
UCD31XX

LIT. NUMBER - DATE

1

 Copyright © 2007, Texas Instruments Incorporated PRODUCT PREVIEW information concerns products in the
formative or design phase of development. Characteristic data
and other specifications are design goals. Texas Instruments
reserves the right to change or discontinue these products
without notice.

www.ti.com

UCD31xx Application Note
Wide Frequency Range DPWM

Synchronization on the Fly

Literature Number: xxxxxx

9/24/2012

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 2 of 15

Table of Contents
1 Introduction ... 2
2 Reset the DPWM period counter at a proper place ... 2

2.1 Two principles .. 2
2.2 Improper reset ... 3
2.3 Find a safe place to reset ... 4

3 Frequency and phase measurement using T24 capture ... 7
3.1 T24 timer capture structure ... 7
3.2 Frequency measurement ... 8
3.3 Phase measurement ... 8

4 Frequency and phase adjustment .. 10
4.1 Frequency adjustment ... 10
4.2 Phase adjustment ... 11

5 HSFB DPWM synchronization example .. 11
5.1 Firmware flowchart ... 11
5.2 DPWM configuration.. 11
5.3 Frequency measurement and adjustment .. 13
5.4 Turn on external sync.. 13
5.5 Phase adjustment ... 14

6 Test waveforms ... 14

1 Introduction
UCD31xx has a SYNC pin to synchronize DPWM waveforms between multiple UCD31xx devices. The
SYNC pin of the master is configured as SYNC out, while the SYNC pin of the slave is configured as
SYNC in. Two UCD31xx based power supplies can be connected during normal operation (hot sync) if
carefully configured and programmed.

The DPWM module in UCD31xx is based on a 14 bit counter with period and frequency control. When the
external synchronization signal is received from SYNC pin, and the DPWM module is enabled to accept
external SYNC signal, the DPWM counter will reset to zero or a preset value. In this way, the DPWM
signal is synchronized to an external SYNC signal.

Improper reset of the DPWM counter can result in pulse extension or shoot through. This application note
suggests a right procedure of “hot sync”. The basic idea is to measure the master’s frequency and then
adjust the frequency of the slave. After the frequency is properly adjusted, turn on external
synchronization bit of the slave. This application note first introduces the properties of UCD31xx’s SYNC
pin, and how to do frequency and phase measurement using the 24-bit timer capture. Then explained in
detail about how DPWM synchronization between two hard switching full bridge converters is achieved.
The last section shows the test waveforms.

The proposed method supports wide frequency range DPWM synchronization on UCD31xx based hard
switching full bridge converter. The synchronization can be down during normal operation with little Vout
drop only at the transition point.

2 Reset the DPWM period counter at a proper place

2.1 Two principles
The period counter of the DPWM module is reset to zero or a preset value (determined by
DPWMCNTPRE) by three events:

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 3 of 15

1. DPWM enable
2. SYNC received (slave mode enabled)
3. Counter reaches period register value

Principle 1:
The first rising edge (EV1 typically) of a pair of DPWM signal will come out right after one of the above
three events happens, and it depends on which event comes in first.

Principle 2:
The DPWM pulses won’t change their polarities at the reset point until the next DPWM EVENT or reset
event comes in. For example, if at the reset point, DPWMxA is high and DPWMxB is low, after resetting,
DPWMxA will keep high and DPWMxB will keep low, until the next DPWM EVENT happens.

2.2 Improper reset
Improper reset may result in pulse extension or multiple pulses in one cycle.
Let’s see some examples based on the two effects:

Example 1:
In this example, the SYNC frequency is lower than the DPWM frequency. And the pulse width of
DPWMxA is relatively small. The first SYNC signal comes in between EV3 and EV4. At this moment,
DPWMxA is low and DPWMxB is high. Since EV1 is put at the beginning of the period, right after the
SYNC signal comes in, DPWMxA becomes high. But DPWMxB will remain high. This results in shoot
through. Since the frequency of the SYNC signal is much lower than the DPWM frequency, the end of
period reset will happen before the next SYNC signal comes in. So there will be two pulses on DPWMxA
in one cycle.

