WEBENCH® Design Report VinMin = 85.0V VinMax = 265.0V Vout = 16.0V lout = 25.0A Device = UCC28600DR Topology = Flyback Created = 2018-11-25 06:33:51.330 BOM Cost = NA BOM Count = 65 Total Pd = Design: 908 UCC28600DR UCC28600DR 85V-265V to 16.00V @ 25A 1. The EMI filter shown in the schematic is a placeholder. It has not yet been designed for the application. #### **Design Alerts** #### **U1 Junction temperature is too high** U1 Tj:125.00 degC Specification: <105.00 degC Suggested:<105.00 degC U1 Tj:125.00 degC Specification: <105.00 degC This may lead to a device malfunction or breakdown. Some possible solutions are below: Decrease Switching Frequency to decrease MOSFET or Diode switching losses Decrease ambient temperature Decrease thermal resistance by adding a heat sink if feasible Increase the copper area and thickness of the board #### **Component Selection Information** With the current design condition, suitable FET could not be found in the current database. Hence, this design is created using an ideal FET. Please note that the resulting FET parameters are ideal, so the efficiency/loss values have been disabled. Also, the schematic/PCB export and Thermal simulations will not work with the ideal FET. #### **Electrical BOM** | Name | Manufacturer | Part Number | Properties | Qty | Price | Footprint | |-------|--------------|---------------------------------------|--|-----|--------|--------------------------------| | Caux | Panasonic | EEE-FK1V470P
Series= FK | Cap= 47.0 uF
ESR= 360.0 mOhm
VDC= 35.0 V
IRMS= 240.0 mA | 1 | \$0.12 | SM_RADIAL_D 84 mm ² | | Ccomp | MuRata | GRM155R71A393KA01D
Series= X7R | Cap= 39.0 nF
ESR= 1.0 mOhm
VDC= 10.0 V
IRMS= 0.0 A | 1 | \$0.01 | 0402 3 mm ² | | Ccsf | Kemet | C0201C101K3GACTU
Series= C0G/NP0 | Cap= 100.0 pF
VDC= 10.0 V
IRMS= 0.0 A | 1 | \$0.01 | 0201 2 mm ² | | Cfb | MuRata | GRM1555C1E111JA01D
Series= C0G/NP0 | Cap= 110.0 pF
ESR= 1.0 mOhm
VDC= 25.0 V
IRMS= 0.0 A | 1 | \$0.02 | 0402 3 mm ² | | Name | Manufacturer | Part Number | Properties | Qty | Price | Footprint | |-------|---------------------|------------------------------------|---|-----|---------|---| | Cin | TDK | B43510A5228M000
Series= 2384 | Cap= 2.2 mF
ESR= 50.0 mOhm
VDC= 450.0 V
IRMS= 16.9 A | 1 | \$41.51 | | | | | | | | | B43510_4500x10000_00
2209 mm ² | | Cout | Panasonic | 35SEPF120M
Series= SEPF | Cap= 120.0 uF
ESR= 18.0 mOhm
VDC= 35.0 V
IRMS= 4.4 A | 11 | \$0.69 | | | Cout1 | TDK | C2012X5R1V106K085AC
Series= X5R | Cap= 10.0 uF
ESR= 2.818 mOhm
VDC= 35.0 V
IRMS= 3.8868 A | 1 | \$0.19 | SEPF_F13 144 mm ² ■ 0805 7 mm ² | | Csnub | MuRata | GRM188R72E222KW07D
Series= X7R | Cap= 2.2 nF
ESR= 1.3 Ohm
VDC= 250.0 V
IRMS= 120.0 mA | 15 | \$0.35 | ■ 0603 5 mm ² | | Css | MuRata | GRM033R70J332KA01D
Series= X7R | Cap= 3.3 nF
ESR= 1.0 mOhm
VDC= 6.3 V
IRMS= 0.0 A | 1 | \$0.01 | 0201 2 mm ² | | Cvdd | TDK | C1608X5R1V225K080AC
Series= X5R | Cap= 2.2 uF
ESR= 7.674 mOhm
VDC= 35.0 V
IRMS= 1.87823 A | 1 | \$0.06 | 0603 5 mm ² | | Cvdd1 | TDK | C1608X5R1H104K080AA
Series= X5R | Cap= 100.0 nF
ESR= 29.6 mOhm
VDC= 50.0 V
IRMS= 971.99 mA | 1 | \$0.01 | 0603 5 mm ² | | Dac | Diodes Inc. | GBJ2510-F | VF@Io= 1.05 V
VRRM= 1,000.0 V | 1 | \$1.20 | GBJ 211 mm² | | Daux | SMC Diode Solutions | SK220ATR | VF@Io= 900.0 mV
VRRM= 200.0 V | 1 | \$0.04 | SMA 37 mm ² | | Dcs | Toshiba | CMS06 | VF@Io= 320.0 mV
VRRM= 30.0 V | 1 | \$0.20 | M-FLAT 19 mm ² | | Dg | Toshiba | CMS06 | VF@Io= 320.0 mV
VRRM= 30.0 V | 1 | \$0.20 | M-FLAT 19 mm ² | | Dsec1 | CUSTOM | CUSTOM | VF@Io= 500.0 mV
VRRM= 126.961 V | 1 | NA | CUSTOM 0 mm ² | | Dsec2 | CUSTOM | CUSTOM | VF@Io= 500.0 mV
VRRM= 126.961 V | 1 | NA | CUSTOM 0 mm ² | | Dsnub | STMicroelectronics | STTH506B-TR | VF@Io= 1.85 V
