

bq27z561EVM-011 EVM Single-Cell Impedance Track™ Technology

This evaluation module (EVM) is used with the bq27z561. The EVM includes one bq27z561 integrated circuit module with an external current-sense resistor, on board EV2400 communication module, bq2980 battery protector, and all other onboard components necessary to monitor and predict capacity for a pack-side fuel gauge solution. Through the use of battery management studio, via the on board EV2400 communication module, the user can:

- Read the bq27z561 data registers
- · Update the RAM and Data Memory for different configurations
- Log cycling data for further evaluation
- Evaluate the functionality of the bq27z561 solution under different charge and discharge conditions

The latest Windows®-based PC software can be downloaded from the product folder on the Texas Instruments Web site.

 Features	2 2
 1.1 Kit Contents	2
 2 bq27z561-Based Circuit Module	
 2.1 Circuit Module Connections	3
2.2 Pin Description	3
3 Circuit Module Physical Layout, Bill of Materials and Schematic	3
	4
3.1 Board Layout	4
3.2 Schematic	
3.3 Bill of Material	9
3.4 bq27z561 Circuits Module Performance Specification Summary	12
4 EVM Hardware and Software Setup	12
4.1 System Requirements	12
4.2 Software Installation	12
5 Troubleshooting Unexpected Dialog Boxes	12
6 Hardware Connection	13
6.1 Connecting the bq27z561 Circuit Module to a Battery Pack	13
6.2 Description of EVM Jumpers	14
7 Operation	15
7.1 Starting the Program	15
7.2 Setting Programmable bg27z561 Options	16
7.3 Setting the Chemistry	17
8 Related Documentation from Texas Instruments	18

List of Figures

1	EVM Image	4
2	Top Layer Composite	5
3	Top Layer	5
4	Bottom Layer	6
5	Ground Plane	6
6	Power Path	7

bq27z561EVM-011 EVM Single-Cell Impedance Track™ Technology

1

Features	www.ti.co	m
7	bq27z561 and bq2980 Reference Schematic	8
8	On-Board EV2400 Reference Schematic	8
9	Connect the bq27z561 Circuit Module to a 1SxP	13
10	Registers Screen	15

..... 15 11 Data Memory Screen 16 12 Chemistry Screen 18

List of Tables

1	Bill of Materials	9
2	Performance Specification Summary	12

Trademarks

Impedance Track is a trademark of Texas Instruments. Windows is a registered trademark of Microsoft Corporation. I²C is a trademark of NXP.

1 **Features**

- Complete evaluation system for the bq27z561 gas gauge with Impedance Track™ technology •
- Populated circuit module for quick setup
- Personal computer (PC) software and interface board for easy evaluation •
- Software that allows configuring and data logging for system analysis ٠

1.1 Kit Contents

2

• bq27z561 circuit module (BMS011)

This EVM is used for the evaluation of bq27z561 and bq2980. Visit the product Web folder at www.ti.com to properly configure the bq27z561.

2 bq27z561-Based Circuit Module

The bq27z561 based circuit module is an example solution of a bq27z561 circuit for battery management. The circuit module incorporates a bq27z561 battery gas gauge integrated circuit (IC) with external sense resistor to accurately predict the capacity of a 1-series Li-ion cell. In addition, it includes a default high side battery protector the bq2980.

2.1 Circuit Module Connections

Contacts on the circuit module provide the following connections:

- Direct connection to the battery pack (J2): BAT+, BAT-
- Direct connection to the system connections for charging and discharging (J1): PACK+ / BAT+, PACK-
- I²C[™] communications via on board EV2400 through micro USB
- Access to various signal outputs: INT (TP11), PULS (TP12), CHG (TP5), and DSG (TP6)

2.2 Pin Description

Pin Name	Description
PACK+	Pack positive terminal
PACK-	Pack negative terminal
BAT+	Battery positive terminal and bq2980 bypass path
BAT–	Battery negative terminal
SDA	External I ² C communication data line
SCL	External I ² C communication clock line
VSS	Device ground
INT	General purpose output
PULS	General purpose output

3

3 Circuit Module Physical Layout, Bill of Materials and Schematic

This section contains the board layout, bill of materials, and schematic for the bq27z561 circuit module.

3.1 Board Layout

This section shows the printed-circuit board (PCB) layers (Figure 2 through Figure 6), and assembly drawing for the bq27z561 module.

Figure 1. EVM Image

Figure 2. Top Layer Composite

Figure 3. Top Layer

Circuit Module Physical Layout, Bill of Materials and Schematic

Figure 4. Bottom Layer

Figure 5. Ground Plane

Figure 6. Power Path

7

3.2 Schematic

This section contains the schematics of the different (PCB) components.

