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Introduction 
Most battery monitor ICs from TI, such as the bq2019 and bq26500, include a single-wire serial 
data interface (HDQ bus). Host controllers can use this interface to access various on-chip 
registers to read-out battery capacity, voltage, and other parameters. The purpose of this 
application note is to present a solution for interfacing HDQ-enabled battery gas gauge devices 
with the MSP430 microcontroller family.  

HDQ Basics 

The HDQ bus is a master-slave bus system using a simple one-wire, asynchronous, bi-
directional, serial interface with a bit-rate of about 5-Kbit/s. The bus line is driven by open-
collector devices and therefore requires an external pull-up resistor. The relatively slow bit rate is 
sufficient for reading out as well as setting registers in battery monitor ICs. The host may only 
need to communicate at infrequent intervals to update the user with the latest runtime 
computation, thus minimizing communication and saving power. 

Data is always transmitted bit-by-bit in blocks of 8-bits with the LSB first. The bits are encoded 
as shown in Figure 1. Every bit always starts with a high-to-low transition of the HDQ bus line. 
The signal returns to high after time t1 if the bit is a one and returns to high after time t0 if the bit 
is a zero. The bit cycle time tCYC is typical in the range of 190µs. Please see the datasheet of an 
HDQ enabled gas gauge device for the exact timing specifications [1]. 

 

Figure 1. HDQ Bit Timing 

"1"

"0"

t1
t0

tCYC
 

 

The protocol is command-based and data is transferred in blocks of 2 bytes. The first byte is 
always sent by the host (master) and contains the client register address (7-bit). It also contains 
the R/W-bit, which determines if the next byte is send by host to the client (R/W = 1) or read 
from the client by the host (R/W = 0). 
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MSP430 HDQ Implementation 

This section describes how an MSP430 microcontroller can be interfaced with HDQ-enabled 
devices. As an example, the interface to the bq26500 single-cell Li-Ion and Li-Pol battery gas-
gauge IC is presented. The basic demo application reads out the on-chip temperature sensor 
and provides feedback about temperature changes using an LED. 

Hardware Description 

Figure 2 shows a typical HDQ system consisting of an MSP430F1101 used as a host controller 
and a bq26500 gas-gauge IC used as a slave device. The selected MSP430 device is a 20-pin, 
low-cost MSP430 family member. More information on this device can be found in the device 
data sheet [2]. Any other MSP430 derivates could be used if more functionality is required on 
the application side. 

 

Figure 2. MSP430 HDQ Example Schematic 
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To generate the HDQ bus timing, the Timer_A module of the MSP430 is used. In particular, the 
capture/compare block 0 (CCR0) is used for generating and sampling the bus signals with 
hardware support. The associated MSP430 pin, TA0, is brought out via port pin P1.1 and 
connected to the slave device. A 10-kohm pull-up resistor is provided as the HDQ bus is 
operated in high-impedance mode. Additionally, a 100-kohm resistor between the MSP430 ROSC 
pin and VCC is connected to stabilize the internal DCO clock generator and achieve a system 
clock with a very low temperature and voltage drift. However, in a user’s application, other ways 
of providing a stable clock to the MSP430 could be used such as an external 32-kHz watch 
crystal which would also enable the MSP430 to implement an ultra-low-power real-time clock 
function. 
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For demonstration purposes, the bq26500 device is used as a LED-driver only. The GPIO pin is 
switched to output direction and operated as an open-drain output. Basic HDQ communication 
functionality can now be shown using this LED. Please refer to the bq26500 data sheet for 
detailed application information on using this battery gas-gauge IC [1]. 

Software Description 

The demonstration software for this application report consists of the communication library 
HDQ.c / HDQ.h and an application using this library (bq26500_LED.c). The communication 
library is also provided in assembly language with the equivalent function (HDQ.s43). It makes 
use of the same C calling conventions as HDQ.c. By removing HDQ.c and adding HDQ.s43 to 
the project file, the assembly version of the code can be used. Only one of these files must be 
included in the project, otherwise the build results in symbol conflicts. The Assembly version ISR 
is executed faster (11% to 48%, depending on the function) than the C version even with the 
highest optimizer settings. This is mainly due to the use of efficient calculated branches in the 
Assembly interrupt service function opposed to the full implementation of a C language 
switch/case statement. 

HDQ Communication Library 

This library offers complete communication to an HDQ enabled device, such as the bq26500 
battery gas gauge IC. The entire host communication is implemented in software and is 
supported by the Timer_A hardware module that can be found on all MSP430 devices. It also 
uses interrupts and low-power modes to minimize current consumption. Due to the Timer_A 
support, interrupt latency introduced by other interrupts that are being serviced and are blocking 
the CPU is not critical. The Timer_A0_ISR() function must be serviced before the next capture or 
compare event occurs. 

The software library can be adapted to meet the requirements of a particular application. For 
example, the user is free to select a different clock source or frequency for sourcing the Timer_A 
module. In this case, the timing constants as defined in the header file must to be modified. For 
convenience, all the timing constants used are derived from one timer clock frequency definition 
ClkFreq. The entire bit timing can be re-calculated by changing this definition. 

By adding either the C (HDQ.c) or Assembly (HDQ.s43) code file to the project and including the 
header file HDQ.h into a program, the following three functions can be called: 

void HDQSetup(void) 

Calling this function performs a basic setup and that is needed for the data transfer. It sets port 
pin P1.1 used for the HDQ bus line connection to input and enables the Timer_A.CCR0 function 
for this pin. 

