UCC28780 Debug Guide and Common Issues

Contents

- How to power up your board
- How to distinguish the protection
- Common issues and solutions
- Optimize your design

Before Power on: Check soldering

Specially for QFN package

- > Use multi-meter "Diode" setting.
- ➤ "Red" probe → GND, "Black" probe → each Pin of IC.
- Presents a 0.5~0.7V voltage = normal.
- If not , Check soldering of pin.

Before Power on: Setting Brown-in voltage

- ightarrow I_{VSL(Brown-in)} is start-up threshold current at VS pin
- N_{AUX} and N_P are the turns of AUX and Pri. windings
- ➤ V_{bulk(Brown-in)} is DC voltage on bulk at start-up
- > 75Vac /106Vdc is preferred start point of Brown-in
- Large different from preferred will affect OPP curve
- Calculate R_{vs1}, then program it

$$i_{VSL(Brown-in)} = 353 \mu A \approx \frac{(N_{AUX} / N_P)V_{bulk(Brown-in)}}{R_{VS1}}$$

Low AC_IN Power on : Check VDD HV start

CH1 (Yellow): VDD

- > AC input voltage = 20Vac or little more
- Capture the VDD voltage
- VDD presents a Triangle wave
- The peak ~ 17.5V, valley ~9.8V, HV start normal

Low AC_IN Power on : Check low-side pulse

- Gradually increase AC input to a little lower than Brown-in
- Zoom in to low side driver pulse
- CH3 Purple : Low-side driver ,CH4 Green : VDD

- > 4 pulses is normal
- CH3 Purple : Low-side driver
- CH4 Green : XFMR Ipri.

If above steps are normal, you can power up your board to next step

Contents

- How to power up your board
- How to distinguish the protections
- Common issues and solutions
- Optimize your design

Protection Features of UCC28780

Protection	Sensing	Threshold	Delay to Action	I	Action
VDD UVLO	V _{DD}	$V_{DD(on)} = 17.5V$ $V_{DD(off)} = 10.5V$	no		V _{DD} restart
Over Power protection (OPP)	cs	$V_{CST} \ge V_{CST(OPP)}$	160ms		1.44s restart
Peak current limit (PCL)	CS	V _{CST(max)} =0.8V	160ms		1.44s restart
Over current protection (OCP)	CS	V _{CST} ≥1.2V	3 PWML pulses		1.44s restart
Short circuit protection (SCP)	CS, VS, VDD		≤160ms		2 1.44s restart
Over voltage protection (OVP)	VS	VS≥4.6V	3 PWML pulses		1.44s restart
Brown-in detection	VS	I _{VSL} <353μA	3 PWML pulses		V _{DD} restart
Brown-out detection	VS	I_{VSL} <320 μ A	60ms		V _{DD} restart
Over temp. protection (OTP)	NTC	R _{NTC} ≤10kΩ	3 PWML pulses		V _{DD} restart until R _{NTC} ≥22.5kΩ
Thermal shutdown	Die	T _{die} >125°C	3 PWML pulses		V _{DD} restart

Note: Specially check "Delay to Action" and "Action" in your waveform
To identify which protection occur

How to identify "Delay to Action"

CH3 (purple): Vcs CH1 (Yellow): PWML

Ex: 3 pulse trigger OCP 1.2V "Delay to Action"

9

How to identify "Action"

The interval time of adjacent fault is "Action" Ex: 1.44s restart of OVP, CH2: Vout

CH4 Green VDD hiccup Ex: VDD restart

Contents

- How to power up your board
- How to distinguish the protections
- Common issues and solutions
- Optimize your design

VDD UVLO: VDD is clamped too low to start

> HV Startup Mode

- S1 and S2 on, S3 off,
- S1 limits the charge current tens or hundreds uA

Normal VDD start up waveform

- VDD(on) = 17.5V,
- V_{RFF} =5V,

Common issues

- VDD clamped to such as 9V,----Potential reason is AUX winding rectify diode reverse current exceed S1 charge current tens or hundreds uA . Solution: Replace Daux and check reverse current.
- VDD be clamped to such as15V, ----Potential reason is the TVS on SWS pin used low voltage TVS, Solution: suggest use 18V~20V TVS.

VDD UVLO: AUX didn't take over VDD supply

> VDD drop to UVLO

- After Vo settle, the auxiliary winding should take
 Over VDD supply. →
- If not ,VDD will drop to UVLO.

Common issues

- Improper XFMR Turn ratio of Ns and Naux, Specially in PD design Large Vo range ex: Ns:Naux =4:3, When Vo=20V, VDD=15V –ok, while Vo=9V, VDD=6.75V, UVLO.
- If there are LDO or two AUX windings for VDD, check if normally operation.

