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Feedback Control Tutorial 
 

The diagram below shows a type 3 compensator applied to a switching buck regulator. 
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Passive component values for the buck output filter are: 
R1 = 2.2mΩ 

R2 = 0.6mΩ 

R3 = 1Ω 

L = 0.9μH 

C = 471μF 

The feedback divider has an attenuation of 0.5.   

1. Model the output filter network in Matlab 

2. Design a phase lead compensator to achieve a phase margin of at least 45º and a gain 
margin of greater than 10dB.  Ensure the cross-over frequency is above 10kHz. 

3. Construct S & T curves for the switching converter of tutorial 1 using the phase lead 
compensator designed in tutorial 4.  Determine the values of MS & MT. 

4. Determine nominal stability for the switching converter of tutorial 4.  Plot the 
sensitivity function S and select a suitable weighting function to specify required 
performance.  Determine whether nominal performance has been met by plotting the 
W1S curve. 

5. Use the Robust Control Toolbox in Matlab to model the frequency response of the 
passive LC filter of tutorial 1 with inductor value uncertainty of 8% and variation of 
capacitor value in the range 456μF to 503μF.   

6. Determine a valid shape for the W2 weighting function and use it to determine 
whether the controller designed in tutorial 4 achieves robust stability for this 
uncertain plant model.  

7. Design a controller which achieves robust performance for the buck switching 
converter of tutorial 4.   
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Solution 

 

1.  Straightforward Laplace analysis of the buck output filter  yields the transfer function: 
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The tutorial solution file "w6_tutorial.m" defines the passive component values: 
  L1 = 0.9e-06;       % inductor = 0.9uH  
  C1 = 471e-06;       % capicitor = 471uF 
  R1 = 2.2e-03;       % DCR = 2.2mR 
  R2 = 0.6e-03;       % ESR = 0.6mR 
  R3 = 1;             % load = 1R 

Next, the transfer function coefficients are calculated using the transfer function above:  
  b1 = C1*R2*R3; 
  b0 = R3; 
  a2 = L1*C1*(R3 + R2); 
  a1 = (C1*R3*R2) + (C1*R1*(R3 + R2)) + L1; 
  a0 = R3 + R1; 

The Matlab Control Systems Toolbox contains the command 'tf' which allows an LTI system to 
be defined in terms of it's transfer function coefficients as follows:  
 
  G = tf([b1 b0], [a2 a1 a0]); 

The workspace now contains the variable G representing the LC network model.  We can 
evaluate the unit step response of the filter using the script: 

 step(G) 

This produces the following graph: 
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Clearly the step response exhibits a strongly oscillatory character.  We see this in the resonant 
peak in the frequency response of the system which can be computed using bode(G), but a 
better visualisation results with: 

 ltiview('bode',G) 

Frequency (rad/s)

10
3

10
4

10
5

10
6

10
7

10
8

-180

-135

-90

-45

0

P
ha

se
 (

de
g)

-150

-100

-50

0

50

M
ag

ni
tu

de
 (

dB
)

 

The resonant peak is clearly visible, as is the rapid change of phase associated with it.  The 
ltiview command in Matlab enables important characteristics of the response such as peak 
magnitude and stability margins to be measured and displayed on the plot.   

Click on any part of the magnitude or phase plots to find the response at that frequency.  In the 
Matlab workspace, zero and pole locations of G(s) can be found as follows: 

 zero(G) 

 pole(G) 

 

2.  The transfer function of the type 3 compensator is: 
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The transfer function of the output filter was found in tutorial 1.  The set-up script for this tutorial 
is contained in the Matlab file Tutorial_4.m which creates transfer function objects in the Matlab 
workspace for the plant and feedback network, then launches the "sisotool" design tool. 

The Bode plot for the open loop is shown below.  Notice the presence of the resonant peak form 
the LC circuit modelled in tutorial 1, and of the high frequency zero arising from the ESR of the 
output capacitor. 
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At this stage the controller is a simple gain.  To determine the zero and pole locations from the 
Matlab workspace, type: 

  zpk(G*H) 

This reveals as expected that the open-loop consists of a single real zero and two complex poles. 
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With a unity gain controller the step response exhibits a lot of oscillation and there is very large 
steady-state error. 

  step(feedback(G,H)) 

Step Response

Time (seconds)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5

x 10
-3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 



5 

 

The proposed type III controller contains two zeros, an integrator, and two poles.  Placing the 
zeros near the resonant peak, and both poles well beyond the zero results in the Bode plot shown 
below. 
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The corresponding step response shows a much faster response with little sign of oscillation. 
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The compensator can now be exported to the Matlab workspace, where we find it's transfer 
function is: 
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The Bode plot for this compensator is shown below.  The effect of the integrator and controller 
roots is clearly visible in the phase curve.  

 

3.  The S & T curves are plotted using the nominal controller, plant, and feedback transfer 
function for this switching converter.  The combined graph is shown below. 
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As expected for a system with integrating controller, the DC gain of the sensitivity curve (blue) is 
approximately zero and rises to 1 at high frequency.  The transition happens near the resonant 
frequency of the LC network, and is accompanied by a peak in the magnitude curve.  At 
frequencies where the S curve is greater than 1, the Nyquist curve has entered the unit circle 
centred on the critical point.  

