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A New Three-Phase Power-Factor Correction (PFC)
Scheme Using Two Single-Phase PFC Modules
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Abstract—n this paper, a new three-phase power-factor correc- Fphata ) 3-phide 1o 2:pha ""..|..._g...u.. [ TR R—
tion (PFC) scheme is proposed using two single-phase PFC mod- | "#"! TEEn IR maon
ules. In this approach, the “three” phase input is first transformed i, b5 By
to “two” phase by means of a 0.14-pu-rated autotransformer. Two [ . *
standard single-phase PFC modules are then employed to process Vo ¥ o a
the “two” phase power to dc output. Split inductors and diodes e N . S fLoam
are employed to limit interaction between the two PFC stages. Due L, 0 ! :
to cascade operation of two PFC stages, low-frequency (120 Hz) v, L .
ripple in the dc-link capacitor is cancelled. Detailed analysis and g
simulation results are presented. A 220-V 1.5-kVA design example
along with experimental results is shown. il -
Index Terms—Harmonics, power-factor correction, power - i:| e
quality. |

I. INTRODUCTION

HREE-PHASE switch-mode power supplies (SMPSs)
employing diode-rectifier-type utility interface are widely c
used in telecommunications, data processing, and other indus-
trial systems [1], [2]. The diode-rectifier-type utility interface
generates lower order harmonics of the order#6ki, i.e.,
5, 7, 11, 13, etc. IEC 61000-3-4 and IEEE 519-1992 detail
acceptable limits [3], [4] of such nonlinear loads. Several b X a
approaches have been studied and summarized in [5]-[8] to (b)
Improv? the t,Otal harmonic distortion (THD) They are l:"‘oadlifig. 1. Proposed three-phase PFC scheme using two single-phase PFC
categorized into two groups: 1) rectifier circuitry capable Ghodules. (a) Topology of the proposed approach. (b) Vector diagram of the
producing low level of harmonic content or 2) conventiondivo phase.
rectifier circuitry with additional filter. Three single-phase

power-factor correction (PFC) stages for a three-phase syster} Va Yy Ve

a single-switch PFC with discontinuous mode (DCM) control,

and a six-switch PWM rectifier can be considered in the first

category. A single-switch PFC with DCM control suffers from i 2 T Y iy
high switch current rating and high electromagnetic interfer- 2

ence (EMI) [6], [7]- A pulsewidth modulation (PWM) rectifier

needs complicated measurements and feedback control [5].

This paper proposes a new three-phase PFC scheme using two @
standard single-phase PFC modules. “Two” phase is producek
by means of a 0.14-pu-rated autotransformer from a “three’
phase input. Two standard single-phase PFC modules are er
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Fig. 3. Equivalent circuits at each switching period. (a) Equivalent circuit in whicts on while S is on. (b) Equivalent circuit in whicl§; is on whileS; is
off. (c) Equivalent circuit in whichS,; is off while S is on. (d) Equivalent circuit in whicls; andS; are off.

to the common dc output. Due to cascade operation of the teba center-tapped autotransformer. From the vector diagram in
PFC stages, low-frequency (120 Hz) ripple components in thég. 1(b), itis clear that voltage,, andv.; are 90 apart.
dc-link capacitor cancel each other. The advantages of the proTwo single-phase boost PFC stages are connected to the
posed scheme are as follows. “two” phase voltagesv,;, and v, as shown in Fig. 1(a).
« The proposed approach is modular and employs two sta¥ingle-phase PFC module 1 consists of a bridge rectifier,
dard single-phase PFC modules. Input current waveforrmgluctorsL; y and Ly;, and diodesD; ; and Dy,. Single-phase
are nearly sinusoidal at unity power factor and are in cor?C module 2 consists of a bridge rectifier, inductbgg and
pliance with IEEE 519, IEC 1000-3, and IEC-6000-3-2.2, and diodesD,; and D Split inductors and diodes are
limits. employed at the two PFC stages to limit interaction between
« In this scheme, the second-order harmonic current cothe two when the output stages are combined [8].
ponent in the dc-link capacitor is cancelled. This signif- Although|V,,| # [Vei| [Fig. 1(b)], the two boost PFC stages
icantly reduces capacitor heating and improves its opé¥e suitably controlled with different gains to supply one-half of
ating life. the output power. This feature enables cancellation of low-fre-
The voltampere (VA) rating of the autotransformer emguency second-order harmonic current component in the capac-
ployed is low. itor.
» The dc output is regulated and is immune to voltage sags
and other power quality disturbances. A. Analysis