OCP: XFMR wrong polarity

Identify if it's OCP

- "Delay to Action" -- 3 PWML pulses
- "Action" -1.44s restart.
- Zoom in one pulse, peak value > 1.2V

Common issue

- Wrong polarity of XFMR winding,
- Wrong assembly or XFMR design,

Purple: Vcs, Yellow: PWML

OCP: Shoot through of High&Low side FETs

Shoot through at Burst mode

- PWML on, PWMH off -- UCC 28780.
- Oscillation found at isolator driver side.
- The oscillation voltage trigger high Side GaN turn on

Possible reason and solution

- Large switching noise at burst mode,
- Bad PCB layout ---large high side driver loop,

Solution: Add RC filter to suppress the oscillation

OVP: Bad loop compensation and setting

Identify if it's OVP

- "Delay to Action" -- 3 PWML pulses
- "Action" -1.44s restart.
- Capture Vout, Check if > Setting value

$$V_{VS(OVP)} = 4.5V \approx \frac{(N_{AUX} / N_S)V_{o(OVP)} \cdot R_{VS2}}{R_{VS1} + R_{VS2}}$$

Possible reasons and solution

- Wrong setting V_{OVP}, --Correct it
- 431 not working, --Rbias2 limits required Min. I_{KA}
 Decrease Rbias2
- Too large R_{FB} suggest 20K ~ 39K.
- Too small CTR of opto-coupler. Use better
- Other components failure lead to open-loop.

Other protection: Open and Short of Pins

PROTECTION	SENSING	CONDITION	DELAY TO ACTION	ACTION	
		> 2 μs (SET = 5 V)			
CS pin short	PWML on-time @ first PWML pulse only	$>$ 2 μs (SET = 0 V, R _{RDM} \ge 55 kΩ)	none	UVLO reset	
	palee erriy	$>$ 1 μ s (SET = 0V, R _{RDM} $<$ 55 k Ω)			
CS pin open	CS voltage	V _{CS} > 1.2 V	3 PWML pulses	t _{FDR} restart (1.5 s)	
HVG pin open	HVG voltage @ UVLO _{ON}	V_{HVG} < or =12 V in less than 10 μ s after V_{VDD} reaches $V_{VDD(on)}$	none	UVLO reset	
HVG pin high	HVG voltage	V _{HVG} > 14 V	none	UVLO reset	
RDM pin short	RDM current @ UVLO _{ON}	V _{RDM} = 0 V, self-limited i _{RDM}	none	UVLO reset	
RDM pin open	RDM current @ UVLO _{ON}	RDM = Open	none	UVLO reset	
RTZ pin short	RDM current @ UVLO _{ON}	V _{RTZ} = 0 V, self-limited i _{RTZ}	none	UVLO reset	
RTZ pin open	RDM current @ UVLO _{ON}	RTZ = Open	none	UVLO reset	

If find only 1 pulse of PWML or no pulse, the possible reason is one critical Pin was open or short

Burst mode unstable (Passive compensation)

What is "unstable"?

- In SBP,LPM,ABM mode, The count of pulse In a packet is from 2 to 9 as the load increase.

Inconsistent pulse will lead to large ripple
 And audible noise

> Solution

- Make i_{FB} in phase with Vo "burst" ripple

 Proposed debug start point of parameters as shown in right table

Specially add Rdiff and Cdiff

Location	Proposed
Rbias1	11K
Rdiff	510ohm
Cdiff	4.7nF
R _{FB}	22.1K
C _{FB}	100pF
Cint	10nF

Burst mode unstable (Active Ripple Compen.)

What application should use ARC?

- When Output capacitor C_{o1} is polymer, and No Lo and C_{o2}
- With CLC filter on output -- 2nd—order filter (Secondary Resonance C_{o1}(ceramic)<<C_{o2})

Lower ESR

Solution :

Active ripple compensation
 (R_{COMP} can be decreased but not less than 510K)

 Q_{COMP} : 2N7002; R_{COMP} =1~2M Ω

Contents

- How to power up your board
- How to distinguish the protections
- Common issues and solutions
- Optimize your design

Audible noise reduction: ABM → AAM

Nsw higher than 9 for a smoother mode transition

Solutions for white noise reduction:

- Transformer dip varnishing
- Lower peak magnetizing current Minor decrease V_{BUR}
- Other source of noise MLCC capacitors of Cclamp or Sec._Reson. Caps
 - * More quantity caps parallel to reduce noise
- Adjust ABM loop more stability– narrow i_{FB} range (enlarge Rbias1 page 18)