The complementary sensitivity curve (green) exhibits a very strong peak near resonance, 
indicating peaking in the closed loop gain around this frequency.  Peaking in the T curve 
indicates the Nyquist curve lies to the left of a vertical line at -0.5. 

 

4.  The tutorial solution script computes the sensitivity function and plots its magnitude (blue).  
The script uses the function rps_makeweight to specify a weight (green) whose inverse lies above 
the S curve at all frequencies.  The sensitivity and weighting product is then calculated and the 
result plotted on the same graph (red).  The resulting graph is shown below. 
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The W1S curve clearly lies below 1 at all frequencies, indicating that nominal performance has 
indeed been achieved.  The last instruction in the script calculates the infinity norm of the W1S 
function and prints it to the workspace.  The indicated value of 0.933 confirms NP has been 
achieved with this controller.  

 

5.  Both passive component variations are specified in terms of parametric uncertainty.  The 
Robust Control Toolbox in Matlab contains the function ureal, which permits uncertainty to be 
expressed as either a percentage of the nominal value, or as a specified range.   

The inductor and capacitor tolerances specified above would be applied as follows: 
 
  L1 = ureal('L1',0.9e-06,'Percentage',[-8 8]); 
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  C1 = ureal('C1',471e-06,'Range',[456e-06 503e-06]); 

The transfer function coefficients can now be computed in the same way as before…   
 

  b1 = C1*R2*R3; 
  b0 = R3; 
  a2 = L1*C1*(R3 + R2); 
  a1 = (C1*R3*R2) + (C1*R1*(R3 + R2)) + L1; 
  a0 = R3 + R1 

We construct a frequency description of the uncertain plant model using the script: 
 
  Gfrd = frd(Gunc,logspace(3,8,500));  

To plot 25 sample frequency responses for random parameter variation over the specified range:  
 
  bodeplot(usample(Gfrd,25)) 
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Observe that the major contribution of uncertainty in L & C is to change the frequency of the 
resonance rather than the size of the peak.  

To determine robust stability we need to find the weighting function W2 which bounds the worst 
case plant perturbation.  To do this, construct the graph of relative plant magnitude perturbation 
over frequency and select a weighting function which lies above the curve at all frequencies. 
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From the previous two graphs, it is clear that the major effect of uncertainty in L & C is in the 
frequency range near resonance.  The peaks near 5x104 rad/sec indicate large potential errors in 
relative plant model uncertainty there.  

We now have all the information we need to determine whether stability will hold over all 
operating conditions.  Plot the graphs of nominal complementary sensitivity function T, and W2.  
then multiply these and plot the W2T curve on the same axes.  These three curves are shown 
below. 
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To achieve robust stability, the W2T curve must lie below 1 at all frequencies.  Clearly there is a 
range of frequencies over which this is not true, indicating loss of stability for at least some 
possible values of L & C.   
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The cause is the plant uncertainty near the resonant peak in the nominal T curve, which is being 
amplified by a value of W2 greater than 1 at that frequency.  In this case the designer would have 
to think seriously about  re-designing the controller to diminish the value of MT.  It is likely this 
will result in a reduction in control loop bandwidth, but this is the cost of maintaining stability 
over the full range of component values.   

 

7.  Performance & uncertainty weights for the buck converter were established above.  We begin 
by plotting these on the same graph, and observe that at every frequency the minimum of the 
two weights lies below 1 at all frequencies, which is the necessary condition for robust 
performance. 
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We will use a loop-shaping approach to controller design.  First, we construct curves to constrain 
the high and low frequency shape of the open loop plot based on the selected weights.  A target 
open loop shape can then be specified which crosses unity gain with slope of no less than -2, 
which is the condition for closed-loop stability for minimum phase systems.  In this example, we 
will select an integrating open-loop shape which gives constant slope of -1.   In Matlab, the target 
loop shape is: 
 
   Lt = 1e+04 * tf(1, [1 0]) 

The open loop magnitude curve (red) is shown below, together with the low (blue) and high 
(green) frequency limits construced as described. 
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A controller which achieves this shape can be found by dividing Lt by the nominal plant model.  
This results in the semi-proper integrating controller: 
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A closed loop step response plot based on the nominal plant is shown below.  The response is 
first order with time constant of approximately 200s.   
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We now establish robust stability by computing the complementary sensitivity function and 
multiplying by the weight W2.  The resulting graph (shown below) lies below 1 at all frequencies, 
indicating that the design is indeed stable over all plant perturbations bounded by this weight.  
The infinity norm of S, computed in Matlab, is about 0.36. 
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Finally, we need to determine whether the performance specification defined by the weight W1 is 
met for all plants in the uncertainty set defined by W2.  To do so, we plot the curve of: 

TWSW 21   

…and observe the maximum peak over all frequency.  The result is shown below. 
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The peak of this curve is about 0.965, indicating that the design has indeed achieved robust 
performance.   

It should be noted that the high & low frequency bounds placed on the target loop shape offer no 
more than a guide, and that a candidate loop shape selected on this basis might not necessarily 
have resulted in a design achieving RS or RP.  The critical frequency is around cross-over, and 
here the design of the loop shape is often very difficult to define.  In most practical cases an 
iterative trial-and-error approach to design is taken.  The real value of the method outlined above 
is that it allows candidate controller designs to be tested for robustness without the need for large 
scale statistical testing.    ■ 