DPWMxA

DPWMxB

SYNC

SYNC PERIOD END

PRD PRD PRD PRD

PRD

DPWMxB won’t change polarity at reset
point, resulting in shoot through

Example 2:
In this example, the frequency of SYNC signal is higher than the DPWM frequency. The first SYNC signal
comes in between EV3 and EV4, when DPWMxB is high. Because the frequency of SYNC is higher than
the DPWM frequency, the following SYNC signal will always be between EV3 and EV4, and DPWMxB will
never shut off.

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 4 of 15

PRD
SYNC

DPWMxA

DPWMxB

PRD

SYNC

DPWMxB won’t change polarity at
reset point, result in pulse extension

2.3 Find a safe place to reset
The following examples show two configurations that won’t cause pulse extension or shoot through.

Example 3:
The frequency of SYNC is slightly lower than the frequency of DPWMs. SYNC signal comes in between
EV1 and EV2. After synchronization, DPWMxA pulses become wider. There is no pulse extension or
shoot through.

PRDSYNC

DPWMxA

DPWMxB

PRD

SYNC

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 5 of 15

Example 4:
The frequency of SYNC is almost the same as the DPWM frequency. SYNC comes in between EV4 and
EV1. There is no pulse extension or shoot through. The first pulse after synchronization becomes a little
bit closer to the previous pulse.

PRDSYNC

DPWMxA

DPWMxB

PRD

SYNC

Deadtime
SYNC signal

comes in during
deadtime

Among the above examples, the configuration in Example 4 gives the least distortion. But it requires very
precise frequency and phase measurement in order to put the SYNC signal at the best place. The timer
capture module on UCD31xx has a resolution of 64ns. Compared with deadtime (EV4~EV1 window), it is
not fine enough. This configuration is not practical in most applications, because the “safe area” is too
narrow.

Example 3 has no pulse extension or shoot-through. But it makes DPWMxA wider after synchronization.
This is what we don’t want to see in a power supply.

The proposed method uses a spare DPWM to synchronize with the external signal. The other DPWMs
are slaves of the spare DPWM.

There are several benefits of using a spare DPWM:

(1) The spare DPWM is not used for power stage drivers. So the configuration of it has fewer
constraints and we can make a wide “safe area” for the SYNC signal.

(2) The power stage DPWMs are slaves to the spare DPWM all the time. They are the same
frequency and have a fixed phase relationship. If there is no pulse extension or shoot-through on
the spare DPWM, the power stage DPWMs will be safe. And because of the fixed frequency and
phase relationship, the power stage DPWMs don’t need to deal with a “moving master” which
could cause pulse distortion problem.

The following figure shows the configuration of the spare DPWM. To avoid pulse extension/shoot-
through, the “safe area” is made very wide. And the unsafe area is blanked in the firmware. Here are the
key points in configuration:

(1) EV1, EV3, and EV4 are very close to the beginning of the period, as shown in the figure. For
example, EV1 = 20, EV3 = 100, EV4 = 200. The duty of DPWMxA is 50%. EV1~EV4 window is
blanking time.

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 6 of 15

(2) The frequency of SYNC signal is slightly lower than the frequency of the DPWMs. For example, if
the DPWM period is PRD_DPWM, the SYNC period is PRD_SYNC. Then they should meet the
following equation:

PRD_DPWM < PRD_SYNC + blanking time
In this way, if the first SYNC signal comes in during blanking time, the second SYNC signal will
be pushed to the “safe area”.

(3) The EV1~EV4 window is blanked in firmware – EXT_SYNC_EN bit won’t be turned on in this
area. If the SYNC signal comes in the blanking area, it is ignored. The blanking time is set by
firmware delay. The delay can be set this way: at the beginning of a period – rising edge of
DPWMxA, generate a fast interrupt (DPWM period interrupt), put some delay which is larger than
EV4 – EV1 time window in the interrupt, and then turn on EXT_SYNC_EN. In fact, if EV1~EV4
window is made very small, it is automatically blanked by the interrupt entrance delay.

