
Application Report
SLAA196 – February 2004

1

HDQ Protocol Implementation with MSP430
Andreas Dannenberg MSP430

Introduction
Most battery monitor ICs from TI, such as the bq2019 and bq26500, include a single-wire serial
data interface (HDQ bus). Host controllers can use this interface to access various on-chip
registers to read-out battery capacity, voltage, and other parameters. The purpose of this
application note is to present a solution for interfacing HDQ-enabled battery gas gauge devices
with the MSP430 microcontroller family.

HDQ Basics

The HDQ bus is a master-slave bus system using a simple one-wire, asynchronous, bi-
directional, serial interface with a bit-rate of about 5-Kbit/s. The bus line is driven by open-
collector devices and therefore requires an external pull-up resistor. The relatively slow bit rate is
sufficient for reading out as well as setting registers in battery monitor ICs. The host may only
need to communicate at infrequent intervals to update the user with the latest runtime
computation, thus minimizing communication and saving power.

Data is always transmitted bit-by-bit in blocks of 8-bits with the LSB first. The bits are encoded
as shown in Figure 1. Every bit always starts with a high-to-low transition of the HDQ bus line.
The signal returns to high after time t1 if the bit is a one and returns to high after time t0 if the bit
is a zero. The bit cycle time tCYC is typical in the range of 190µs. Please see the datasheet of an
HDQ enabled gas gauge device for the exact timing specifications [1].

Figure 1. HDQ Bit Timing

"1"

"0"

t1
t0

tCYC

The protocol is command-based and data is transferred in blocks of 2 bytes. The first byte is
always sent by the host (master) and contains the client register address (7-bit). It also contains
the R/W-bit, which determines if the next byte is send by host to the client (R/W = 1) or read
from the client by the host (R/W = 0).

SLAA196

2 HDQ Protocol Implementation with MSP430

MSP430 HDQ Implementation

This section describes how an MSP430 microcontroller can be interfaced with HDQ-enabled
devices. As an example, the interface to the bq26500 single-cell Li-Ion and Li-Pol battery gas-
gauge IC is presented. The basic demo application reads out the on-chip temperature sensor
and provides feedback about temperature changes using an LED.

Hardware Description

Figure 2 shows a typical HDQ system consisting of an MSP430F1101 used as a host controller
and a bq26500 gas-gauge IC used as a slave device. The selected MSP430 device is a 20-pin,
low-cost MSP430 family member. More information on this device can be found in the device
data sheet [2]. Any other MSP430 derivates could be used if more functionality is required on
the application side.

Figure 2. MSP430 HDQ Example Schematic

MSP430F1101

P1.1 /TA0

bq26500

HDQ

VSS

VCCVCC

VSS GPIO

RST 10K
330R

ROSC

100K

3V 3V 3V

0.1µF

To generate the HDQ bus timing, the Timer_A module of the MSP430 is used. In particular, the
capture/compare block 0 (CCR0) is used for generating and sampling the bus signals with
hardware support. The associated MSP430 pin, TA0, is brought out via port pin P1.1 and
connected to the slave device. A 10-kohm pull-up resistor is provided as the HDQ bus is
operated in high-impedance mode. Additionally, a 100-kohm resistor between the MSP430 ROSC
pin and VCC is connected to stabilize the internal DCO clock generator and achieve a system
clock with a very low temperature and voltage drift. However, in a user’s application, other ways
of providing a stable clock to the MSP430 could be used such as an external 32-kHz watch
crystal which would also enable the MSP430 to implement an ultra-low-power real-time clock
function.

SLAA196

 HDQ Protocol Implementation with MSP430 3

For demonstration purposes, the bq26500 device is used as a LED-driver only. The GPIO pin is
switched to output direction and operated as an open-drain output. Basic HDQ communication
functionality can now be shown using this LED. Please refer to the bq26500 data sheet for
detailed application information on using this battery gas-gauge IC [1].

Software Description

The demonstration software for this application report consists of the communication library
HDQ.c / HDQ.h and an application using this library (bq26500_LED.c). The communication
library is also provided in assembly language with the equivalent function (HDQ.s43). It makes
use of the same C calling conventions as HDQ.c. By removing HDQ.c and adding HDQ.s43 to
the project file, the assembly version of the code can be used. Only one of these files must be
included in the project, otherwise the build results in symbol conflicts. The Assembly version ISR
is executed faster (11% to 48%, depending on the function) than the C version even with the
highest optimizer settings. This is mainly due to the use of efficient calculated branches in the
Assembly interrupt service function opposed to the full implementation of a C language
switch/case statement.

HDQ Communication Library

This library offers complete communication to an HDQ enabled device, such as the bq26500
battery gas gauge IC. The entire host communication is implemented in software and is
supported by the Timer_A hardware module that can be found on all MSP430 devices. It also
uses interrupts and low-power modes to minimize current consumption. Due to the Timer_A
support, interrupt latency introduced by other interrupts that are being serviced and are blocking
the CPU is not critical. The Timer_A0_ISR() function must be serviced before the next capture or
compare event occurs.

The software library can be adapted to meet the requirements of a particular application. For
example, the user is free to select a different clock source or frequency for sourcing the Timer_A
module. In this case, the timing constants as defined in the header file must to be modified. For
convenience, all the timing constants used are derived from one timer clock frequency definition
ClkFreq. The entire bit timing can be re-calculated by changing this definition.