Figure 7. bq27z561 and bq2980 Reference Schematic

3.3 Bill of Material

Designator	Quantity	Value	Description	Package Reference	Part Number	Manufacturer
PCB	1		Printed Circuit Board		BMS011	Any
C1, C2	2	0.1uF	CAP, CERM, 0.1 uF, 25 V, +/- 10%, X7R, 0402	0402	GRM155R71E104KE14D	MuRata
C3	1	1uF	CAP, CERM, 1 uF, 6.3 V, +/- 10%, X5R, 0402	0402	GRM155R60J105KE19D	MuRata
C4, C5, C6, C9, C10, C11, C13, C14, C16, C19, C24, C25, C31, C35, C36, C42, C46	16	0.1uF	CAP, CERM, 0.1 uF, 10 V, +/- 10%, X5R, 0402	0402	GRM155R61A104KA01D	MuRata
C7, C8	2	10uF	CAP, CERM, 10 uF, 16 V, +/- 10%, X5R, 0805	0805	0805YD106KAT2A	AVX
C12, C15, C17	3	0.47uF	CAP, CERM, 0.47 uF, 6.3 V, +/- 10%, X5R, 0402	0402	04026D474KAT2A	AVX
C13	1	1000pF	CAP, CERM, 1000 pF, 10 V, +/- 10%, X5R, 0402	0402	GRM155R61A102KA01D	MuRata
C18, C20, C21, C22	4	3.3uF	CAP, CERM, 3.3 uF, 10 V, +/- 10%, X5R, 0402	0402	C1005X5R1A335K050BC	TDK
C23, C32, C34, C43, C45	5	4.7uF	CAP, CERM, 4.7 uF, 6.3 V, +/- 20%, X5R, 0402	0402	C1005X5R0J475M050BC	TDK
C26, C37	2	0.047uF	CAP, CERM, 0.047 uF, 25 V, +/- 10%, X7R, 0402	0402	GRM155R71E473KA88D	MuRata
C27, C28, C38, C39	4	22uF	CAP, CERM, 22 uF, 35 V, +/- 20%, JB, 0805	0805	C2012JB1V226M125AC	TDK
C29, C30, C33, C40, C41, C44	6	10uF	CAP, CERM, 10 uF, 10 V, +/- 20%, X5R, 0603	0603	C1608X5R1A106M080AC	TDK
D1, D2, D3	3	Blue	LED, Blue, SMD	LED_0603	150060BS75000	Wurth Elektronik
D4, D5	2	45V	Diode, Schottky, 45 V, 0.1 A, 1005 Diode	1005 Diode	CD1005-B0140L	Bourns
D6	1	30V	Diode, Schottky, 30 V, 8 A, DPAK	DPAK	STPS8L30B-TR	STMicroelectronics
D7, D8	2	Green	LED, Green, SMD	LED_0603	150060GS75000	Wurth Elektronik
H1, H2, H3, H4	4		Bumpon, Cylindrical, 0.312 X 0.200, Black	Black Bumpon	SJ61A1	3M
J1	1		Terminal Block, 5mm, 3x1, R/A, TH	Terminal Block, 5mm, 3x1, R/A, TH	1792876	Phoenix Contact
J2, J17, J18	3		Terminal Block, 5mm, 2x1, R/A, TH	Terminal Block, 5mm, 2x1, R/A, TH	1792863	Phoenix Contact
J3, J4, J5, J9, J10	5		Header, 2.54 mm, 2x1, Gold, TH	Header, 2.54 mm, 2x1, TH	GBC02SAAN	Sullins Connector Solutions
J6, J8	2		Header, 100mil, 3x1, Tin, TH	Header, 3 PIN, 100mil, Tin	PEC03SAAN	Sullins Connector Solutions
J7	1		Header, 2.54mm, 4x1, R/A, Tin, TH	Header, 2.54mm, 4x1, R/A, TH	640455-4	TE Connectivity
J11, J13	2		Header, 1.27mm, 7x1, Gold, TH	Header, 1.27 mm, 7x1, TH	FTS-107-01-F-S	Samtec
J12	1		Receptacle, Micro-USB Type B, 0.65 mm, 5x1, R/A, Bottom Mount SMT	Receptacle, 0.65mm, 5x1, R/A, SMT	47346-1001	Molex
J14, J16, J20, J21	4		Header, 50mil, 2x1, Gold, TH	2x1 Header	GRPB021VWVN-RC	Sullins Connector Solutions

Table 1. Bill of Materials

Table 1. Bill of Materials (continued)