DPWMxA

DPWMxB

Blanking time configured
by firmware “noop”

DPWMxA

DPWMxB

Configuration
Case 1: SYNC

comes in during
blanking time

Case 2: SYNC
comes in area 1

Case 3: SYNC comes
in area 2

(1)
Safe

(1)
Safe

(1) (1)

(2)
Safe

(2)
Safe

(2) (2)

First SYNC
ignored

Second SYNC falls
in safe area

First SYNC makes
pulse wider

Second and the following
SYNCs, no distortion

First SYNC

Second SYNC and the
following makes pulses wider

Wider pulse

Wider pulse

Narrower

Let’s see three different cases that may happen to this DPWM configuration:
(the blue line in the figure is the waveform after sync signal is received)

Case 1: SYNC comes in during blanking time
The first SYNC is ignored, and the second SYNC will fall in area 1, due to the PRD_DPWM <
PRD_SYNC + blanking time relationship.

Case 2: SYNC comes in area 1
The first DPWMxA pulse gets wider; the following waveforms have no distortion.

Case 3: SYNC comes in area 2
The first SYNC makes the DPWMxA pulse closer to the previous pulse; the following DPWMxA pulses
are a little bit wider because of the period difference. But this wider pulse won’t cause distortion on the

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 7 of 15

power stage DPWMs, because what matters is just the starting point of this spare DPWM, but not the
pulse width.

As we can see, only at the transition point, the spare DPWM gets a little bit. After that, the spare DPWM
will provide stable reference to the other DPWMs.

3 Frequency and phase measurement using T24 capture

3.1 T24 timer capture structure
The core of the T24 timer is a 24-bit free-running counter. The clock input for the T24 timer can come
from a clock within the UCD31xx, ICLK, which is normally 15.6MHz. It can also be used with an external
clock from the FAULT0 pin. In this application, the internal ICLK is used, which gives a 64ns time
resolution.

The 24-bit timer has a capture block. It can be programmed to capture the 24-bit timer value on an edge
on the external signal. The edge control bits can select from rising edge, falling edge, or both edges. To
measure frequency/pulse width/phase, it is required to read the capture data at a proper time. So the T24
capture interrupt is enabled by setting the bit CAP_INT_ENA, and it is configured to be fast interrupt. The
capture module input can be selected from TCAP pin, SCI_RX[0], SCI_RX[1], and SYNC pin. In this
application, the timer capture is connected to SYNC pin. The SYNC pin can be configured as SYNC in or
SYNC out. When configured as SYNC in, the timer capture can capture the edges from the other device.
When configured as SYNC out (SYNC out source can be selected to be any DPWM output), the timer
capture catches its own edges.
Here is the timer capture initialization:

void init_timer_capture(void)
{
 TimerRegs.T24CAPCTRL.bit.CAP_INT_ENA = 1; //enable capture interrupt
 TimerRegs.T24CAPCTRL.bit.EDGE = 1; //capture on posedge
 TimerRegs.T24CAPCTRL.bit.CAP_SEL = 3; //connect T24 capture to SYNC pin
}

To enable timer capture interrupt, do the following in the interrupt initialization:

 write_reqmask(CIMINT_ALL_TMR_CAPT0);
 write_firqpr(CIMINT_ALL_TMR_CAPT0);

 enable_fast_interrupt();
 enable_interrupt();

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 8 of 15

3.2 Frequency measurement
For frequency measurement, two sequential positive edges are captured, and the time difference is
calculated. The following needs to be included in the fast interrupt to perform frequency measurement:

//read capture data
t24_latched = TimerRegs.T24CAPDAT.bit.CAP_DAT;

//calculate the counter difference between the current and
//the previous capture data
//the "else" is to handle overflow
if(t24_latched > t24_latched_previous)
{
 t24_latched_diff = t24_latched - t24_latched_previous;
}
else
{
 t24_latched_diff = t24_latched + 0xFFFFFF - t24_latched_previous;
}

//save capture data to t24_latched_previous
t24_latched_previous = t24_latched;
//moving average to calculate the time difference in steps of 250ps
avg_prd_in_250ps =t24_latched_diff + avg_prd_in_250ps-(avg_prd_in_250ps>>8);

t24_int_counter ++;

//clear the interrupt flag
TimerRegs.T24CAPCTRL.bit.CAP_INT_FLAG = 0;

3.3 Phase measurement
To measure the phase difference between two DPWMs or master and slave, the timer capture module
first capture the rising edge of the first DPWM (or slave), then capture the rising edge of the second
DPWM (or master).

UCD31xx has one SYNC module, but the module can be routed to 3 different pins (2 different pins on
40pin package) by selecting the IOMUX bits. In phase measurement application, the TCK pin is
connected to DPWM module of the salve, SYNC pin is connected to the master SYNC out; the SYNC
module switches between TCK pin and SYNC pin.