SR driver missing pulse in burst

Reason: The resonance current touch demagnetizing current lead to SR current natural to zero

Solutions:

- Higher peak magnetizing current Increase V_{BUR}
- Increase value of Cclamp and decrease Sec. Resonance cap. -Co1
- Enlarge the resonant current "dip"
- * Select smaller Coss nonlinearity of high side MOSFET -- IPx60R385CP
- * Select higher Coss nonlinearity of SR MOSFET
- * Smaller Lk of transformer

Efficiency improve: (Specially for Si-FET)

- Transformer design considerations :
- Core material: TDK-N49, Ferroxcube-3F36
- Winding wire: Litz wire
- Delta B between 0.15~0.2T, < 0.1T more better
- MOSFET selection:
- High side : Smaller Coss, large Rdson is acceptable (Infineon CP series)
- Low side: Large Coss, smaller Rdson is prefer. (Infineon C7 series)
- > RTZ resistor setting:
- High line input ,Increase RTZ until find Vsw ring back , then decrease a little

Secondary Resonance (Specially for PD design)

 $\rm I_{o}$ discharging $\rm C_{o1}$ every cycle allows resonance continuing even with long demagnetization time

- Lower RMS loss on pri + sec side !!
- Better SR operation in AAM and ABM

 L_{damp} =680nH, R_{damp} =0.68 Ω

Serial damping is needed

Benefits of Secondary resonance

- Lowers conduction loss on primary side, results higher full load efficiency
- SR ZCS over wide output range, low turn off switching, also lower EMI
- Initial resonance current less than magnetizing current, easy SR operation
- Better for ripple

"Tiny load" efficiency improve

Increasing Peak current

1. Reducing sensing resistor

$$P = \frac{1}{2} L_m i_{m(+)}^2 f_{sw}$$

2. Active voltage divider on CS Pin

1. Effect on 20V/0.25W at V_{bulk}=325V

Rcs	Pin	Eff	f _{BUR}	f _{sw}	I _{m(+)}	OPP	P _{O(OPP)}
0.225	0.419W	59%	5.2K	686K	0.62A	120%	54W
0.192	0.406W	61%	4.4K	660K	0.68A	145%	65W

Gain 2% efficiency results in sacrificing OPP level

2-1. Effect on 20V/0.25W at V_{bulk}=325V

R _{SBP}	Pin	Eff	f _{BUR}	f _{sw}	I _{m(+)}
Open	0.419W	59%	5.2K	686K	0.62A
1.6K	0.385W	64%	3.3K	595K	0.94A

Gain 5% efficiency with same OPP level

2-2. Effect on 20V/0W at V_{bulk}=325V

R _{SBP}	Pin	f _{BUR}	f _{sw}	I _{m(+)}
Open	55mW	790Hz	712K	0.54A
1.6K	46mW	430Hz	619K	0.74A

Gain 9mW standby power with same OPP level

PD design considerations

Balance 5V noise and 20V average efficiency

- Lower V_O results in lower f_{SW} operation
- N_{SW} adjusts under lower f_{SW} case, f_{BUR} variation is larger
- Larger f_{BUR} variation force ABM loop performing different Nsw Among adjacent burst packets –maybe lead to audible noise

PD design considerations

- Solution (Balance 5V noise and 20V average efficiency)
 - V_o Feedforward Resistor to BUR Pin

V _o	V_{BUR}
20V	1.04V
5V	0.842V

Reducing V_{BUR} at lower Vout mitigates audible noise but keeping high Vout average effi.

- Another solution for mitigates 5V noise
 - Narrow down ΔI_{FB} (Increase R_{BIAS1} Decrease C_{DIFF})

$$\Delta I_{FB} = K_{RIPPLE} \times \Delta V_{O(ABM)} \approx 10 \,\mu A$$

$$K_{RIPPLE} \equiv \frac{I_{FB}(s)}{V_o(s)} \bigg|_{20kH < f < 40kH } \approx \frac{CTR}{R_{BLAS1}} \frac{\omega_{OPTO}}{\omega_{Z1}} = \frac{CTR}{R_{PLAS1}} \frac{(R_{DIFF} + R_{BLAS1})C_{DIFF}}{(R_{FB} + R_{FBI})C_{OPTO}}$$

Large Vout AC ripple improvement

Choose appropriate optocoupler

- For lower standby power, UCC28780 iFB current designed to <0.1mA
- The optocoupler with smaller iF current maybe have Lower CTR,
 Or poor performance as temperature variation.
- Lead to lower low frequency gain to suppress the AC ripple .

© Copyright 2018 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com