Designator	Quantity	Value	Description Package Reference		Part Number	Manufacturer
J15	1		Header, 2.54mm, 4x1, Tin, TH	Header, 2.54mm, 4x1, TH	22284043	Molex
J19	1		DC POWER JACK, R/A, TH	DC POWER JACK, R/A, TH	PJ-063AH	CUI Inc.
L1, L2	2	1uH	Inductor, Shielded Drum Core, Powdered Iron, 1 uH, 7 A, 0.0189 ohm, SMD	5.49x2x5.18mm	IHLP2020BZER1R0M01	Vishay-Dale
Q1	1		Power MOSFET for 1 Cell Lithium-ion Battery Protection 12V, 3.2mOhm, 27A, Dual N-Channel, SMD	1.77x3.54mm	EFC8811R-TF	ON Semiconductor
Q2, Q4	2	V	MOSFET, 2-CH, N-CH, DMS0008A (WSON-CLIP-8)	DMS0008A	CSD87313DMS	Texas Instruments
Q3	1	30V	MOSFET, N-CH, 30 V, 25 A, DQJ0008A (VSONP-8)	DQJ0008A	CSD17579Q5A	Texas Instruments
Q5	1	30V	MOSFET, N-CH, 30 V, 3 A, YJJ0003A (PICOSTAR-3)	YJJ0003A	CSD17484F4T	Texas Instruments
R1, R29, R50, R55	4	.001	RES, 0.001, 1%, 1 W, AEC-Q200 Grade 0, 1206	1206	CSNL1206FT1L00	Stackpole Electronics Inc
R2, R3, R9, R10, R18, R28, R31, R35, R36, R37, R40, R41, R42, R43, R44, R45, R46, R57, R58	19	10k	RES, 10 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040210K0JNED	Vishay-Dale
R4, R6, R11, R12, R33	5	100	RES, 100, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW0402100RFKED	Vishay-Dale
R5	1	20.0	RES, 20.0, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040220R0FKED	Vishay-Dale
R7	1	330	RES, 330, 1%, 0.1 W, AEC-Q200 Grade 0, 0402	0402	ERJ-2RKF3300X	Panasonic
R8, R16, R53	3	2.0k	RES, 2.0 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04022K00JNED	Vishay-Dale
R13	1	0	RES, 0, 1%, 0.5 W, 1206	1206	5108	Keystone
R14, R15	2	33	RES, 33, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040233R0JNED	Vishay-Dale
R17, R20, R22, R23, R24, R26	6	0	RES, 0, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04020000Z0ED	Vishay-Dale
R19, R30, R39	3	1.0Meg	RES, 1.0 M, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04021M00JNED	Vishay-Dale
R21, R25, R27	3	510	RES, 510, 1%, 0.1 W, 0402	0402	ERJ-2RKF5100X	Panasonic
R32	1	10k ohm	TRIMMER 10k OHM 0.125W SMD	3.52x4.16x3.94mm	3223W-1-103E	Bourns
R34	1	.5	RES, 0.5, 1%, 2 W, 2512	2512	CSR2512FGR500	Stackpole Electronics Inc
R38, R49, R54	3	5.23k	RES, 5.23 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04025K23FKED	Vishay-Dale
R47, R52	2	100	RES, 100, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW0402100RJNED	Vishay-Dale
R48	1	909	RES, 909, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW0402909RFKED	Vishay-Dale
R51, R56	2	30.1k	RES, 30.1 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040230K1FKED	Vishay-Dale
RT1, RT2, RT3	3	10k	Thermistor NTC, 10.0k ohm, 1%, NTC Thermistor	NTC Thermistor	NTCLE413E2103F520L	Vishay-Bccomponents
SH-J3, SH-J4, SH-J5, SH-J6, SH-J8, SH-J9, SH-J10	7	1x2	Shunt, 100mil, Gold plated, Black	Shunt	SNT-100-BK-G	Samtec

Table 1. Bill of Materials (continued)