The following is the code that should be included in the interrupt. ms_switch is a switch flag between
master and slave. ms_switch == 0 means slave and ms_switch == 1 means master. Note that only after
the capture data on the salve is read, we calculate the difference between the two capture.

//read capture data
t24_latched = TimerRegs.T24CAPDAT.bit.CAP_DAT;
//clear the interrupt flag
TimerRegs.T24CAPCTRL.bit.CAP_INT_FLAG = 0;
//master slave switch is 0, switch to master
if(ms_switch == 0)
{
 //sync pin configured as input
 LoopMuxRegs.SYNCCTRL.bit.SYNC_DIR = 1;
 //sync pin function as sync
 //TCK pin configured as TCK

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 9 of 15

 MiscAnalogRegs.IOMUX.bit.SYNC_MUX_SEL = 0;
 MiscAnalogRegs.IOMUX.bit.JTAG_CLK_MUX_SEL = 0;

 //switch to master
 ms_switch = 1;

 //difference calculation
 if(t24_latched > t24_latched_previous)
 {
 t24_latched_diff = t24_latched - t24_latched_previous;
 }
 else
 {
 t24_latched_diff = t24_latched + 0xFFFFFF - t24_latched_previous;
 }

 //averaging
 avg_ph_in_250ps=t24_latched_diff+avg_ph_in_250ps-(avg_ph_in_250ps>>8);
}

//if master slave switch is 1, switch to slave
else if(ms_switch == 1)
{
 //sync pin configured as another function
 //TCK pin configured as sync
 MiscAnalogRegs.IOMUX.bit.SYNC_MUX_SEL = 2;
 MiscAnalogRegs.IOMUX.bit.JTAG_CLK_MUX_SEL = 2;
 //sync pin configured as output, a DPWM module output is connected to
 //sync pin at initialization
 LoopMuxRegs.SYNCCTRL.bit.SYNC_DIR = 0;
 ms_switch = 0;
}

Entering and exiting the interrupt takes time. If the phase difference is very small, say less than 30*250ps.
There will be missing pulses. For example, in the following figure, we are measuring (A), but (A) is too
small and what we get is (C). (C) is (A) plus one period. So in the firmware, we manually subtract the
period value from (C) and get (A).

Here is the code:

//if phase shift is very small, one pulse is missed,
//subtract result with period. to get the correct phase value
if(avg_ph_in_250ps > avg_prd_in_250ps)
{

A
B
C

DPWM

Sync

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 10 of 15

 avg_ph_in_250ps = avg_ph_in_250ps - avg_prd_in_250ps;
}

4 Frequency and phase adjustment

4.1 Frequency adjustment
The frequency adjustment function frequency_switch() is called every 100us in the standard interrupt.
And change the frequency and other frequency related registers step by step (increase or decrease by
one at a time). Two global variables period_new and period_old are defined to record the frequency
change. period_new can be changed either by measurement of master’s frequency or changing the
switching frequency on the GUI. For frequency changing on the GUI, please refer to another document:
“UCD31xx Test Report – Change Switching Frequency on the Fly”.

The following is the frequency_switch() function:
inline void frequency_switch(void)
{
 if(period_new > period_old)
 {
 pmbus_dcdc_config[0].period = period_old + 1;
 period_old ++;
 configure_vout_ramp_rate();
 configure_ton_rise();
 init_dpwm0();
 init_dpwm1();
 init_dpwm3();
 configure_dpwm_timing();
 configure_others();
 }

 if(period_new < period_old)
 {
 pmbus_dcdc_config[0].period = period_old - 1;
 period_old --;
 configure_vout_ramp_rate();
 configure_ton_rise();
 init_dpwm0();
 init_dpwm1();
 init_dpwm3();
 configure_dpwm_timing();
 configure_others();

 }
}

Note that in function configure_others(), the following registers are reconfigured:

1. DPWM global period
2. KCOMP value
3. Filter output clamp

Here is the code:

LoopMuxRegs.PWMGLBPER.all = pmbus_dcdc_config[0].period;
LoopMuxRegs.FILTERKCOMPB.bit.KCOMP2 = pmbus_dcdc_config[0].period >> 4;
LoopMuxRegs.FILTERKCOMPA.bit.KCOMP0 = (3 * pmbus_dcdc_config[0].period) >> 6;

