Calculation of UCD3138 Slope Compensation for PCM

Step 1. Take CLAO output which is voltage loop output every half switching cycle;

Step2: CLA0 is the starting point of the slope ramp, every 32ns, CLA0 is reduced by the DAC_STEP;

Step3: The substraction is fed into FE2_DAC;

Step4: The DAC output is a analog voltage, which is compared with input current signal;

The below is blocking diagram to explain the sequence.

Diagram of Slope Compensation

For example: how to calculate the slope rate in 1us for DAC_STEP = 48000:

((1000ns/32ns) *48000 /1024 *0.0976mV = 142mv/us

DAC_VALUE

13 12 11 10 9 8	7 6 5 4	3 2 1 0	
DAC Value		Dither	
	17 16 15 14	13 12 11 10	9 8 7 6 5 4 3 2 1 0
	DAC	Dither	Fractional Part

DAC_STEP

Where 1024 is fractional part of DAC_STEP, and 0.0976mv is DAC LSB

Use inverse equation, DAC_STEP can be calculated for a given slope compensation.

For example, calculate the DAC_STEP for SLOPE = 100mV/us

(100(mv)/0.097(mv))*1024/(1000ns/32ns) = 33781