Designator	Quantity	Value	Description	Package Reference	Part Number	Manufacturer
TP1, TP2, TP3, TP4, TP21, TP22, TP30, TP31	8		Terminal, Turret, TH, Double	Keystone1502-2	1502-2	KeyStone
TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13, TP14, TP23, TP24, TP25, TP28, TP29	15		Test Point, Miniature, Orange, TH	Orange Miniature Testpoint	5003	KeyStone
TP15, TP16, TP17, TP18, TP26, TP27	6		Test Point, Compact, SMT	Testpoint_Keystone_Co mpact	5016	KeyStone
TP19, TP20	2		Test Point, Compact, Red, TH	Red Compact Testpoint	5005	KeyStone
U1	1		Impedance Track Battery Gas Gauge Solution for 1-Series Cell Li-Ion Battery Packs, YPH0012ARAK (DSBGA-12)	YPH0012AUAM	BQ27Z561YPHR	Texas Instruments
U2	1		1S High Side Protector with External Shutdown Control, RUG0008A (X2QFN-8)	RUG0008A	BQ2980RUG	Texas Instruments
U3, U4, U6, U7, U9, U10	6		ESD in 0402 Package with 10 pF Capacitance and 6 V Breakdown, 1 Channel, -40 to +125 degC, 2-pin X2SON (DPY), Green (RoHS & no Sb/Br)	DPY0002A	TPD1E10B06DPYR	Texas Instruments
U5	1		25 MHz Mixed Signal Microcontroller with 128 KB Flash, 8192 B SRAM and 63 GPIOs, -40 to 85 degC, 80-pin QFP (PN), Green (RoHS & no Sb/Br)	PN0080A	MSP430F5529IPN	Texas Instruments
U8	1		Single Output LDO, 150 mA, Fixed 3.3 V Output, 2.7 to 10 V Input, with Low IQ, 5-pin SOT-23 (DBV), -40 to 125 degC, Green (RoHS & no Sb/Br)	DBV0005A	TPS76333DBVR	Texas Instruments
U11, U14, U17	3		350 kHz, Low-Noise, RRIO, CMOS Operational Amplifier for Cost-Sensitive Systems, DBV0005A (SOT-23-5)	DBV0005A	TLV333IDBVR	Texas Instruments
U12, U15	2		Switched Capacitor Voltage Converter, 6-pin SOT-23, Pb- Free	DBV0006A	LM2665M6/NOPB	Texas Instruments
U13, U18	2		Single 3-Input Positive OR-AND Gate, DCK0006A LARGE T&R	DCK0006A	SN74LVC1G3208DCKR	Texas Instruments
U16	1		Automotive Grade, 2.7V-Capable, 10 uA Analog Output Temperature Sensor, DCK0005A (SOT-SC70-5)	DCK0005A	LMT87QDCKRQ1	Texas Instruments
U19	1		1S 5A Fast Charger MaxCharge(TM) Technology for High Input Voltage and Adjustable USB OTG Boost, RTW0024H (WQFN-24)	RTW0024H	BQ25892RTWR	Texas Instruments
U20	1		1S 5A Fast Charger MaxCharge(TM) Technology for High Input Voltage and Adjustable USB OTG Boost, RTW0024H (WQFN-24)	RTW0024H	BQ25890RTWR	Texas Instruments
Y1	1		Resonator, 4 MHz, 1000 ppm, 39 pF, SMD	4.5x1.2x2 mm	CSTCR4M00G15L99-R0	MuRata
FID1, FID2, FID3	0		Fiducial mark. There is nothing to buy or mount.	N/A	N/A	N/A

3.4 bq27z561 Circuits Module Performance Specification Summary

This section summarizes the performance specifications of the bq27z561 circuit module.

Table 2. Performance Specification Summary

bq27z561 Specification	Min	Тур	Max	Units
Input voltage Pack+ to Pack-	-0.3	3.6	6	V
Input voltage Bat+ to Bat-	-0.3	3.6	6	V
bq2980 Specification				
Over Voltage Protection	4.465	4.475	4.485	V
Under Voltage Protection	2.580	2.600	2.620	V
Over Current in Charge	-9	-8	-7	mV ⁽¹⁾
Over Current in Discharge	7	8	9	mV ⁽¹⁾

⁽¹⁾ Based on 1 m Ω sense resistor

4 EVM Hardware and Software Setup

This section describes the installation of the bq27z561EVM PC software, and how to connect the different components of the EVM.

4.1 System Requirements

The bqStudio software requires Windows XP or later. Using earlier versions of Windows operating system may not work with the USB driver support.

4.2 Software Installation

Find the latest software version of bqStudio on http://www.ti.com/tool/bqstudio. Search for the bq27z561 part number to get to the tool folder for the device. Following these steps to install the bq27z561 bqStudio software.

- 1. Before starting this procedure, make sure the on-board EV2400 is not connected to the personal computer (PC) through the USB cable.
- 2. Open the archive containing the installation package, and copy its contents into a temporary directory.
- 3. Open the bqStudio installer file that was downloaded from the TI Web site.
- 4. Follow the instructions on screen until completing the software installation.
- 5. Before starting the evaluation software, connect the EV2400 to the computer using the micro USB (J12) port.
- 6. For the EV2400, the driver should be installed along with software installation.

5 Troubleshooting Unexpected Dialog Boxes

The user that is downloading the files must be logged in as the administrator. The driver is not signed, so the administrator must allow installation of unsigned drivers in the operating system. If using Windows 7, install the software with administrator privileges.

6 Hardware Connection

The bq27z561 evaluation system comprises of three hardware components: the bq27z561 circuit module, on board EV2400 PC interface board, and a bq2980 battery protector.

6.1 Connecting the bq27z561 Circuit Module to a Battery Pack

Figure 9 shows how to connect the bq27z561 circuit module to the battery and a system load/charger. It is important to note this EVM can be used with or without the bq2980 protector. To bypass the protector connect the positive terminal of system charger/load to the top (BAT+) pin on the J1 connector. To use the bq2980, connect the positive terminal of system charger/load to the Middle (PACK+) pin on the J1 connector.

- **NOTE:** This board is equipt with dual chargers, and an external load. This allows this EVM to be a stand alone evaluation module capable of charging and discharging. These features are not yet active. Do not make the connections on the right side of the EVM shown by the "Future Improvement".
- **NOTE:** Ensure the digital potentiometer R32 is in the full off state. This is done by turning the screw terminal on top all the way to the right. If not, the battery may see a load current even if no load is attached.