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 11 of 15

Filter0Regs.FILTEROCLPHI.bit.OUTPUT_CLAMP_HIGH = (pmbus_dcdc_config[0].period
>> 1) - 500; // clamp to 50% duty - 500 * 250ps
Filter1Regs.FILTEROCLPHI.bit.OUTPUT_CLAMP_HIGH = (pmbus_dcdc_config[0].period
>> 1) - 500; // clamp to 50% duty - 500 * 250ps
Filter2Regs.FILTEROCLPHI.bit.OUTPUT_CLAMP_HIGH = pmbus_dcdc_config[0].period;
Filter2Regs.FILTEROCLPLO.bit.OUTPUT_CLAMP_LOW = pmbus_dcdc_config[0].period *
0.4;

4.2 Phase adjustment
Phase adjustment is accomplished by adjusting the DPWM counter preset register DPWMCNTPRE. If
enabled, the DPWMCNTPRE register is loaded into the period counter at DPWM startup or on a rising
sync edge.

Here is the example code to shift the waveform by 180°.

Dpwm1Regs.DPWMCNTPRE.all = pmbus_dcdc_config[0].period >> 1;
Dpwm1Regs.DPWMCTRL1.bit.PRESET_EN = 1; //Enable phase shift

Both master and slave mode DPWM modules can use this register. The above example code can be
used for initialization. But for safe operation of the power stage, if phase needs to be adjusted on the fly, it
is recommended to adjust step by step as well.

5 HSFB DPWM synchronization example

5.1 Firmware flowchart
The firmware flowchart of HSFB DPWM synchronization is shown below. The flowchart is for slave only.
The master’s firmware is very easy: the only thing is to configure SYNC pin as output and select one
DPWM for sync out. The slave’s firmware contains 4 stages: after system initialization, the slave
measures the master’s frequency through SYNC pin by T24 capture module. Then adjust the frequency
of the slave to a little bit higher than the master’s frequency (chapter 2 has explanation). After the
frequency adjustment is done, turn off SYNC interrupt and turn on DPWM period interrupt. After blanking
time, turn on external synchronization. Finally, measure the phase difference between master and slave,
and adjust the phase by adjusting the period counter reset register.

5.2 DPWM configuration
The DPWM synchronization functionality is tested on UCD31xx 360W 12V hard switching full bridge
EVM. The detailed hardware connection can be found in the EVM’s user guide.

The HSFB configuration uses 2 DPWM pairs:
DPWM0A and DPWM1A - primary side drive;

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 12 of 15

DPWM0B and DPWM1B – synchronous rectifier (SR) drive.

For synchronization purpose, a third DPWM pair is used – DPWM3. At initialization, DPWM3 is configured
as master. DPWM0 and DPWM1 are slaves of DPWM3. After the slave power supply is ready for
synchronization, the EXT_SYNC_EN bit in DPWM3 will be turned on, and sync with an external signal.

The configuration of DPWM3 follows what was proposed in Chapter 2. The other DPWM configurations
can be found in the EVM user’s guide and firmware development guide.

DPWM3A

DPWM0A

DPWM1A

DPWM0B

DPWM1B

DT1 DT2 DT3 DT4

DPWM3B

Synchronized edge Synchronized edge

The event settings, protection settings, and sample trigger settings of DPWM0 and DPWM1 are the same
as the normal configuration as describe in the user’s guide and firmware development manual. Here only
specific settings for synchronization purpose are mentioned.

DPWM0 is a slave of DPWM3:

 Dpwm0Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN =1;
 LoopMuxRegs.DPWMMUX.bit.DPWM0_SYNC_SEL =3;

DPWM1 is a slave of DPWM3:

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 13 of 15

 Dpwm1Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN =1;
 LoopMuxRegs.DPWMMUX.bit.DPWM1_SYNC_SEL =3;

DPWM3 is initialized as below:

void init_dpwm3(void)
{
 Dpwm3Regs.DPWMCTRL0.bit.CLA_EN = 0; //open loop, not controlled by CLA