VRRM= 600.0 V | 1 | \$0.66 | DPAK 102 mm ² | | Name | Manufacturer | Part Number | Properties | Qty | Price | Footprint | |---------|-------------------------|------------------------------------|---|-----|--------|---------------------------| | Dvdd | Toshiba | CMS06 | VF@Io= 320.0 mV
VRRM= 30.0 V | 1 | \$0.20 | M-FLAT 19 mm ² | | M1 | NA | IdealFET | VdsMax= 687.0 V
IdsMax= 32.0 Amps | 1 | NA | NA 0 mm ² | | O1 | Fairchild Semiconductor | FOD817A | Optocoupler | 1 | \$0.13 | DIP-4 71 mm ² | | Rbias | Vishay-Dale | CRCW04021K00FKED
Series= CRCWe3 | Res= 1000.0 Ohm
Power= 63.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 0402 3 mm ² | | Rcs | CUSTOM | CUSTOM
Series= ? | Res= 32.13 mOhm
Power= 0.0 W
Tolerance= 0.0% | 1 | NA | CUSTOM 0 mm ² | | Rcsf | Vishay-Dale | CRCW04021K91FKED
Series= CRCWe3 | Res= 1.91 kOhm
Power= 63.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 0402 3 mm ² | | Rfbb | Panasonic | ERJ-6ENF4121V
Series= ERJ-6E | Res= 4.12 kOhm
Power= 125.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 0805 7 mm ² | | Rfbt | Panasonic | ERJ-6ENF2212V
Series= ERJ-6E | Res= 22.1 kOhm
Power= 125.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 0805 7 mm ² | | Rg | CUSTOM | CUSTOM
Series= ? | Res= 4.7 Ohm
Power= 0.0 W
Tolerance= 0.0% | 1 | NA | CUSTOM 0 mm ² | | Rled | Vishay-Dale | CRCW04026K34FKED
Series= CRCWe3 | Res= 6.34 kOhm
Power= 63.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 0402 3 mm ² | | Rovp1 | Vishay-Dale | CRCW0805205KFKEA
Series= CRCWe3 | Res= 205.0 kOhm
Power= 125.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 0805 7 mm ² | | Rovp2 | Panasonic | ERJ-6ENF5112V
Series= ERJ-6E | Res= 51.1 kOhm
Power= 125.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 0805 7 mm ² | | Rs1 | Vishay-Dale | CRCW12062M26FKEA
Series= CRCWe3 | Res= 2.26 MOhm
Power= 250.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 1206 11 mm ² | | Rs2 | Vishay-Dale | CRCW12062M26FKEA
Series= CRCWe3 | Res= 2.26 MOhm
Power= 250.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 1206 11 mm ² | | Rs3 | Vishay-Dale | CRCW12062M26FKEA
Series= CRCWe3 | Res= 2.26 MOhm
Power= 250.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 1206 11 mm ² | | Rsnub11 | Vishay-Bccomponents | PR02000201202JR500
Series= ? | Res= 12.0 kOhm
Power= 2.0 W
Tolerance= 5.0% | 1 | \$0.05 | PR02 117 mm ² | | Rsnub12 | Vishay-Bccomponents | PR02000201202JR500
Series= ? | Res= 12.0 kOhm
Power= 2.0 W
Tolerance= 5.0% | 1 | \$0.05 | PR02 117 mm ² | | Rsnub2 | Vishay-Dale | CRCW120616R5FKEA
Series= CRCWe3 | Res= 16.5 Ohm
Power= 250.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 1206 11 mm ² | | Rstatus | Panasonic | ERJ-6ENF2103V
Series= ERJ-6E | Res= 210.0 kOhm
Power= 125.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 0805 7 mm ² | | Rvdd | Vishay-Dale | CRCW04024R87FKED
Series= CRCWe3 | Res= 4.87 Ohm
Power= 63.0 mW
Tolerance= 1.0% | 1 | \$0.01 | 0402 3 mm ² | | Name | Manufacturer Part Number | | Properties | Qty | Price | Footprint | | |---------------------------------|--|---|--|--|--------------------------|-----------------------------|------| | T1 CUSTOM CUSTOM | | Lp= 27.285 µH 1 NA Rp= 31.0 mOhm CUSTOM Leakage_L= 545.695 nH Ns1toNp= 0.24 Rs1= 14.0 mOhms Ns2toNp= 0.225 Rs2= 200.0 mOhms | | | CUSTOM 0 mm ² | | | | U1 | Texas Instruments | UCC28600DR | Switcher | 1 | \$0.46 | | | | | | | | | | | | | VD | Town bottom out | TI 404 AIDDZD | Valla va Daf | | Ф0.00 | D0008A 57 mm² | | | VR | Texas Instruments | TL431AIDBZR | Voltage Ref | erences 1 | \$0.08 | DBZ0003A 14 mm ² | 2 | | | Vout p- | p | 47.5 | Duty | Cycle | | | | .300 | | | 45.0 | | | | _ | | .275 | | | 42.5
