Vout 
The UCC25640x controller attempts to loosely regulate the FB pin voltage to around 5.6V. This is done 
to provide better transient response and avoid some of the delays associated with the opto-coupler being 
saturated. When a current pulled out of the FB pin is within 0uA to FB pin maximum source current ( 164 uA for 
402 and 404 devices, 246 uA for 403 ), the FB pin voltage will be around 5.6V. When the opto-coupler pulls more 
current than the FB pin can support, the controller will allow the FB pin voltage to collapse to 0V.
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1.7 How to improve the slew rate detection at HS pin?
UCC25640x has a minimum detectable slew rate of 100 mV/ns. If the slew rate is detected (this is checked when 
the switch node voltage is close to 20 V), next gate will be turned on immediately. If the slew rate detection is 
missed, the dead time would be set as 1.1us. Figure 1-9 shows a way of extracting slew rate information during 
the dead time [10]. In this simulation Infineon IPW6075CP MOSFET is used. Figure 1-10 shows the switch node 
volatge transition when a current of 0.7A is being pulled out from switch node. Here we can observe that switch 
node voltage has different slew rates during the transition which is due to non linear capacitance seen at the 
switch node as shown in Figure 1-14 (This capcaitance is the combination of Coss of the both upper (voltage 
changing from 0 to 390) and lower (voltage changing from 390 to 0) MOSFETs shown in Figure 1-12 and Figure 
1-13). This graph is extarcted using the SIMetrix simulation shown in Figure 1-11.
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Figure 1-9. SIMetrix simulation for finding switch node slew rate during dead time
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Figure 1-12. Upper MOSFETs Coss vs Drain to 
Source voltage

Figure 1-13. Lower MOSFETs Coss vs Drain to 
Source voltage

Figure 1-14. Coss seen at the switch node vs switch node voltage

Following methods can be followed to improve the slew rate detection:

1. Increase the MOSFET turn off speed: Most designs include a diode in the HO/LO gate drive paths to allow 
for independent turn on and turn off speed. Such a circuit is recommended to increase the turn off speed of 
the gate drive.

2. Using MOSFETs with lower output capacitance (Coss): The lower Coss will allow for a faster switch node 
slew rate.

3. Using a higher burst mode setting: A higher burst mode setting will have larger magnetizing current 
amplitude which will help with achieving the dV/dt criteria (Increasing the burst threshold will make the 
LLC burst with slightly more power within the burst packet and the resonant current amplitude will be higher. 
This increases the slew rate of the switch node as well)

4. Reducing any snubber capacitance on the switch node
5. Reducing the magnetizing inductance of the transformer to increase the magnetizing current at light load.

1.8 How to operate the UCC25640x controller in the open loop? add waveform
Running UCC25640x open loop would require some modifications to the VCR circuitry as well as the FB pin to 
sink a constant current out of the FB pin. Since the FB pin is loosely regulated to ~5.6V, connecting a resistor 
(RFB) from FB to ground sinks a fixed current (somewhere between 0uA and 82uA). The amount of current 
would determine the switching thresholds ((VTH-VTL) =Vvcr_pk_ pk) for VCR. And then depopulate the top VCR 
capacitance so that charge control is completely disabled. Now the switching frequency (fsw) is only dependent 
on the internal 2mA ramp current and the lower VCR capacitance (C VCR_lower).

The amount of current sunk out of the FB pin:   IFB_pin = VFBRFB = 5.6RFB   (38)

VCR peak to peak voltage: Vvcr_pk_pk = (82μA − IFB_pin) ⋅ 100kΩ (39)

Switching frequency: fsw = 2mA2 ⋅ Vvcr_pk_pk ⋅ CVCR_lower (40)

1.9 What happens if the VCR pin peak to peak voltage of the controller exceeds 6V?
VCR pin voltage is internally clamped. It won’t go above +7V or below -0.8V. 7V is the internal AVDD rail 
that powers the VCR circuitry. At -0.8V, the internal ESD diode will likely conduct. VFBreplica peak to peak is 
clamped to 6V. If the amplitude on the VCR pin exceeds 6V peak to peak, the controller is unable to push the 
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switching frequency any lower because it has run out of room on VCR and as a result, the converter will get 
clamped to this minimum switching frequency and the output voltage will droop. If the peak to peak voltage on 
VCR exceed 6V, try reducing the top VCR capacitor or increase the bottom VCR capacitor to reduce the peak to 
peak voltage.