Figure 9. Connect the bq27z561 Circuit Module to a 1SxP

Hardware Connection

6.2 Description of EVM Jumpers

The following section describes the critical jumpers and their purpose on this board

- 1. **J6 Chip Enable (CE):** This pin is used to put the bq27z561 into shutdown mode. It can be tied directly to a host system to be used for needed low power states. Removing power from this pin causes the bq27z561 to undergo a reset condition upon reassertion and is not intended to be used often. This jumper need to be placed in the "ON" position to communicate with the gauge.
- 2. **J9 I2C Clock Pull-up (SCL):** This jumper applies a 10K pull-up on the I2C communication line. When using the on-board EV2400, this jumper should be present. If attaching a debug sniffer which contains unremovable pull-ups, these jumpers can be removed.
- 3. **J10 I2C Data Pull-up (SDA):** This jumper applies a 10K pull-up on the I2C communication line. When using the on-board EV2400, this jumper should be present. If attaching a debug sniffer which contains unremovable pull-ups, these jumpers can be removed.
- 4. J5 bq27z561 Pulse Pull-up (PULS): This jumper applies a 10K pull-up on the PULS pin of the bq27z561.
- 5. **J4 bq27z561 Interrupt Pull-up (INT):** This jumper applies a 10K pull-up on the INT pin of the bq27z561.
- 6. **J8 bq2980 Control (CTR):** This jumper ties the CTR pin of the bq2980 protector to either the PULS pin of the bq27z561 or to ground. The bq27z561 has a PULS feature designed to, on a specific command from the host. Assert the PULS pin which directs the bq2980 protector to open the FETS. When this jumper is tied to ground, the bq27z561 does not interface with the bq2980. They work independently. Alternatively the middle jumper can also be tied to a host and controlled by the host or external circuitry.
- J3 bq27z561 Battery Connection (IBAT): This jumper ties the bq27z561 BAT pin to the cell+. This
 jumper is intended to be able to install a shunt resistor to monitor device current consumption under
 various operating conditions.

7 Operation

This section details the operation of the bq27z561 bqStudio software.

7.1 Starting the Program

Run bqStudio from the desktop. The window consists of a tools panel at the top, and other child windows that can be hidden, docked in various positions or allowed to float as separate windows. When bqStudio first starts up the *Gauge Dashboard* window, the Registers window and *Data Memory* window should be seen in the main window. *Registers, Data Memory, Commands*, and other windows can be added to the main window by clicking on the corresponding icon in the tools panel at the top of the main window. Data should appear initially in the *Gauge Dashboard, Registers* and *Data Memory* sections. The **Refresh** (single time scan) or the **Scan** (continuous scan) buttons can be clicked in order to update the data in the *Registers* and *Data Memory* windows. The continuous scan is enabled when the *Scan* checkbox is highlighted green and disabled when the *Scan* checkbox is not highlighted. The continuous scanning interval can be set with the *stopwatch* icon next to the **Scan** button. When the *stopwatch* icon is clicked, a drop-down menu appears and the desired scanning interval can be selected. The scan interval value show up next to the *stopwatch* icon.

bqStudio provides a logging function which logs selected Data Registers last received from the bq27z561. To enable this function, click the **Start Log**. The default elapsed interval is 4000 milliseconds. To change this interval, go to Window, select Preferences, choose Registers, and change Scan/Log Interval from 4000 to 1000 milliseconds. There is no need to log faster than 1 second as the gas gauge does not update the registers faster than 1 second.