 

void HDQWrite(unsigned char Addr, unsigned char Data) 
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The HDQWrite() function is used to write data to a device that is connected over the HDQ bus. 
HDQ slave devices are usually internally organized as a block of registers. The parameter Addr 
contains the 7-bit address (0 – 127) of the register to write to, and the Data parameter the 8-bit 
data to transfer. After starting the Timer_A module, an HDQ break condition is sent by calling 
the local function HDQBreak(). This is to ensure that the slave device HDQ engine will be reset 
for the case the chip has already seen a start of communication due to contact bouncing during 
battery insertion. 

In the next step, the 7-bit register address is transmitted to the slave device with the R/W bit set 
to one. This will make the slave device receive the second byte (data byte) after a short delay. 
The local function HDQBasicWrite() is used for sending out data words. 

Figure 3 shows how the Timer_A is used to generate the HDQ signal waveform. The CCR0 
block is used in compare mode only and setup to toggle the HDQ signal on every compare 
event. An interrupt is generated for each compare event. The ISR function increments then the 
CCR0 register by the number of timer counts until the next signal transition is needed. This way, 
bit-by-bit is transferred via timing that is hardware generated. The count values that determine 
the cycle time (bit time) and the point of the low-to-high transition are all defined in the module 
header file. 

 

Figure 3. Transmit Bit Timing 
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On completion of the communication the Timer_A module is disabled to conserve power. It can 
also be re-configured at this point if required for different functions. Note that by limitations of the 
HDQ protocol (e.g., compared to an I2C communication) it cannot be determined whether the 
slave device has received the data successfully. 

 

unsigned int HDQRead(unsigned char Addr) 
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Using the function for reading a register is similar to the register write access. After sending an 
HDQ break condition, the address Addr for the slave device register to be accessed is sent out 
by calling the local function HDQBasicWrite(). By having the R/W bit in the address byte cleared, 
the slave device will start transmitting the contents of the addressed register by pulling low the 
now high-impedance HDQ bus line according to the HDQ timing specification. The Timer_A 
CCR0 block is used in capture mode to wait for the falling signal edge, and then switched over 
to compare mode. In compare mode it latches the state of the HDQ bus line at the center of the 
bit times for zero and one: tSample =  (t0 + t1) / 2 using the SCCI latch. The SCCI latch feature of 
the Timer_A avoids the latency of the CPU to execute the ISR. Please refer to [3] for detailed 
information on the Timer_A operation. 

Figure 4. Receive Bit Timing 
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After eight bits have been read, the Timer_A module is disabled and the function will return the 
read-out value. To avoid a potential software-lockup at this point (for the case that no 
communication to the slave device can be established), the Timer_A CCR1 block is used in 
compare mode to provide a time-out mechanism. It aborts the reception if no start edge could be 
received within tTO. In this case, the HDQRead() function will return 0xffff to indicate the 
application that there was a communication failure. This is a unique value and will not occur 
during normal communication. 

 

Application Example 

The application example is intended to demonstrate the usage of the HDQ communication 
example and requires the hardware shown in Figure 2 to function. One of the features of the 
used bq26500 gas-gauge IC is an internal temperature sensor that can be read out using the 
HDQ interface. The temperature is measured periodically and stored into the internal on-chip 
registers TEMPH and TEMPL with a resolution of 0.25K. For a detailed description of the 
bq26500 features please refer to the device data sheet [1]. 

When the program bq26500_LED.c is executed, the MSP430 will do an initial temperature read-
out of the bq26500 IC and store the result into the local variable FirstTEMPL. Prior to the initial 
read-out, the program will wait for a short duration to give the bq26500 time to do its first 
temperature measurement and initialize its internal registers properly. This delay is only needed 
in the case the bq26500 and the MSP430 are powered up at the same time as it is done in the 
example (Figure 2). 



SLAA196 

6 HDQ Protocol Implementation with MSP430 

The temperature is read-out periodically every 1s using the WDT and compared to the initial 
temperature value FirstTEMPL. If there was a change in temperature of at least 1K (which 
equals four TEMPL counts), the GPIO open-drain output of the bq26500 is activated and the 
connected LED will illuminate. As soon as the temperature returns to the FirstTEMPL +/- 1K 
window, the LED will be switched off. 

The watchdog-timer is operated in interval mode and will generate an interrupt every 32768 
SMCLK counts. As this clock has a frequency of 2MHz with the used oscillator configuration, the 
WDT interrupt service function is called every 1/60th second. It decrements a counter that is 
used to implement a low-power Delay() function. When the counter decrements to zero, the low-
power mode LPM0 is deactivated and the program execution resumes with the next instruction 
after the Delay() function. 

The MSP430 is in low-power mode LPM0 most of the time. This mode has been chosen as it 
leaves the internal DCO oscillator running which is needed in this setup to generate the interval 
timing used for HDQ communication and also for sourcing the WDT. Other low-power modes 
such as LPM3 that could reduce the current consumption further require an additional external 
32-kHz watch crystal. 

For every HDQ read operation that is performed, the result of the HDQRead() function is 
compared with 0xffff to check if a time-out has occurred. In this case, the software will proceed 
and read the data again. Depending on the user’s application, an additional error message could 
be generated. 
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