1.10 What parameters of UCC25640x that impact the startup duration of the LLC?
In general, the soft start profile of the LLC is normally fine-tuned on bench by adjusting the LL/SS soft start 
capacitance, soft start initial voltage, VCR capacitors, and feedback loop response. Section 2 of the UCC25630x 
practical design guidelines [7] gives more details on soft start timing and switching frequency tuning during the 
startup.

1.11 What causes the current imbalance in the secodary side windings of the LLC?
In the LLC center tapped transformer, If the primary to secondaries leakage inductances are different, we would 
observe that secondary peak currents will be different during each half of the switching period. This can cause 
one of the diodes overheating. To avoid this both the windings has to be tightly coupled with the primary so that 
leakage inductance variation is very small between the windings.

To see the current imbalance on the secondary side, two simulations are considered. Case one: With the 
equal coupling between primary and secondary windings which is shown in Figure 1-15 (This figure shows all 
the T-type equivalent models) and Case 2: With the unequal couplings which is shown in Figure 1-16. The 
EVM parameters are used for both the simulations: k =0.916, L1=510uH, n=16.5, Cr=30nF, fsw=101.5kHz, Load 
Resistance=0.8 Ohm. We can observe the seondary side currents imbalance in Figure 1-18 compared to Figure 
1-17.
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Figure 1-15. LLC T-type equivalent models
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Figure 1-17. Case 1 Simulation results
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Figure 1-18. Case 2 Simulation results

1.12 How to design TL431 compensator for LLC with UCC25640x controller?

1.12.1 LLC Plant transfer Function under HHC Control

Power Stage

HHC

Vout

TLVH431

Gate signals

FBreplica

IFB

FB

GND U1

RFB

Figure 1-19. Feedback Chain Block Diagram

The reference [8] derives LLC plant transfer function Vout(s)FBreplica(s)  when it is opearted under Hybrid Hysteretic 

Control. Simplis can also be used to extract the bode plots of the switching power converter. Here second 
method is followed.

UCC25640x EVM Power stage [3] is considered for extracting the gain plots when its operated under different 
input voltage and load conditions. In Figure 1-20, we can observe that plant gain plot is close to a single pole 
response in the low frequency region. So, Type 2 compensator (zero of the compensator should be located 
below low frequency pole of the plant) would be sufficient for secondary output voltage/current regulation. Here 
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low frequency pole is approximately located fp = 1πRL ⋅ Cout  at where RL is load resistance and Cout is output 

capacitance. If the cross over freqeuncy needs to be improved, then Type 3 compensator is recommended as at 
higher frequency regions plant transfer function has double poles which would degrade the phase [8].
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Figure 1-20. Gain plots under different input voltage and load conditions 

1.12.2 Type 2 & Type 3 compensators with TL431:

1.12.2.1 Type 2 Compensator
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Rup

Rlow
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Figure 1-21. Type 2 compensator with fast lane
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Gc(s) = Vfb(s)Vo(s) = RfbCTRRLED 1Cv+ Cf ⋅ Rup 1 + RvCvs1 + sRvCvCfCv+ Cf s + 1 (41)

Assuming Cf < < Cv ,   Gc(s) further simplifies toGc(s) = RfbCTRRLED 1Cv ⋅ Rup 1 + RvCvs1 + sRvCf s + 1 (42)

This can be written as Gc(s) = Go ωLs + 11 + sωp1 (43)

where   Go = RfbCTRRLED 1 + RvRup      ωL =   1Rv+ Rup ⋅ Cv     ωp1 = 1Rv ⋅ Cf (44)

Here ωL is low frequency inverted zero and ωp1 is a high frequency pole, CTR is current transfer ratio of opto 
coupler.