a Battery Manag	gement Studio (bqStudio) 1.3.8	30		- 1	1.00							
File View Win	ndow Help												
🔇 Register	rs 🐡 Data M	lemory 👶 Co	ommands	🔲 Calibi	ration 🍟	Advanced Co	imm 👗 C	hemistry 🔒	Authentica	ation 🔣 I	Programmin	g [)	Golden Image
HDQ I2C To HDQ	2 🚺 GPCPac	kager 🕌 Wa	tch 🔚	Data Graph	Errors					🗈 [Battery M	lanage	ment Studio Perspectiv
🖋 DashBoard	~	Registers 23									-		🕏 Comman 🛛 📃
Auto Refresh is bqStudio Versio	s ON - Click to on: 1.3.80	Registers							:	Start Log	Scan Refr	esh	Commands
Δ		Registers											
	EV2400												A DEAICE NOWD
	Version:0.24	Name			Value	Units 4	Name			Value	Units	*	# HW_VERSION
~		Manufactur	rer Access		0x0002	hex	Cell Te	mperature		23.0	degC		SEW VERSION
		At Rate			0	mA	Cell 1	Raw Voltage		3990	mV		p 111_10.000
	I2C	At Rate Tir	ne To Empt	у	65535	min	🗎 Wake	Comparator Cur	rent	0	mA		FW_BUILD
		🗐 Temperatur	re		23.0	degC E	E Flt Rer	n Q		3431	mAH	=	
		Voltage			3990	mV	Flt Ren	n E		1280	cWH		* CHEW_ID
<u></u>	bg27z561	Current			0	mA	Flt Full	Chg Q		5184	mAH		GAUGE_EN
12 m	1561 0 04	Average Cu	urrent		0	mA	Flt Full	Chg E		2005	cWH		
	Addr: 0xAA	Average Po	ower		0	cW	True R	em Q		3431	mAh		LIFETIME_EN
YM	23.0 degC	Relative St	ate of Charç	ge	67	%	True R	em E		1280	cWh		/ IT RESET
	Loss orga	Remaining	Capacity		3431	mAh	😑 Initial C	2		1753	mAh		· LI_NESCI
		Full charge	Capacity		5184	mAh	🗎 Initial E			725	cWh		LT_FLUSH
		Average Tir	me to Empt	у	65535	min	True Fi	ull Chg Q		5184	mAh		
3990 mV		Average Tir	me to Full		65535	min	True Fi	ull Chg E		2005	cWh		CAL_TOGGLE
67%		Max Load	Current		-500	mA	T_sim			24.3	degC		RESET
		Max Load	Time to Em	pty	412	min	T_amb	ient		23.0	degC		
		✓ Volt Hi Set			4500	mV	Cell 1	RaScale		1000		_	SMOOTH_SYN
		Volt Hi Clea	ar		4400	mV	Cell 1	CompRes		0	mOhm	-	SET DP SLP
-1000-1000-		Bit Registers											CLEAR_DP_SL
-20002000		Name	Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Interrupt	0x00	RSVD	RSVD	RSVD	RSVD	TEMP_LO	TEMP_HI	VOLT_LO	VOLT_HI		PULSE_GPIO
		Battery S	0x00C0	RSVD	TCA	RSVD	RSVD	TDA	RSVD	RCA	RSVD		TAMBIENT SYN
		Battery S		INIT	DSG	FC	FD	RSVD	RSVD	RSVD	RSVD		
		Operatio	0x8100	SLEEP	RSVD	RSVD	RSVD	SS	RSVD	SEC1	SEC0		SEAL
		Operatio		RSVD	DP_SLP	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD		
		Operatio	0x0040	RSVD	RSVD	RSVD	RSVD	RSVD	SLPAD	RSVD	INIT		* 00_10_100
		Operatio		DPSLEE	XL	RSVD	CAL	RSVD	AUTH	RSVD	RSVD		
		Temp Ra	0x08	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD		Log Panel Clear Lo
		Temp Ra		RSVD	OT	HT	STH	RT	STL	LT	UT		Transaction Lon
		Charging	0x0004	RSVD	RSVD	RSVD	RSVD	NCT	RSVD	RSVD	RSVD		Transaction Log
		Charging		VCT	MCHG	SU	IN	HV	MV	LV	PV		Name Cmd R
		Gauging	0x40	RSVD	DSG	EDV	RSVD	TC	TD	FC	FD		
		IT Status	0x0804	RSVD	RSVD	RSVD	OCVFR	LDMD	RX	QMAX	VDQ		
		IT Status		NSFM	RSVD	SLPQMAX	QEN	VOK	RDIS	RSVD	REST		
		Manufact	0x8000	CAL_EN	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD		
		Manufact		RSVD	RSVD	LF_EN	RSVD	GAUGE	RSVD	RSVD	RSVD		
		LStatus	0					FIELD_Q	ITEN	CF1	CF0		
	•												< III)
								tia Ter	VAC INSTRUME	INTS			
									AAS INSTROM				

Figure 10. Registers Screen

Figure 10 shows the main bqStudio window. Additional Flag and Control Status data can be viewed at the bottom of the registers window.

Operation

7.2 Setting Programmable bq27z561 Options

The bq27z561 comes configured per the default settings detailed in the bq27z561 data sheet. Ensure that the settings are correctly changed to match the pack and application for the bq27z561 solution being evaluated.

IMPORTANT: The correct setting of these options is essential to get the best performance. The settings can be configured using the *Data Memory* window seen in the main *bqStudio* window (Figure 11).