Fig. 2(a) shows the phase voltages. Single-phase PFC module
1 sees the voltage,; as in Fig. 2(b) and single-phase PFC

Fig. 1(a) shows the topology of the proposed approach. Tireodule 2 sees the voltage; in Fig. 2(b) via the autotrans-
three-phase input,, v;, andv. (120° phase shift) is first trans- former. Fig. 3 shows the possible equivalent circuits from the
formed to two phase,;, andwv. (90° phase shift) by meansinput to the output.

Il. PROPOSEDSYSTEM
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In the interval ofr /18 < wt < 7 /2 (gray area in Fig. 2), the “/
rectified output has the following relationship: \

|
[vas] > |ver] (@) x 16
|Vas | |

depy =1— V. (Za)

Vo

whered,;, andd,.; are the duty cycles of each converter.

When bothS; andS; switches are on, there is no current path
to the output and the two single-phase PFC modules work inde-
pendently as in Fig. 3(a). Also, when one of the switches, i.e., S, Sy
S, or S, is off [the equivalent circuit is shown in Fig. 3(b) and <N,
(c)], the PFC modules operate independently. However, when
both switches are off the two PFC modules are simultaneougfy. 4. inductor current waveforms for a switching period.
connected to the output.

dck:]-_

S,; OFF, S,; ON | S,; OFF, S,; OFF
> P

The equivalent circuit for this condition is shown in Fig. 3(d) 1t /\ /\ /\ /\ /\
i i i i PFC Stage 1
For this equivalent circuit, g u' VA N7 N7
dLlf dle S$1 1} N
Vap — Luy —= P —Vo— Ly YT =0 (3.a) Gating Signal % .
W
dLQf d’igb
Vek — Loy —= — Vo — Loy —— =0 (3.b)
dt dt !
. . PFC Stage 2 15 \ /\ /\ /\ /\ /
Vab diyy dizy VAR VAR VAR VAN VA
_—+L1b——L2b—IO (3C) '
2 dt dt s2 .
i1 +12p — t1p — G20 =0. (3.d) Gating Signal ** —| I_

Assuming thatl = Liy = L1y = Loy = Lo, the inductor

current can be derived from (3.a)—(3.d). I oo

s, Offl s,0n

s, Offl S, 0n

810611 $,0n |S1Oﬁi $,0n l

| | |sz ov{ S,0n I5204 s,0n |s, Oﬂi s,0n S’Oﬁl s,0n |s, Offl
dii s < Vek ) 1
0 — Vab| — - Vvo a7 (4a)
dt [vas| 2 2L Fig. 5. Staggered PWM.
dilb |Uck| 1
b _ (1, v, = 4b) A
dt <|” 7 oL “b)
digf |Uck| 1
22— (e S VA
dt <|U K+ = 2L
3|Uck| 1
= Vol — 4.c
< 2 2L (4.c)
dizy, |ver 1 — pr— ' j >
20— | — — =V, ) — 0n/18 n/3 w2 T 3n/2 ot
dt <|v == 27
Fig. 6. Input voltage versus duty ratio.
=l ) L (4.d)
2 ?) 2L’ '

PWM carrier signals are used and the duty ratio is higher than
Fig. 4 shows the inductor current waveforms for a switching-2 When the two input voltages are the same, the interaction

period in the interval$, S, on, S; off S, on, 15, off. From is virtually eliminated. Fig. 5 shows the gating signals of both

this figure, it is clear that the two PFC stages interact duririgvitches.

the S; S» off region. To minimize this effect, a split inductor The input voltages and the duty ratio have the relationship

configuration is chosen in each PFC stage. By proper designdsfin Fig. 6. Since the input voltages become the samél 8}

Ly, L1y, Loy, and Loy, the interaction can be kept to a minMinimum output voltage for the staggered PWM is calculated

imum and the input current quality is not affected. as

aw
>V -
B. Staggered PWM Vo D Vin ( ) (5.a)

To overcome the interaction between phases, staggered P\YM
is used. The two single-phase PFC modules can work indepen-
dently by avoiding the Fig. 3(d) period. If 18(phase-shifted V, > 1.85Vyr. (5.b)
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Fig. 7. Control block diagram of the system.
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Fig. 8. Power-flow diagram of the proposed system.