Note 1: During the full load to light load transition, the current through the opto coupler LED should be able to 
vary more than Ifb CTR to regulate the output voltage. Here Ifb is maximum current provided by the FB pin. So, RLED ≤ Vo− Vref− VLEDIfb CTR  where Vref and VLED are reference pin voltage and Opto coupler LED drop when its 

conducing.

Note 2: During startup, the entire output voltage will be applied across the shunt regulator as the shunt regulator 
starts sinking current only when reference pin voltage reaches the Vref which corresponds to regulated output 
voltage. If this voltage exceeds the absoulte maximum cathode to anode voltage of the shunt regulator, it will be 
destroyed. In such scenarios, Type 2 compensator with out fast lane is recommended where zener diode is used 
in the fast lane which would clamp the voltage across the shunt regulator.

1.12.2.2 Type 2 compensator without Fast Lane
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Figure 1-22. Type 2 compensator without fast lane

Gc(s) = Vfb(s)Vo(s) = RfbCTRRLED 1Cv+ Cf ⋅ Rup 1 + RvCvs1 + sRvCvCfCv+ Cf s (45)
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Assuming Cf < < Cv ,   Gc(s) further simplifies toGc(s) = RfbCTRRLED 1Cv ⋅ Rup 1 + RvCvs1 + sRvCf s (46)

This can be written as Gc(s) = Go ωLs + 11 + sωp1 (47)

where   Go = RfbCTRRLED RvRup      ωL =   1Rv ⋅ Cv     ωp1 = 1Rv ⋅ Cf (48)

Here ωL is low frequency inverted zero and ωp1 is a high frequency pole.

1.12.2.3 Type 3 compensator with Fast Lane
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Cf

Rup

Rlow

Rbias

V�

RLED

Cp

Rp

Figure 1-23. Type 3 compensator with fast lane

Gc(s) = Vfb(s)Vo(s) = RfbCTR 1Cv+ Cf ⋅ Rup 1 + RvCvs1 + sRvCvCfCv+ Cf s + 1 1 + sCp RLED+ RpRLED 1 + RpCps (49)

Assuming Cf < < Cv ,   Gc(s) further simplifies toGc(s) = RfbCTRRLED 1Cv ⋅ Rup 1 + RvCvs1 + sRvCf s + 1 1 + sCp RLED+ Rp1 + RpCps (50)

This can be written as Gc(s) = Go ωLs + 11 + sωp1
1 + sωz1 + sωp2 (51)

where   Go = RfbCTRRLED 1 + RvRup      ωL =   1Rv+ Rup ⋅ Cv     ωp1 = 1Rv ⋅ Cfωz =   1RLED+ Rp ⋅ Cp     ωp2 = 1Rp ⋅ Cp (52)

Here assuming ωL ≪ ωz ≪ ωc ≪ ωp2 ≪ ωp1, ωz and ωp2 creates the phase lead whereas ωL implements the 
integrator to reduce the steady state error whereas ωp1 eliminates the effect of high frequency noise on the 
control loop. Here ωc is cross over frequency.
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1.12.2.4 Type 3 compensator without fast lane
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Figure 1-24. Type 3 compensator without fast lane

Gc(s) = Vfb(s)Vo(s) = RfbCTRRLED 1Cv+ Cf 1 + RvCvs1 + sRvCvCfCv+ Cf s 1 + sCp Rup+ RpRup 1 + RpCps (53)

Assuming Cf < < Cv ,   Gc(s) further simplifies toGc(s) = RfbCTRRLEDRup 1Cv 1 + RvCvs1 + sRvCf s 1 + sCp Rup+ Rp1 + RpCps (54)

This can be written as Gc(s) = Go ωLs + 11 + sωp1
1 + sωz1 + sωp2 (55)

where   Go = RfbCTRRLED RvRup      ωL =   1Rv ⋅ Cv     ωp1 = 1Rv ⋅ Cfωz =   1Rup+ Rp ⋅ Cp     ωp2 = 1Rp ⋅ Cp (56)

Here assuming ωL ≪ ωz ≪ ωc ≪ ωp2 ≪ ωp1, ωz and ωp2 creates the phase lead whereas ωL implements the 
integrator to reduce the steady state error whereas ωp1 eliminates the effect of high frequency noise on the 
control loop. Here ωc is cross over frequency.