Battery Mana	gement Studio ((bqStudio) 1.3.80	A DECISION OF			
File View Wir	ndow Help					
🔇 Registe	rs 🛲 Data N	lemory 💈 Commands 🛴 Cal	ibration 🏼 🖉 Advanced Comm 🚡 Chemistr	y 🔐 Authentication	Programming	📕 Golden Image
HDQ I2C To HDC	Q 🚺 GPCPac	kager 📲 Watch 🔛 Data Gra	oh 🔤 Errors		😰 🖣 Battery Manag	ement Studio Perspective
JashBoard	~	Tota Memory 🛙			- 0	🗳 Comman 🛛 🗖 🗖
Auto Refresh is bqStudio Versio	s ON - Click to on: 1.3.80	Data Memory	Filter/Search Auto Export Export	▼ Import ▼ Write_A	all Read All View	Commands
Δ		Read/Write Data Memory Conte	ents			
	EV2400	Calibration	Name	Priv Value	Unit	
	Version:0.2 ²	Calibration	▲ Voltage			# HW_VERSION
		Settings	Cell Gain	12101	-	FW_VERSION
	120	Advanced Charge Algorithm	Pack Gain	49669	-	
	120		BAT Gain	48936	-	FVV_DUILD
		Gas Gauging	▲ Current			CHEM_ID
	bg27z561	Power	CC Gain	1.000	mOhm	GAUGE EN
22 ³	1561_0_04		Capacity Gain	1.000	mOhm	
YP.	Addr: 0xAA	System Data	 Temperature 			✓ LIFETIME_EN
~~~~	22.9 degC	I2C Configuration	Internal Temp Offset	0	°C	LT_RESET
			External1 Temp Offset	0	°C	IT FLUSH =
		Lifetimes	<ul> <li>Internal Temp Model</li> </ul>			
3990 mV		Ra Table	Int Gain	-13908	-	CAL_TOGGLE
67%			Int base offset	6959	-	RESET
			Int Minimum AD	0	-	
			Int Maximum Temp	6959	0.1degK	* 3MOOTH_STR
E and			Cent remperature Model	17447		SET_DP_SLP
~			Coeff a2	-1/44/	-	CLEAR DP SL
-2000/2000			Coeff a2	29522	-	
			Coeff ad	20836		PULSE_GPIO
			Coeff a5	1200		TAMBIENT_SYN
			Coeff b1	-293	-	
			Coeff b2	552	-	JLAL
			Coeff b3	-2887	-	✓ GO_TO_HDQ
			Coeff b4	4591	-	
			Rc0	11703	-	Log Panel Clear Log
			Adc0	11703	-	Transaction Log
			Rpad	0	-	Name Cmd Red
			Rint	0	-	
			Current Deadband			
			Deadband	3	mA	
			Coulomb Counter Deadband	9	116nV	
<ul> <li>■</li> </ul>	4					
			•	🖗 Texas Instruments		

Figure 11. Data Memory Screen

To read all the data from the bq27z561, click on the **Read All** button in the *Data Memory* window. For ease of configuration, a text file with a .gg.csv extension can be extracted, modified, and imported back on the device. Use the export and import buttons as seen in Figure 11 to export and import .gg.csv files. The auto export button enabled gg files to be exported periodically at intervals. This is useful when debugging issues with the gauge. A write command is necessary if a gg.csv file is imported to ensure that all changes made on the gg.csv file are effected on the gauge. The read command is used to read back all of the data written to the gauge so that the changes made can be verified. The filter/search field enables the user to search for a particular parameter in the data memory content.

**IMPORTANT:** Do not make modifications to the gg.csv file using Microsoft Excel® as it makes changes to the file, which bqStudio rejects. Make sure to use a text editor like notepad or similar to edit a gg.csv file.



# 7.2.1 Important Data Memory Parameters to change

This section outlines the minimal critical setting that should be changed for even the basic evaluation. A short description is included which can be used as a recommendation how to set the parameter value. Additional updates are needed for a production setting.

- 1. **[Gas Gauging][State][QMax]:** This value should be updated to be the default design capacity of the battery being used. It represents the full unloaded chemical capacity of the cell. This value is updated by the gauge when proper learning is performed and in the field over the life of the battery.
- 2. **[Gas Gauging][IT Cfg][Term Voltage]:** This value should be set to the minimum value of the end system when absolute 0% state of charge should be reported. For normal Li-ion cells this value should range between 3.2 V to 2.75 V. It is recommended this value is not set to above 3.4 V.
- 3. **[Gas Gauging][Advanced Charge Algorithm][Charge Term Taper Current]:** This value should be set slightly above the capabilities of your charger to taper to. A recommended value is C/20 where C is the default capacity of the cell. For example a battery with 1000 mAh capacity should have a taper current of around 50mA.
- 4. **[Gas Gauging][Advanced Charge Algorithm][Low/Standard/High/Rec Temp Charging][Voltage]:** This parameter should be updated to the maximum charging voltage of the battery to be used. For a typical Li-Ion battery this value is between 4.4 V to 4.2 V.