‘/rec, @ 1
Kin  KZ.V2

rec, ¢

VEa

C. Control Scheme Ler s =K. Ky

Fig. 7 shows the control block for the systedkr ; is dc
voltage proportional to the rectified voltagg.. ;. The recti- where
fied input current/,. ; and the current referende.¢ ; can be K, PFC power stage gain;
represented as Ky multiplier gain;
Krr feedforward gain;
K, waveform input gain;
2 (6) VEa Vvoltage error amplifier output.

Irec,i :Kslref,iv i 1

(1)
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Fig. 9. Power processed at each PFC. Time (ms)
(@)
From (6) and (7), the rectified currefi.. ; is proportional to 6002 21

the reciprocal oV ;. Therefore, the input powdr; is
K. Ky
KinKEQ‘F

Each PFC module can carry the same amount of power simply
by sharing the same voltage error amplifier output.

4.00

P= V;ec,i-[rec,i = VEA7 = 17 2. (8) 2.00

0.00(-
-2.00

D. Power Flow and Autotransformer Rating 400
Fig. 8 shows the power-flow diagram in the proposed ap-  “®%00 17500 18000 18500 19000 195.00 200.00

proach.K; and K represent the boost block;, is the output Time (ms)

filter and 7" the autotransformer. Each boost PFC module sup- ®)

plies the same powet} and %), which flows to the dc side

as dc power P, , and P ,) and to the filterF, as the power

oscillating at twice the line frequency’( 2y and P ).

The relationship between the sources and each singIe—phglsneCe the two PFC modules process the same power

Fig. 10. Simulated waveforms. (a) Input current waveforms at each PFC. (b)
Input line current/,,, I, andI..

PFC module is
1 1
Pa+Pb:P1+§P2 9 P2=§Pi (15)
2
P.=ZPy. ao)
, : . V3 1
Since the two input voltages,, andwv.; of the two single- - Vir | o= 5 (\/3 VLLIa) . (16)
phase PFC modules are in right angle, the second-order har-
monic power components are cancelled each other. Therefo{‘ﬁerefore
the output filter capacito, sees only switching frequency ’
component L’). I =1I,. (17)

The power processed in each module is shown in Fig. 9. The
solid line represents output power. Dashed lines are the power
via the single-phase PFC module 2, and the power via the With high power factor, the voltage and current waveforms are
single-phase PFC module 2%). in phase by definition. Thus, the instantaneous input powers of
The rms currents through the single-phase PFC module 1 4Rg single-phase PFC modulerl,( 1) and the single-phase PFC
the single-phase PFC module 2 can be calculated as module 2 p;y ») are calculated as the following:

1
_ 3
P = 5 P (11) Pin,1 = (\/5 Vi1, sin wt) <\/§ % 1, sin wt)
1
Virdi = 3 (\/3 VLLIa,) (12) =3V, sin? wt
3
or = % Vipdo(1 — cos2wt) (18)
L= Y31~ ose60l 13 V3
1=5 1a=0 a- (13) Din, 2 = (\/iVLLcoswt) ﬁTIacoswt
From the vector diagram, —V3V; s L cos? wt
— LL+ta
3 3
Vo = i VoL (14) = V3 Vipdo(1 4 cos2wt). (19)