 Dpwm3Regs.DPWMPRD.all = pmbus_dcdc_config[0].period;
 Dpwm3Regs.DPWMEV1.all = 20; //at the beginning of period
 Dpwm3Regs.DPWMEV2.all = pmbus_dcdc_config[0].period/2; //50% duty
 Dpwm3Regs.DPWMEV3.all = 200; //narrow pulse
 Dpwm3Regs.DPWMEV4.all = 400; //narrow pulse

 Dpwm3Regs.DPWMCTRL1.bit.GLOBAL_PERIOD_EN = 1;
 Dpwm3Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN = 0; //DPWM3 is master at init
}

5.3 Frequency measurement and adjustment
After initialization of DPWMs, DPWM3 is master; DPWM0 and DPWM1 are slaves of DPWM3.
EXT_SYNC_EN bit of DPWM3 is off.

Then T24 capture is initialized and waits for SYNC signal coming in from SYNC pin. Don’t turn on
EXT_SYNC_EN at this moment, first measure the frequency of the SYNC signal. The T24 capture
frequency measurement method is explained in Chapter 3. The firmware takes 3000 samples of the
SYNC frequency and avg_prd_in_250ps is the average period value in steps of 250ps. After 3000 times
measurement is done. Change the global variable period_new, so that the function frequency_switch()
will make changes to the DPWM frequency step by step.

if(t24_int_counter == 3000)
{
 period_new = avg_prd_in_250ps - 500;
 t24_flag = 1;
}

In this code, the new period of the slave is adjusted to 500x250ps less than the SYNC period, as
requirements mentioned in Chapter 2. The variable t24_flag is just a flag to indicate the frequency
measurement is done.

After the frequency adjustment is done by frequency_switch(), another flag will be set:

freq_switch = 1;

5.4 Turn on external sync
After frequency measurement and adjustment is done, turn off timer capture interrupt and leave only the
DPWM period interrupt on.

TimerRegs.T24CAPCTRL.bit.CAP_INT_ENA = 0;

Because EV1~EV4 time window is set to a very small value (400x250ps = 100ns, which is just 3
instruction cycle), the blanking time is automatically achieved by interrupt entrance delay. So just turn on
the EXT_SYNC_EN bit in the DPWM3 period fast interrupt, if the requirements are met.

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 14 of 15

if((freq_switch == 1)&&(Dpwm3Regs.DPWMCTRL1.bit.EXT_SYNC_EN == 0)&&(t24_flag
== 1))
{
 MiscAnalogRegs.GLBIOVAL.bit.TDO_IO_VALUE = 1;
 Dpwm3Regs.DPWMCTRL0.bit.MSYNC_SLAVE_EN = 1;
 Dpwm3Regs.DPWMCTRL1.bit.EXT_SYNC_EN = 1;
}

The TDO_IO_VALUE bit is to control a GPIO to indicate the turning on of EXT_SYNC_EN, so that the
transition point can be captured on a oscilloscope.

5.5 Phase adjustment
The SYNC signal can come in at any place of DPWMs except the blanking time. So after the
synchronization is done, phase adjustment is needed to put the master and slave in phase. Phase
measurement method is explained in Chapter 3, and the adjustment method is explained in Chapter 4.

6 Test waveforms
The test is done on UCD3138 hard switching full bridge EVM running at 10A load. The following two
figures show the waveform distorted just at the transition point, and the distortion result in only 150mV
Vout drop. At other places, the DPWM changes smoothly and Vout is steady and smooth.

The master’s frequency is 200kHz. The test on slave is done from switch frequency from 150kHz to
250kHz. In this whole range, the synchronization works fine.

09/25/12 UCD31xx Application Note Version x1.0

Texas Instruments – Internal Data Only Owner: TBD Page 15 of 15

	1 Introduction
	2 Reset the DPWM period counter at a proper place
	2.1 Two principles
	2.2 Improper reset
	2.3 Find a safe place to reset

	3 Frequency and phase measurement using T24 capture
	3.1 T24 timer capture structure
	3.2 Frequency measurement
	3.3 Phase measurement

	4 Frequency and phase adjustment
	4.1 Frequency adjustment
	4.2 Phase adjustment

	5 HSFB DPWM synchronization example
	5.1 Firmware flowchart
	5.2 DPWM configuration
	5.3 Frequency measurement and adjustment
	5.4 Turn on external sync
	5.5 Phase adjustment

	6 Test waveforms