1.12.3 Type 3 Compensator Design Example

The power stage of the UCC25640x EVM [3] is considered to demonstrate the Type 3 compensator design 
which is shown in Figure 1-25 [1.12.2.3]. Lets consider 10kHz as a cross over frequency (fc) for the loop gain.

1. From Figure 1-20, the open loop gain Gplant(s) = Vout(s)FBreplica(s)  is close to -25dB at 10kHz.

2. So Gc(s) should be 25dB at the cross over frequency.

3. Assuming fL ≪ fz ≪ fc ≪ fp2 ≪ fp1 in [1.12.2.3], Gc(s) is approximated as Go ⋅ fcfz . For a given phase 

lead (θ), cross over frequency (fc), fz, fp2 can be found out using following equations [9]: fc = fz ⋅ fp2, fz = fc 1− sin(θ)1 + sin(θ) , fp2 = fc 1 + sin(θ)1− sin(θ) . So, Gc(s) ≅ Go ⋅ fcfz = Go ⋅ fz ⋅ fp2fz = Go ⋅ fp2fz  .

4. For a phase lead of 52o, fz and fp2 should be 3.4kHz and 29kHz respectively.
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5. Since fz,fp2 are found out, Go can be obtained using following expression: Go ⋅ fp2fz = 17.78  Go = 6.126
(25dB=17.78).

6. fp1 is a high frequency pole which is used to eliminate the high frequency noise. It is recommened to place 
this pole close to ESR of the output capacitor. Here fp1 is chosen as 479kHz.

7. fL should be chosen such that controller should be able to regulate the output voltage when the converter 
operates in the burst mode. So, fL should be less than the burst mode frequency. In this design, fL is 
considered as 88Hz.

8. Rup and Rlow can be found out using following expressions: 
Vo− VrefRup = Iref+ VrefRlow  where Vo is output 

voltage and Vref, Iref are reference voltage and bias current through the reference pin of the shunt regulator. 

To make Vo independent of the Iref, the Iref should be much lower than 
Vo− VrefRup  . So, 

Vo− VrefRup = VrefRlow . In 

the EVM, TLVH431 is considered for which reference voltage is given as 1.24V. For this design, 
Vo− VrefRup

is considered as 73uA. So Rup obtained as 147kOhm. And from 
Vo− VrefRup = VrefRlow , Rlow obtained as 

16.98kohm.
9. Consider Cf as 10pF. So, Rv can be obtanied as ωp1 = 1Rv ⋅ Cf fp1 = 12 ⋅ π ⋅ Rv ⋅ Cf Rv = 12 ⋅ π ⋅ 479kHz ⋅ Cf Rv = 33.2koℎm
10. RLED can be obtanied as Go = RfbCTRRLED 1 + RvRup RLED = RfbCTRGo 1 + RvRup RLED = 100 ⋅ 103 ⋅ 0.26.126 1 + 33.2k147k RLED = 4koℎm
11. Cv can be obtanied as ωL =   1Rv+ Rup ⋅ Cv Cv = 12 ⋅ π ⋅ fL ⋅ Rv+ Rup Cv = 12 ⋅ π ⋅ 88 ⋅ 33.2k+ 147k Cv = 10nF
12. Cp, Rp are obtanied as ωz =   1RLED+ Rp ⋅ Cp  ,   ωp2 = 1Rp ⋅ Cp fz =   12 ⋅ π ⋅ RLED+ Rp ⋅ Cp  ,   fp2 = 12 ⋅ π ⋅ Rp ⋅ Cp3.4kHz =   12 ⋅ π ⋅ RLED+ Rp ⋅ Cp  ,   29kHz = 12 ⋅ π ⋅ Rp ⋅ Cp Cp = 10nF , Rp = 540oℎm .

13. Rbias is used to bias the shunt regulator. Rbias is obtained as Rbias = VoptoIbias = 1V1mA = 1koℎm.
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Figure 1-25. Type 3 compensator
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