2 : 2
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TABLE |
(a) VA RATING OF THE AUTO-TRANSFORMER(rms VALUE) AND (b) OPERATING CONDITION
Auto-transformer Expressioﬁ rms value
Primary(secondary) winding current Tk 0.50001, 2.0 [A]
Primary(secondary) winding voltage Vi 0.5000V L 110 [V]
VA rating VAtr 0.1443 P, | 216.5 [VA]
(@
Output power 750 [VA]
Input voltage range (V) 190 — 250 [V sl
Input voltage range (Vi) 165 — 217 [Vims)
Qutput voltage : 380 [Vq]
Line frequency 60 [Hz]
Switching frequency 20 [kHz])
(b)
The output capacitor is considered to be large enough to hold [ll. SIMULATION RESULTS

the dc-link voltagé/,. fairly constant. The power outputs to the

output capacitor from each boost PRE. 1 andp.i,, ») are Fig. 10 shows the simulation result of the proposed system. A

simple proportional plus integral (PI) controller is used for the
inner current control loop. The voltage control loop feeds the
current references of the two single-phase PFC modules forcing
current sharing between them.

The amplitudes of input currents at each PFC [Fig. 10(a)]
are different to carry the same power. The input line current

DPchg, 1 = Vdcichg, 1- (20)

Sincepin, 1 = Pclg, 1»

Gchg, 1 = Peng, 1/Vae waveforms are near sinusoidal [Fig. 10(b)], which demonstrates
h h.
= {@ Virl.(1 — cos 2wt)}/ Viee  (22) the proposed approac

IV. DESIGN EXAMPLE

ichg,2 Can be calculated by the same way Table | summarizes the VA rating of the autotransformer and
the operating condition of each PFC module. For an output

. V3 power of 1.5 kVA, each PFC module supplies 750 VA. Design
felig,2 = {T Vilo(1+ cos2wt) Vie: (22) ¢ each PFC modules follows the single-phase boost PFC op-

erating in continuous conduction mode (CCM) [10]. Since the
Therefore, the current at the output capacitgg can be calcu- low-frequency power components cancel each other, the output

lated by adding these two current components capacitor handles only high-frequency ripple elements.
Tchg = fchg, 1 + Ychg, 2 V. EXPERIMENTAL RESULTS
= (ﬁVLLIa)/VdC. (23) The proposed three-phase PFC rated at 220 V, 1.5 kVA

(Fig. 1) has been implemented and the results are discussed
Equation (23) shows that there is only dc current componenti@this section. Both PFC modules are controlled by Unitrode
the output capacitor. UC3854A controllers. Fig. 11(a) shows the input currents

The current fed through the center-tapped autotransformerky and /. of each PFC which are S(hase shifted and the

phases andb returns through phase Therefore, the rms value amplitudes are different so that their respective output powers
of the winding current is half of... The voltage across the end ofare equal. Fig. 11(b) shows the line currehtsl, andi... They
the autotransformer is line-to-line voltage. The power handlede nearly sinusoidal in shape. Fig. 11(c) and (d) shows the
by the autotransformer is voltageV,, and currentl,;; V.; and currentl,, respectively. It

is clear from the figure that each PFC stage operates in CCM at

Prr— % { <% VLL) . <% Ia> . 2} _ %VLLL;- (24) Unity power factor.

VI. CONCLUSION

Then, the VA rating of the autotransformer is _ )
In this paper, a new three-phase PFC scheme using two

standard single-phase PFC modules has been presented. Each
PFC module is rated for half the output power and operates
in CCM with unity power factor. With staggered PWM, the

1
- Vi
P Llta
VArp = -8 4

= = 0.1443. 25
P V3Virl, (23)
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Fig. 11. Experimental results. (a) Current waveforms at each PECahdI. (2 A/div). (b) Line current waveforms/(y, I, andl.) (2 A/div). (c) PFC 1 input
(Vs andi,y) (5 A/div). (d) PFC 2 input V., andl.) (5 A/div).

interaction between PFC modules is virtually eliminated. The [8] G. Spiazziand F. C. Lee, “iImplementation of single-phase boost power-

resulting input line currents are nearly sinusoidal in shape. The
experimental result from a laboratory prototype demonstrates[Q]

the performance of the proposed system.

(20]

(1]
[2]
(3]
(4]
(5]
(6]

(71
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