By adding either the C (HDQ.c) or Assembly (HDQ.s43) code file to the project and including the
header file HDQ.h into a program, the following three functions can be called:

void HDQSetup(void)

Calling this function performs a basic setup and that is needed for the data transfer. It sets port
pin P1.1 used for the HDQ bus line connection to input and enables the Timer_A.CCR0 function
for this pin.

void HDQWrite(unsigned char Addr, unsigned char Data)

SLAA196

4 HDQ Protocol Implementation with MSP430

The HDQWrite() function is used to write data to a device that is connected over the HDQ bus.
HDQ slave devices are usually internally organized as a block of registers. The parameter Addr
contains the 7-bit address (0 – 127) of the register to write to, and the Data parameter the 8-bit
data to transfer. After starting the Timer_A module, an HDQ break condition is sent by calling
the local function HDQBreak(). This is to ensure that the slave device HDQ engine will be reset
for the case the chip has already seen a start of communication due to contact bouncing during
battery insertion.

In the next step, the 7-bit register address is transmitted to the slave device with the R/W bit set
to one. This will make the slave device receive the second byte (data byte) after a short delay.
The local function HDQBasicWrite() is used for sending out data words.

Figure 3 shows how the Timer_A is used to generate the HDQ signal waveform. The CCR0
block is used in compare mode only and setup to toggle the HDQ signal on every compare
event. An interrupt is generated for each compare event. The ISR function increments then the
CCR0 register by the number of timer counts until the next signal transition is needed. This way,
bit-by-bit is transferred via timing that is hardware generated. The count values that determine
the cycle time (bit time) and the point of the low-to-high transition are all defined in the module
header file.

Figure 3. Transmit Bit Timing

"1"

"0"

Compare CompareCompare

On completion of the communication the Timer_A module is disabled to conserve power. It can
also be re-configured at this point if required for different functions. Note that by limitations of the
HDQ protocol (e.g., compared to an I2C communication) it cannot be determined whether the
slave device has received the data successfully.

unsigned int HDQRead(unsigned char Addr)

SLAA196

 HDQ Protocol Implementation with MSP430 5

Using the function for reading a register is similar to the register write access. After sending an
HDQ break condition, the address Addr for the slave device register to be accessed is sent out
by calling the local function HDQBasicWrite(). By having the R/W bit in the address byte cleared,
the slave device will start transmitting the contents of the addressed register by pulling low the
now high-impedance HDQ bus line according to the HDQ timing specification. The Timer_A
CCR0 block is used in capture mode to wait for the falling signal edge, and then switched over
to compare mode. In compare mode it latches the state of the HDQ bus line at the center of the
bit times for zero and one: tSample = (t0 + t1) / 2 using the SCCI latch. The SCCI latch feature of
the Timer_A avoids the latency of the CPU to execute the ISR. Please refer to [3] for detailed
information on the Timer_A operation.

Figure 4. Receive Bit Timing

"1"

"0"

Capture Compare (Sets SCCI Latch)

After eight bits have been read, the Timer_A module is disabled and the function will return the
read-out value. To avoid a potential software-lockup at this point (for the case that no
communication to the slave device can be established), the Timer_A CCR1 block is used in
compare mode to provide a time-out mechanism. It aborts the reception if no start edge could be
received within tTO. In this case, the HDQRead() function will return 0xffff to indicate the
application that there was a communication failure. This is a unique value and will not occur
during normal communication.

Application Example

The application example is intended to demonstrate the usage of the HDQ communication
example and requires the hardware shown in Figure 2 to function. One of the features of the
used bq26500 gas-gauge IC is an internal temperature sensor that can be read out using the
HDQ interface. The temperature is measured periodically and stored into the internal on-chip
registers TEMPH and TEMPL with a resolution of 0.25K. For a detailed description of the
bq26500 features please refer to the device data sheet [1].

When the program bq26500_LED.c is executed, the MSP430 will do an initial temperature read-
out of the bq26500 IC and store the result into the local variable FirstTEMPL. Prior to the initial
read-out, the program will wait for a short duration to give the bq26500 time to do its first
temperature measurement and initialize its internal registers properly. This delay is only needed
in the case the bq26500 and the MSP430 are powered up at the same time as it is done in the
example (Figure 2).

SLAA196

6 HDQ Protocol Implementation with MSP430

The temperature is read-out periodically every 1s using the WDT and compared to the initial
temperature value FirstTEMPL. If there was a change in temperature of at least 1K (which
equals four TEMPL counts), the GPIO open-drain output of the bq26500 is activated and the
connected LED will illuminate. As soon as the temperature returns to the FirstTEMPL +/- 1K
window, the LED will be switched off.

The watchdog-timer is operated in interval mode and will generate an interrupt every 32768
SMCLK counts. As this clock has a frequency of 2MHz with the used oscillator configuration, the
WDT interrupt service function is called every 1/60th second. It decrements a counter that is
used to implement a low-power Delay() function. When the counter decrements to zero, the low-
power mode LPM0 is deactivated and the program execution resumes with the next instruction
after the Delay() function.

The MSP430 is in low-power mode LPM0 most of the time. This mode has been chosen as it
leaves the internal DCO oscillator running which is needed in this setup to generate the interval
timing used for HDQ communication and also for sourcing the WDT. Other low-power modes
such as LPM3 that could reduce the current consumption further require an additional external
32-kHz watch crystal.

For every HDQ read operation that is performed, the result of the HDQRead() function is
compared with 0xffff to check if a time-out has occurred. In this case, the software will proceed
and read the data again. Depending on the user’s application, an additional error message could
be generated.

References

1. bq26500 Single-Cell Li-Ion and Li-Pol Battery Gas Gauge IC Data Sheet (SLUS567)
2. MSP430C11x1, MSP430F11x1A Mixed Signal Microcontroller Data Sheet (SLAS241)
3. MSP430x1xx Family User’s Guide (SLAU049)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