40.0 | | | | | | .250 | | | 37.5
_ 35.0 | | | | _ | | .225 | | /-// | 35.0
32.5
9 30.0
27.5
25.0 | | | | | | .200 | | | 30.0 | | | | | | .175 | | | ∑ _{25.0}
⇒ _{22.5} | | | | | | 150 | | | ∑25.0
D 20.0 | <u></u> | | | | | .125 | | | 17.5
15.0 | | | | | | | | | 12.5 | | | | | | .100 | | | 7.5 | | | | | | 2.5 | 5.0 7.5 10.0 12.5 Output Cu Vin= 85.0V -Vin= 175.0 | | 2.5 5.0 | 7.5 10.0 12
Output
Vin=85.0V → Vin=1 | t Curren | t (A) | 25.0 | | 8.0 | Cin IRM | S | 26 | T1 lpr | im pk | | | | 7.5 | | | 25
24 | | | | / | | 7.0
6.5 | | | 23 | | | | | | 6.0 | | | 21 | | | | 1 | | 5.0 | | |) 19
DK(7 | | | | | | 5.5
5.0
4.5
4.0
3.5 | | | (Y ²⁰
19
10
11
16
15
14
14
13 | | | | | | 3.5 | | | <u>0</u> 15 | | | | | | 1 1 | | | F 13 | | | | | | 3.0 | ş | | 11 | | | | | | 2.5
2.0 | | | 10 | | | | | | 2.5 | | | 10 9 8 | | | | | # **Operating Values** | # | Name | Value | Category | Description | |----|------------|-------------------------|-----------------------|---| | 1. | Cin IRMS | 7.32 A | Capacitor | Input capacitor RMS ripple current | | 2. | Cout IRMS | 33.485 A | Capacitor | Output capacitor RMS ripple current | | 3. | ICThetaJA | 108.9 degC/W | IC | IC junction-to-ambient thermal resistance | | 4. | lin Avg | 5.832 A | IC | Average input current | | 5. | BOM Count | 65 | System
Information | Total Design BOM count | | 6. | Duty Cycle | 43.586 % | System
Information | Duty cycle | | 7. | FootPrint | 4.972 k mm ² | System
Information | Total Foot Print Area of BOM components | | # | Name | Value | Category | Description | |-----|--------------|------------|-----------------------|------------------------------------| | 8. | Frequency | 82.092 kHz | System
Information | Switching frequency | | 9. | lout | 25.0 A | System
Information | lout operating point | | 10. | Mode | DCM | System
Information | Conduction Mode | | 11. | Pout | 400.476 W | System
Information | Total output power | | 12. | Total BOM | NA | System
Information | Total BOM Cost | | 13. | Vin | 85.0 V | System
Information | Vin operating point | | 14. | Vout | 16.0 V | System
Information | Operational Output Voltage | | 15. | Vout p-p | 248.564 mV | System
Information | Peak-to-peak output ripple voltage | | 16. | T1 Iprim RMS | 8.054 A | Transformer | Transformer Primary RMS Current | | 17. | T1 lprim pk | 21.13 A | Transformer | Transformer Primary Peak Current | | 18. | T1 Is1 RMS | 42.213 A | Transformer | Transformer Secondary1 RMS Current | # **Design Inputs** | Name | Value | Description | | |-------------|----------|------------------------|--| | lout | 25.0 | Maximum Output Current | | | VinMax | 265.0 | Maximum input voltage | | | VinMin | 85.0 | Minimum input voltage | | | Vout | 16.0 | Output Voltage | | | acFrequency | 60.0 | AC Frequency | | | base_pn | UCC28600 | Base Product Number | | | source | AC | Input Source Type | | | Та | 30.0 | Ambient temperature | | # WEBENCH® Assembly ## Component Testing Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded. #### Soldering Component to Board If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough). ## Initial Startup of Circuit It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 85.0V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results. ## **Load Testing** The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit. #### **Design Assistance** - 1. Quasi-Resonant Flyback Green-Mode Controller - 2. Master key: 6122D9DF1E6F878E[v1] - 3. UCC28600 Product Folder: http://www.ti.com/product/UCC28600: contains the data sheet and other resources. #### Important Notice and Disclaimer TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.