- 5. ChemID: It is important that the correct ChemID is updated to give the best accuracy. Refer to Section 7.3 on how to update the chemistry in the device. If your cell is not included in the chemistry list, it is possible to run a match on the battery by following the steps here: http://www.ti.com/tool/gpcchem. For basic testing if the correct chemistry is unknown it is important to chose a chemistry ID with the same maximum charging voltage as the intended cell. Our recommended ID's for common charging voltages are as follows:
  - 4.2 V (ID 1202)
  - 4.35 V (ID 3230)
  - 4.4 V (ID 3142)

# 7.3 Setting the Chemistry

The chemistry file contains parameters that the simulations use to model the cell and its operating profile. It is critical to program a Chemistry ID that matches the cell into the device. Some of these parameters can be viewed in the Data Flash section of the Battery Management Studio.

Press the **Chemistry** button to select the **Chemistry** window.

- The table can be sorted by clicking the desired column. For example: Click the *Chemistry ID* column header.
- Select the ChemID that matches your cell from the table.
- Press Program Selected Chemistry to update the chemistry in the device.

Battery Mana	igement Studio (	bqStudio ) 1.3.80	10.000	the second second					
File View Wir	ndow Help								
Registe	ers 🐡 Data N	lemory 🤣 Commands 🔝 Calib	oration 🤯 Advanced Com	im 👗 Cher	mistry 🔐 Authentication 🔣 Programming 📕	Golden Image			
Auto Refresh is ON - Click tt Chemistry Programming									
bqStudio Version: 1.3.80 Program Battery Chemistry									
Λ		Most Li-ion cells use LiCoO2 catho	de and graphitized carbon a	node which is	supported by the default firmware in the Impedan				
	EV2400	gauges.	de and graphitized carbon a	node, which is	supported by the default firmware in the impedant	P DEVICE_IVOND			
~~	Version:0.22	This tool allows the fuel gauge to I	be set up for various alternat	e battery chen	nistries.	W_VERSION			
		Use this tool to load settings for an	FW_VERSION						
14	12C	catnode and graphite anode.				🔮 FW BUILD			
•••		Manufacturer	Model	Chemistry	Description				
		360FLY	PR-693231 (815mAh)	1318	LiCoO2/carbon 11	S CHEW_ID			
	bq27z561	IS A&TB	LGR18650OU	0100	LiCoO2/graphitized carbon (default)	GAUGE_EN			
	1561_0_04	3A01	ALPBA002 (3430mAh)	0207	NiCoMn/carbon 2	✓ LIFETIME EN			
Ser.	Addr: 0xAA	A123	APR18650M1 (1100 mAh)	0404	LiFePO4/carbon				
<b>U</b> .	22.9 degc	A123	26650M1B (2500mAh)	0434	LIFePO4/carbon	✓ LI_RESET			
		A123	ANR26650M1-B (2500m	0440	LIFePO4/carbon	LT_FLUSH			
		MA123	ANK26650M1-B COnsult	0453	LIFePO4/carbon	CAL TOGGLE			
3990 mV		A123 Systems	20050A	0400	LIFePO4/carbon				
01%		A123Systems	AINK20000001-B (20000m Ab)	6105	LifePO4/carbon	KESET			
		A123Systems	A125_Pack (20000mAh)	6111		SMOOTH_SYN			
		A Portable Power	LED-18650-1500 (1500	0/20	LiEePO4/carbon	SET DP SLP			
-1000 1000 -			26650 (3300mAb)	0451	LiFePO4/carbon				
2000 2000			8790160 (10000mΔh)	0456	LiFePO4/carbon	CLEAK_DP_SL			
		ABS .	62D12000 InVista (1200	6116	NiMH	PULSE_GPIO			
		ABS	BPI-50C5500 InVista (55	6117	NIMH	TAMBIENT SYL			
		Acebel	ECFV1260 (60Ah)	0807	Lead Acid				
		Advanced Electronics Energy	AE18650C-26 (2600mAh)	2151	NiCoMn/carbon	- SEAL			
		A Eenergy	AE1004765 (3500mAh)	0131	LiCoO2/carbon 4	GO_TO_HDQ			
		AEenergy	AE583696PM1HR (2150	0222	PSS, LiNiO2 with Co, Mn doping				
		AESC	295B9-3NK0B (16500m	1554	LiCoO2/carbon 11	Log Panel Clear Log			
		AESC	295B9-4NN0A (10425m	1561	LiCoO2/carbon 11	Transaction Log			
			ModuleHC3 (120Ah)	1785	LiMn2O4 (Co.Ni)/carbon, 4.4V	Name Cmd Re			
			Program selected ch	emistry	ogram from GPCRB file				
•	Þ	Chemistry Version : 630 Check for	a newer chemistry update of	n ti.com		<			
					4 TEXAS INSTRUMENTS				

Figure 12. Chemistry Screen

# 8 Related Documentation from Texas Instruments

Updated documents also can be obtained through the TI Web site at www.ti.com .

- 1. Data sheet: *bq*27z561 System-Side Impedance Track[™] Fuel Gauge with Integrated Sense Resistor, SLUSCY0
- 2. Technical Reference Manual: bq27z561 Technical Reference Manual, SLUUBO7

### IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products <a href="http://www.ti.com/sc/docs/stdterms.htm">http://www.ti.com/sc/docs/stdterms.htm</a>), evaluation modules, and samples (<a href="http://www.ti.com/sc/docs/stdterms.htm">http://www.ti.com/sc/docs/stdterms.htm</a>), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated