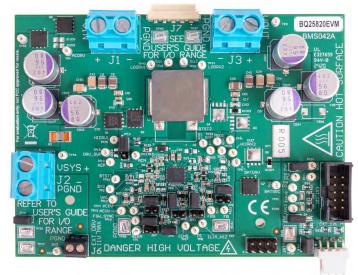
EVM User's Guide: BQ25820EVM BQ25820 Evaluation Module

Texas Instruments

Description


The BQ25820EVM evaluation module (EVM) is an evaluation system for the BQ25820 IC. The BQ25820 IC is a buck battery charge controller with direct power path control. The BQ25820 has a wide input range of 4.2V – 70V, a wide output voltage range of up to 70V, and bi-directional capabilities. The BQ25820EVM has a max input and output of 55V and a max charge current of 10A.

Get Started

- 1. Order the EVM on ti.com
- Order the EV2400 to communicate with the EVM using bqStudio, or order the USB2ANY. interface device to communicate with the EVM using TI charger online GUI
- 3. Download the BQ25820 BQZ file
- 4. Download the BQ25820 EVM design files on ti.com

Features

- Wide input voltage operating range: 4.2V–55V
- Wide output operating range: up to 55V with CC/CV support for:
 - 1- to 13-Cell Li-Ion
 - 1- to 14-Cell LiFePO4
- Synchronous buck DC/DC charge controller with NFET drivers
 - Adjustable switching frequency from 200kHz to 600kHz
 - Optional synchronization to external clock
 - Optional gate driver supply input for optimized efficiency
- Resistor-programmable standalone with added I2C mode
- Built in MPPT to maximize power from solar panel arrays
- Power up from battery (reverse mode) output 4V to 55V
- High safety integration
 - Adjustable input overvoltage and undervoltage protection
 - Output overvoltage and overcurrent protection

1

1 Evaluation Module Overview

1.1 Introduction

The BQ25820EVM can be evaluated for up to 13 cell Li-Ion battery charging implementing CC/CV profile. Typical applications include medical equipment, solar backup chargers, energy storage systems, drones, cordless power and garden tools.

This EVM does not include the EV2400 or USB2ANY interface device and does not provide any electrical isolation for the digital interfaces. EV2400 or USB2ANY must be ordered separately to evaluate the BQ25820EVM and electrical safety considerations must be considered when interfacing between the PC and the EVM board. When interfacing the EVM to the PC through the digital interfaces, digital isolators with isolation boundary is recommended.

The BQ25820EVM has smaller clearance and creepage than normally used on high voltage boards as well as not having an isolation boundary. If you apply high voltage to this board, all terminals must be considered high voltage and hazardous live. Electric shock is possible when connecting the board to live wire. The board must be handled with care by a professional. For safety, use of isolated test equipment with various protection features (such as overvoltage and overcurrent) is recommended.

1.2 Kit Contents

This EVM kit includes:

1 BQ25820 EVM

1.3 Specification

	Table 1-1. Recommended Operating Conc			
	Description	MIN	TYP MAX	UNIT
VIN (J1)	Input voltage to the EVM	4.2	55 ⁽¹⁾	V
VOUT (J3)	Output voltage of the EVM	3.3	50 ⁽¹⁾	V
IIN (J1)	Input current of the EVM		10 ^{(3) (4)}	А
IOUT (J3)	Output current of the EVM		10 ⁽³⁾	А
Regulator output power	Output power of the EVM		400 ⁽³⁾	W
EXT_DRV (J6)	Voltage applied to DRV_SUP pin of the regulator	4	11	V
IAC sense resistor	Input current sense resistor	2	2 ⁽⁵⁾ 10	mΩ
EVM operating ambient temperature (TA)			25 ⁽²⁾	°C

Table 1-1. Recommended Operating Conditions for BQ25820EVM

(1) Due to the high di/dt and dv/dt electrical flow associated with switch-mode power supplies, nodes on the EVM can have high spike above input voltage (in buck mode) or output voltage (in boost mode) level. Switch node voltage can swing up to *input or output + inductive spike* level. High side gate drives can swing up to *switch node voltage + 11V (DRV_SUP supply voltage dependent) + gate drive inductive spike* level. Safety precautions must be observed at all times.

- (2) Connectors, bump-ons, jumpers on the EVM are not a good choice for evaluation under temperature greatly deviated from room temperature of 25°C. Please refer to BOM for temperature rating of board components.
- (3) Thermal monitoring (for example, using a thermal camera) is recommended if power stage output current > 5A or total output power > 100W.
- (4) Default EVM input current limit is set to 8A through the IIN pin. The current limiting feature can be disabled by setting EN_IIN_PIN bit to '0', changing IIN pin resistor, or shorting IIN pin to PGND through JP11.
- (5) The input sense resistor is optional and the sense resistor can be removed. For an USB-C EPR operation, a 5mΩ sense resistor is needed.

1.4 Device Information

The device offers high-efficiency battery charging over a wide voltage range with output CC-CV control. The device integrates all the loop compensation for the buck converter, thereby providing a high density method with ease of use.

Besides the I2C host-controlled charging mode, the device also supports programmable hardware limits. Input current, and output current regulation targets can be set with single resistor on the IIN, and IOUT pins, respectively.

1.5 General Texas Instruments High Voltage Evaluation (TI HV EMV) User Safety Guidelines

Always follow TI's set-up and application instructions, including use of all interface components within the recommended electrical rated voltage and power limits. Always use electrical safety precautions to help verify your personal safety and those working around you. Contact TI's Product Information Center http://ti.com/customer support for further information.

Save all warnings and instructions for future reference.

WARNING

Failure to follow warnings and instructions can result in personal injury, property damage or death due to electrical shock and burn hazards.

The term TI HV EVM refers to an electronic device typically provided as an open framed, unenclosed printed circuit board assembly. It is *intended strictly for use in development laboratory environments, solely for qualified professional users having training, expertise and knowledge of electrical safety risks in development and application of high voltage electrical circuits. Any other use and/or application are strictly prohibited by Texas Instruments.* If you are not suitably qualified, then immediately stop from further use of the HV EVM.

- 1. Work Area Safety:
 - a. Keep work area clean and orderly.
 - b. Qualified observers must be present anytime circuits are energized.
 - c. Effective barriers and signage must be present in the area where the TI HV EVM and the interface electronics are energized, indicating operation of accessible high voltages can be present, for the purpose of protecting inadvertent access.
 - d. All interface circuits, power supplies, evaluation modules, instruments, meters, scopes, and other related apparatus used in a development environment exceeding 50Vrms/75VDC must be electrically located within a protected Emergency Power Off EPO protected power strip.
 - e. Use stable and non-conductive work surface.
 - f. Use adequately insulated clamps and wires to attach measurement probes and instruments. No freehand testing whenever possible.
- 2. Electrical Safety:
 - a. As a precautionary measure, a good engineering practice to assume is that the entire EVM can have fully accessible and active high voltages.
 - b. De-energize the TI HV EVM and all the inputs, outputs and electrical loads before performing any electrical or other diagnostic measurements. Revalidate that TI HV EVM power has been safely deenergized.
 - c. With the EVM confirmed de-energized, proceed with required electrical circuit configurations, wiring, measurement equipment hook-ups and other application needs, while still assuming the EVM circuit and measuring instruments are electrically live.
 - d. Once EVM readiness is complete, energize the EVM as intended.

WARNING

While the EVM is energized, never touch the EVM or the electrical circuits, as the electrical circuits and EVM can be at high voltages capable of causing electrical shock hazard.

- 3. Personal Safety
 - a. Wear personal protective equipment e.g. latex gloves or safety glasses with side shields or protect EVM in an adequate lucent plastic box with interlocks from accidental touch.

Limitation for safe use:

EVMs are not to be used as all or part of a production unit.

1.5.1 General Safety Information

The following warnings and cautions are noted for the safety of anyone using or working close to the BQ25820 EVM. Observe all safety precautions.

Warning	The BQ25820EVM circuit module can become hot during operation due to dissipation of heat. Avoid contact with the board. Follow all applicable safety procedures applicable to your laboratory. CAUTION Hot surface. Contact can cause burns. Do not touch!
Warning	The BQ25820EVM has smaller clearance and creepage than normally used on high voltage boards as well as not having an isolation boundary. If the user applies high voltage to this board, then all terminals are considered high voltage and hazardous live. Electric shock is possible when connecting the board to live wire. The board needs to be handled with care by a professional. For safety, use of isolated test equipment with various protection features (such as overvoltage and overcurrent) is recommended.
Warning	High voltages that can cause injury exist on this evaluation module (EVM). Please verify all safety procedures are followed when working on this EVM. Never leave a powered EVM unattended.
Warning	High voltage can be present on board capacitors after power down. Properly check and discharge all on-board energy reservoir after EVM power down.
Caution	Do not leave EVM powered when unattended.

CAUTION

The communication interfaces are not isolated on the EVM. The use of digital isolators is recommended. Verify all high voltage safety precautions are observed during testing.

CAUTION

Connections for rated current must be made at the terminal block. Test points are not rated for the board current.

CAUTION

The circuit module can be damaged by over temperature. To avoid damage, monitor the temperature during evaluation and provide cooling, as needed, for your system environment. Do not operate beyond the current and voltage limits in Table 1-1.

CAUTION

Test equipment can be damaged by application of external voltages. Check your equipment requirements and use blocking diodes or other isolation techniques, as needed, to prevent damage to your equipment.

CAUTION

The circuit module has signal traces, components, and component leads on the bottom of the board. This can result in exposed voltages, hot surfaces or sharp edges. Do not reach under the board during operation.

4

CAUTION

The default settings of the BQ25820 is possibly not designed for the user's application. Verify the EVM settings are set appropriately for test setup before device power up. Set all protections appropriately and limit current for safe operation.

CAUTION

The board does not have a fuse installed and relies on the external voltage source current limit to verify circuit protection.

2 Hardware

2.1 Board Parameters

	Description	Value	Unit
ACUV	Input undervoltage	10	V
ACOV	Input overvoltage	55	V
IIN	Input current of the EVM	8	A
IOUT	Output current of the EVM	10	A
FSW_SYNC	Switching frequency of the power stage	250	KHz
VBAT_REG	Battery charge voltage	29.4	V
IAC Sense Resistor	Input current sense resistor	2	mΩ

Table 2-1. Default board setup for BQ25820VM

Table 2-2. PCB and Mechanical Parameters

	Value	Unit
Board Size (X dimension, or length)	112	mm
Board Size (Y dimension, or width)	84	mm
IC + power stage max height	5	mm
Total Copper Layers	6	layer
Copper weight per layer	2	oz
Total board thickness	62	mil

2.2 IO and Jumper Descriptions

Table 2-3. Connector/Port Description

Jack	Description
J1-VIN	Input: positive terminal.
J1-PGND	Input: negative terminal (ground terminal).
J3-VOUT	Connected to battery pack output.
J3-PGND	Ground.
J4-EXT_I2C	Communication port for the USB2ANY.
J5-12C	Communication port for the EV2400.
J6-EXT_DRV	Connection for external gate drive.
J7-Power Connector	Connection for VAC and BAT.
J8-Communication Port	Connection for EXT_DRV, /INT, I2C, /PG, and 3.3V.

Jumper	Description	Factory Default
JP1	Use JP1 to connect the default feedback resistor and set the charger to the default 7 cell battery	Installed
JP2	Use JP2 to connect a new feedback resistor to program a different cell count	Not installed
JP3	Use JP3 to connect external IOUT resistor. JP3 can be shorted to PGND to disable hardware output current limiting.	Not installed
JP4	Shunt JP4 to use default IOUT resistor. By closing JP4, the default IOUT current is set to 10A.	Installed
JP5	Shunt JP5 to bias TS.	Installed
JP6	With JP5 shunted (REGN connected for voltage divider). Shunt JP6 to set TS status to normal.	Installed
JP7	With JP5 shunted (REGN connected for voltage divider). Use JP7 to connect external resistor to change TS status.	Not installed
JP8	Use JP8 to connect external FSW_SYNC resistor.	Not installed
JP9	Shunt JP9 to use default FSW_SYNC resistor. By closing JP9, the default switching frequency is set to 250kHz.	Installed
JP10	Shunt JP10 to use default IIN resistor. By closing JP10, the maximum input current is set to 8A.	Installed
JP11	Use JP11 to connect external IIN resistor. JP11 can be shorted to PGND to disable hardware input current limiting.	Not installed
JP12	Use JP12 to select the gate driver source. Shunt pin1 to pin2 to use IC internal LDO REGN output. Shunt pin2 to pin3 to use external gate drive supply. Maximum external gate drive supply can be up to 11V.	Pin1 and pin2 shunted
JP13	Shunt JP13 to enable controller in forward mode. Open JP13 to disable controller. The /CE pin can also be used as a general purpose indicator.	Installed
JP14	Shunt JP14 to connect /INT to a pullup rail.	Installed
JP15	Shunt JP15 to connect STAT1 to a pullup rail. The STAT1 pin can also be used as a general purpose indicator.	Installed
JP16	Shunt JP16 to generate on board 3.3V pullup rail.	Installed

Table 2-4. Jumper Description

2.3 Communication Interface Setup

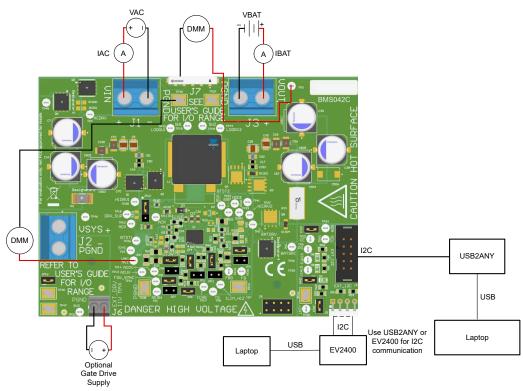
The charger is controlled by a state machine that uses I2C registers and the state machine makes decisions based off of the I2C registers. Software only helps with reading and writing to those registers.

2.3.1 BQSTUDIO using EV2400

Download the latest version of BQSTUDIOTEST. Double click the *Battery Management Studio* installation file and follow the installation steps. The software supports Microsoft[®] Windows[®] XP, 7, and 10 operating systems. Launch BQSTUDIO and select *Charger*. If the EVM configuration file for BQSTUDIO does not appear in the Charger, close BQSTUDIO and either download the .BQZ file from the EVM product folder at www.ti.com or request the file via e2e.ti.com. The file must be saved into C:\XXX\BatteryManagementStudio\config, where XXX is the directory you selected to install BQSTUDIO.

2.3.2 TI Charger GUI for USB2ANY

Navigate to the TI-CHARGER-GUI tool folder. Once at the tool page, click on the *Evaluate in the cloud* button. The browser automatically redirects to the TI Charger GUI landing page. From the landing page, locate the device desired for evaluation and click *Select Device*. Note that the EVM must be powered and the USB2ANY must be connected to both the EVM and the PC for a connection to be established. Also, update the USB2ANY to the latest version with the USB2ANY Explorer Software.



2.4 Equipment

There are two recommended ways to test the EVM. The first and preferred way to test the EVM is to use a four-quadrant power supply. The second is to use a electronic load in constant voltage mode. Testing with a constant voltage load is covered in a later section. The following list of equipment is recommended when testing with a four-quadrant power supply.

- 1. **Power Supplies:** A power supply capable of supplying 40V at 8A is required. While this part can handle larger voltage and current, larger power levels are not necessary for this procedure.
- 2. Load #1: A Kepco load: BOP36-6M, DC 0 to ±36 V, 0 to ±6 A (or higher), or equivalent. When testing without a real battery, connect 2000 uF of capacitance across the input.
- 3. **Meters:** Six Fluke 75 multimeters, (equivalent or better) or: Three equivalent voltage meters and three equivalent current meters.
- 4. Computer: A computer with at least one USB port and a USB cable.
- 5. EV2400 Communication Kit or USB2ANY Communication Kit
- 6. Software: For software setup, refer to Section 2.3.

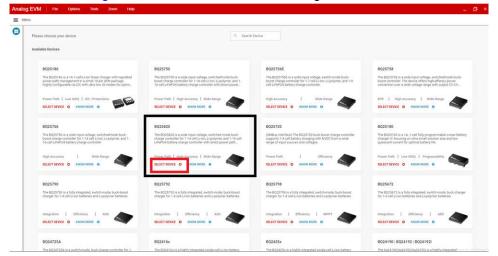
2.4.1 Equipment Set Up

Use the following guidelines to set up the equipment:

- 1. Set power supply 1 for 40V DC, 8A current limit and then turn off the supply.
- 2. Connect the output of power supply 1 in series with a current meter to J1 (VIN and PGND).
- 3. Connect a voltage meter across J1 (VIN) and J1 (PGND).
- 4. Connect load 1 in series with a current meter to J3 (VBAT and PGND).
- 5. Connect a voltage meter across J5 (VBAT and PGND).
- 6. Set 23V at KEPCO load output. Limit KEPCO to 6A. Use load 2 to power EVM from the VOUT output.
- 7. Make sure the jumpers are installed as indicated in IO and Jumper Descriptions.
- 8. If using Battery Management Studio, use the following steps:
 - a. Connect J5 to the EV2400. Connect J5 to the I²C PORT 2 on the EV2400
 - b. Turn on the computer and load 2. Open the bqStudio software.
 - c. Select Charger and click the Next button.

7

Battery M	anagement Studio (bqStudio) Supported Targets
Please sele	ct a device type
-	
Gauge	
Charger	
	narging

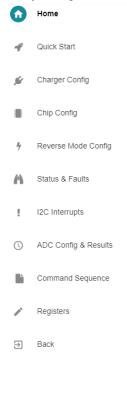

- d. Select Charger_1_00_BQ25820.bqz on the Select a Target Page.
- e. After selecting the target device, click Field View. and then click the Read Register button.
- f. Set WATCHDOG and EN_CHG to disabled.

🖣 Battery Management Studio v1.3.124 (Device - BQ25820) Charger_1_00-bq25820.bqz

File View Window Help											
larger 🛛 🖓 Advanced Com	m Errors										
◆ BQ25820 Default View ◆ BQ25820 Field View 8	3										
Registers											
Save Registers Load Registers Start Log Writ	e Register Read Register Auto Read: O	FF 🗸 Update N	1ode Im	mediate	J 12C	Address	D6(6	3) ~	Def	ault Vi	iew De
] [
8 Bit Registers 16 Bit Registers											
General Single-Bit		_						^	A	7	6
	EN_CHG_TMR	EN_TMR2	x						14	1 0	0
	EN_CHG_BIT_RESET_BEHAVIO								15		0
EN_IBAT_LOAD EN_CHG DIS_PG_PIN DIS_STAT_PINS		EN_ILIM_H									0
FORCE_STAT2_ON FORCE_STAT1_O		EN_IAC_L							16		0
✓ EN_PFM FORCE_BATFET_		EN_BATFE		DIODE					17		-
EN_AUTO_REV EN_REV	FORCE_SWEEP	EN_MPPT		-					18		1
JEITA_ISETH EN_JEITA	EN_TS	BCOLD							19		0
SYSREV_UV ADC_EN	ADC_RATE	ADC_AVG							1/		0
	BAT_ADC_DIS	VAC_ADC_							18		0
□VBAT_ADC_DIS □VSYS_ADC_DIS	TS_ADC_DIS	VFB_ADC_	DIS						10	0	0
General Multi-Bit									10	0 0	1
VBAT_LOWV 30% x VFB_REG	V TOPOFF	_TMR Disable					~		16	E 0	0
WATCHDOG Disable	V CHG	_TMR 5hr					\sim		21	1 0	0
CV_TMR disable	~ VRE	ECHG 93.0% x VI	B_REG				~		22	2 1	0
P_AND_O_TMR 0.5s			_				~		23	3 0	0
	_						Ŷ			• •	•
g. In 16 Bit Registers, set ICH	IG_REG to 4000mA and	IPRECHO	5 to 10)00m/	4.						
Battery Management Studio v1.3.124 (Device - BQ25820)	harger_1_00-bg25820.bgz										_
File View Window Help	5										
Charger Advanced Comm	Errors										
BQ25820 Default View BQ25820 Field View	8										
										_	
Registers											
Save Registers Load Registers Start Log Write Register	Read Register Auto Read: OFF 🗸 Update Mo	ode Immediate 🗸	I2C Addres	s D6(6B)	∨ Defa	ult View	Device AC	кок	Hide R	egister	bit View
8 Bit Registers 16 Bit Registers											
General Multi-Bit		A	15 14	13 12 1 [.]	10 9	8 7	6 5	4	3 3	2 1	0
VFB_REG 1504 mV	VICHG_REG 4000 mA	~ 00		0 0 0	0 0	0 0	0 0	0	0 0		0
IAC_DPM 50000 mA	VAC_DPM 4200 mV	× 02		0 0 0	0 0	1 0	1 0	0	0 (0 0	0 1
IAC_REV 50000 mA	VSYS_REV 5000 mV	~ 06	0 0	0 0	1 1	0 0	1 0	0	0 0	0 0	0 6
IPRECHG 1000 mA	ITERM 0 mA	~ 08		0 0		1 0	1 0	0		0 0	0 3
VAC_MPP 0 mV		0A		0 0 0		0 0	1 0	0	0 (0 6
ADC Result		00		0 0 0	0 1	1 1	1 1	0	1 (0 3
IAC_ADC - Use Field View 0 mA	IBAT_ADC - Use Field View 0 mA	10		000 000	0 0	0 0	1 0	0		000	0
VAC_ADC 0 mV	VBAT_ADC 0 mV	12 1F		0 0 0	0 0	0 0	0 0	0		0 0	0
VSYS_ADC 0 mV	TS_ADC 0.0000 %	2D		0 0 0			0 0	0	0 0	0 0	0
VFB_ADC 8192 mV		2F	0 0	0 0	0 0	0 0	0 0	0	0 (0 0	0
		31		0 0 0			0 0	0	0 0		0
		33		0 0 0			0 0	0	0 0		0
		35	0 0	0 0 0	0 0	0 0	0 0	0	0 0	0 0	0

- 9. If using TI Charger GUI, then use the following steps:
 - a. Connect J4 to the USB2ANY. Turn on the computer and load 2.
 - b. Navigate to the TI Charger GUI website and select the charger to use:

c. At the top left of the screen, users will see the *Hardware Connected* icon. After users see the hardware is connected, select the plug icon on the left panel.



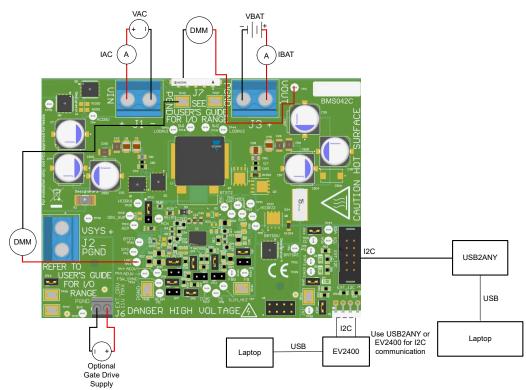
d. This is the Charger Configuration window. Click the Read All Register button at the top, then set WATCHDOG and EN_CHG to disabled. Set ICHG_REG to 4000mA and IPRECHG to 1000mA.

ý	Charger Config		Au	to Read	Off	~	READ ALL REGISTERS	Write Mode	Immediate 🗸		
Cha	irger Config										
	Charge Current Limit	t 4000 🗢 mA	FB Voltage Regulation Limit	1504	¢ m۷		IPRECHG	1000 🗢 mA		ITERM	
	VBAT_LOWV	30% x VFB_REG ↓	TOPOFF_TMR	Disable	~		WATCHDOG	Disable 🗸		CHG_TMR	
	VRECHG	93.0% x VFB_REG 🗸	TS_T5	41.2% (50C) 🗸		TS_T3	48.4% (40C) 🗸		TS_T2	
	TS_T1	77.15% (-10C) 🗸	JEITA_VSET	Charge	Suspend V		JEITA_ISETC	Charge Suspend	Y	EN_TERM	
	EN_PRECHG		EN_CHG_TMR				EN_TMR2X			WD_RST	
	DIS_CE_PIN		EN_CHG_BIT_RESE.				EN_IBAT_LOAD			EN_CHG	
	EN_PFM		EN_VREG_TEMP_C.				JEITA_ISETH			EN_JEITA	
	EN_TS										
Inpu	ut Config										
	IAC_DPM	0 🗢 mA	VAC_DPM	0	¢ mV		EN_HIZ	3			

e. Here is a brief description of what the other icons on the left side panel are. Select through these icons to configure other operations of the battery charger.

10. Turn on power supply #1, measure

 $V(J1(VAC)) = 40V \pm 0.5V$ $I(J1(IAC)) = 2.4A \pm 0.5A$ $V(J3(VBAT)) = 23V \pm 0.5V$ $I(J3(IBAT)) = 3.9A \pm 0.5A$ Use the following guidelines to test the BQ25820 EVM power path:


- 1. Disconnect the power supply from J1 (VIN and PGND) and disconnect Load 1 from J3 (VOUT and PGND).
- 2. Connect the output of power supply 1 to J3 (VOUT and PGND).
- 3. Set power supply 1 for 20V DC, 8A current limit and then turn off power supply.
- 4. Connect a voltage meter across J2 (VSYS) and J2 (PGND).
- 5. Turn on power supply 1, measure $V(J2(VSYS)) = 20V \pm 0.5V$.

2.4.2 Equipment - Using a CV Load

The following list of equipment is recommended when testing with a constant voltage electronic load.

- 1. **Power Supplies:** A power supply capable of supplying 40V at 4A is required. While this part can handle larger voltage and current, larger power levels are not necessary for this procedure.
- 2. Load #1: Kikusui PLZ164WA 0-150V, 0-33A When testing without a real battery, connect 2000 uF of capacitance across the input.
- 3. **Meters:** Six Fluke 75 multimeters, (equivalent or better) or: Four equivalent voltage meters and two equivalent current meters.
- 4. **Computer:** A computer with at least one USB port and a USB cable.
- 5. EV2400 Communication Kit or USB2ANY Communication Kit
- 6. **Software:** For software setup, refer to Section 2.3.

2.4.3 Equipment Setup - Using a CV Load

Use the following guidelines to set up the equipment:

- 1. Set power supply 1 for 40V DC, 8A current limit and then turn off the supply.
- 2. Connect the output of power supply 1 in series with a current meter to J1 (VIN and PGND).
- 3. Connect a voltage meter across J1 (VIN) and J1 (PGND).
- 4. Connect load 1 in series with a current meter to J3 (VOUT and PGND).
- 5. Connect a voltage meter across J3 (VOUT and PGND).
- 6. Set electronics load to CV mode and 23.5V. Turn off load 1.

Note

Add a 3000uF capacitor on BAT pin when testing without real battery.

- 7. Connect J5 to the EV2400. Connect J5 to the I²C PORT 2 on the EV2400.
- 8. Make sure the jumpers are installed as indicated in IO and Jumper Descriptions.
- 9. Unplug Jumper 13.
- 10. If using Battery Management Studio, then use the following steps:
 - a. Connect J5 to the EV2400. Connect J5 to the I²C PORT 2 on the EV2400
 - b. Turn on the computer and load 2. Open the bqStudio software.
 - c. Select Charger and click the Next button.

Sattery	Management Studio (bqStudio) Supported Targets
Please s	elect a device type
Gauge	
Gauge Charger	Sec. 1
Charger	s Charging

- d. Select Charger_1_00_BQ25820.bqz on the Select a Target Page.
- e. After selecting the target device, click Field View. and then click the Read Register button.
- f. Set WATCHDOG and EN_CHG to disabled.

File View Window Help		
Tharger 🚧 Advanced Comm 🔤 Errors		
SQ25820 Default View SQ25820 Field View 🕸		
Registers		
Save Registers Load Registers Start Log Write Register Read Register Auto Read: OFF v Update Mode Immediate v I2C Address D6(6B) v Defa	ult Vie	ew De
8 Bit Registers 16 Bit Registers		
General Single-Bit	7	6
□EN_TERM □EN_PRECHG □EN_CHG_TMR □EN_TMR2X □WD RST □DIS CE PIN ✓EN CHG BIT RESET BEHAVIOR □EN HIZ	0	0
EN_IBAT_LOAD EN_CHG MEN_ICHG_PIN MEN_ILIM_HIZ_PIN 15	0	0
DIS_PG_PIN DIS_STAT_PINS CRCE_STAT4_ON FORCE_STAT3_ON 16	0	0
FORCE_STAT2_ON FORCE_STAT1_ON REG_RST FILMOLOGY FORCE STAT2_ON FORCE_STAT2_ON FORCE_STAT2_ON FORCE_STAT2_ON FORCE	0	0
MEN_PFM FORCE_BATFET_OFF PWRPATH_REDUCE_VDRV EN_BATFET_IDEAL_DIODE MEN_AUTO_REV EN_REV FORCE_SWEEP EN_MPPT	1	1
Derta isert Centre Control 19	0	0
SYSREV_UV DADC_EN MADC_RATE DADC_AVG	0	0
ADC_AVG_INIT ADC_DIS IBAT_ADC_DIS 18	1	0
□ VBAT_ADC_DIS □ VSYS_ADC_DIS □ TS_ADC_DIS □ VFB_ADC_DIS □ 1C	0	0
General Multi-Bit	0	1
VBAT_LOWV 30% x VFB_REG V TOPOFF_TMR Disable V 1E	0	0
WATCHDOG Disable CHG_TMR 5hr ~ 21	0	0
CV_TMR disable VRECHG 93.0% x VFB_REG 22		0
P_AND_O_TMR 0.5s V FULL_SWEEP_TMR 3 min V 23	0	0

g. In 16 Bit Registers, set ICHG_REG to 4000mA and IPRECHG to 1000mA.

a Battery Management Studio v1	1.3.124 (Device - BQ25820) Ch	arger_1_00-bo	25820.bqz																	_	-
File View Window Help																					
< Charger	Advanced Comm	Errors																			
🗢 BQ25820 Default View 🗢 BQ2	5820 Field View 🛛																				
Registers																					
Save Registers Load Registers	Start Log Write Register	Read Register	Auto Read: OFF 🗸 Update Mode	Immediat	te 🗸	I2C A	ddre	ss D6	(6B)	~ C	efaul)	lt Vie	w D	evice	ACK	ок	Hide	Regi	ster bi	it Viev	v
8 Bit Registers 16 Bit Registers																					
General Multi-Bit					Α	15	14	13 12	2 11	10	9	8	7	6	5	4	3	2	1	0	
VFB_REG 1504 mV	~	ICHG_REG	4000 mA	~	00	0	0	0 0	0	0	0	0	0	0	0	0	0	0		0	
IAC_DPM 50000 mA	~	VAC_DPM	4200 mV	~	02	0	0	0 0	0	0	0	1	0	1	0	0	0	0	0	0	1
IAC_REV 50000 mA	~	VSYS_REV	5000 mV	~	06	0	0	0 0	0	1	1	0	0	1	0	0	0	0	0	0	6
IPRECHG 1000 mA	~	_		~	08	0	0	0 0	0	0	1	1	0	1	0	0	1	0	0	0	3
VAC_MPP 0 mV					0 A	0	0	0 0	0	1	1	0	0	1	0	0	0	0	0	0	6
ADC Result]			0C	0	0	0 0	0	0	1	1	1	1	1	0	1	0	0	0	3
IAC_ADC - Use Field View	0 mA	IBAT ADC - U	Jse Field View 0 mA		10	0	0	0 0	0	0	0	0	0	1	0	1	0	0	-	0	
VAC_ADC			VBAT_ADC 0 mV		12	0	0	0 0	0	0	0	0	0	0	0	0	0	0		0	
VSYS_ADC			TS_ADC 0.0000 %		1F	0	0	0 0	0	0	0	0	0	0	0	0	0	0		0	
VFB_ADC					2D	0	0	0 0	0	0	0	0	0	0	0	0	0	0		0	
					2F 31	0	0	0 0	0	0	0	0	0	0	0	0	0	0		0	
					33	0	0	0 0	0	0	0	0	0	0	0	0	0	0	-	0	
					35	0	0	0 0	0	0	0	0	0	0	0	0	0	0		0	

- 11. If using TI Charger GUI, then use the following steps:
 - a. Connect J4 to the USB2ANY. Turn on the computer and load 2.
 - b. Navigate to the TI Charger GUI website and select the charger to use:

tase choose your device	0, Search	Device	
allable Devices			
BQ25186	BQ25750	BQ25756E	BQ25758
The BQ25169 is a TA 1-cell Li-ion linear changer with regulated power path management in a small TO-pin QFN package. Highly configurable via I2C with ultia low IQ modes for optim	The BQ25750 is a wide input voltage, switchedmode buck- boost charge controller for 1-14 cell Li-lon, Li-polymer, and 1- 16 cell LiFePO4 battery charge controller with direct power.	The BQ28756E is a wide input voltage, switch-mode buck- boost charge costroller for 1-7 cell Li-ton, Li-polymer, and 1-9 cell LifePD4 battery charge controller.	The 8025758 is a wide input withage, switchedmode buck- boost controllier. The device stillers high-efficiency power conversion over a wide voltage range with output CC-CV
Power Path Low IDDQ 120) Protections	Power Path High Accuracy Wide Karge	High Accuracy Wide Bange	EPH High Accuracy Wide Barge
SELECT DEVICE O KNOW MORE O	SELECTORVICE O XNOW MORE O		SELECT DEVICE O KNOW MORE O
BQ25756	BQ25820	BQ25720	BQ25180
The BQ25766 is a write root voltage, switchedmode buck- boost charge controller for 1-14 cell Lillor, Li-polymer, and 1- 16 cell LiFePOA battery charge controller.	The RQ25E20 is a wide input voltage, switched mode buck charge controller for 1-14 cell L-lon, Lipplymer, and 1-16 cell LiFePD4 battery charge controller with direct power path	(BMBus interface) The BQ25720 buck-boost charge controller supports 1-4 cell battery charging with RVDC from a wide range of input sources and voltages.	The B02518D is a 1A, 1-cell fully programmable Linear Batter Charger IC focusing on ultra small solution size and low quiescent current for optimal battery life.
High Accuracy Wide Range	Prover Path 1 High Accuracy Wide Range	Prover Path Efficiency	Power Path Low IDDQ Programability
	SELECTOFUCE O NOW MORE O		SELECT DEVICE O KNOW MORE O
BQ25790	BQ25792	8025798	BQ25672
The BQ257H0 is a fully integrated, switch-mode, buck-boost charger for 1-4 cell U-ion batteries and U-polymer batteries.	The BQ257N2 is a fully integrated, switch-mode, buck-boost charger for 1-4 cell L-ion batteries and Lipolymer batteries.	The BQ25798 is a fully integrated, switch-mode, buck-boost charger for 1-4 cell U-lon batteries and U-polymer batteries.	The B025672 is a fully integrated, switch-mode, buck charge for 1-4 cell U-ion batteries and U-polymer batteries.
integration Efficiency ADC	Integration Efficiency ADC	Integration Efficiency M2771	Integration Efficiency ADC
SELECT DEVICE O KNOW MORE O	SELECT DEVICE O KNOW MORE O	SELECT DEVICE O KNOW MORE O	SELECT DEVICE O KNOW MORE O

c. At the top left of the screen, users will see the *Hardware Connected* icon. After users see the hardware is connected, select the plug icon on the left panel.

alog EVM File Options Tools Zoom	- Help	- Ø
BQ25820 Connected Order with other power due thereods satery drage controller with other power due COCKETER	th charge controller for 1 14 cet Unies, Lipolynes, and 1 14 cet control NEXTLADE EASE NEXTLADE EASE NEXTLAD	the second
		Enable Zoom

Hardware

d. This is the Charger Configuration window. Click the *Read All Register* button at the top, then set WATCHDOG and EN_CHG to disabled. Set ICHG_REG to 4000mA and IPRECHG to 1000mA.

Menu								
,	Charger Config		At	ito Read Off 🗸 🗸	READ ALL REGISTERS	Write Mode Immediate	♥ WRITE F	EGISTERS
Ch	arger Config							
	Charge Current Lim	it 4000 🗢 mA	FB Voltage Regulation Limit	1504 ¢ mV	IPRECHG	1000 🗢 mA	ITERM	0
	VBAT_LOWV	30% x VFB_REG ↓	TOPOFF_TMR	Disable 🗸	WATCHDOG	Disable 🗸	CHG_TMR	5hr
	VRECHG	93.0% x VFB_REG 🗸	TS_T5	41.2% (50C) 🗸 🗸	TS_T3	48.4% (40C) 🗸	TS_T2	71.
	TS_T1	77.15% (-10C) 🗸 🗸	JEITA_VSET	Charge Suspend 🗸 🗸	JEITA_ISETC	Charge Suspend 🗸	EN_TERM	
	EN_PRECHG		EN_CHG_TMR		EN_TMR2X		WD_RST	
	DIS_CE_PIN		EN_CHG_BIT_RESE		EN_IBAT_LOAD		EN_CHG	
	EN_PFM		EN_VREG_TEMP_C		JEITA_ISETH		EN_JEITA	
	EN_TS							
Ing	put Config							
	IAC_DPM	0 ¢ mA	VAC_DPM	0 🗢 mV	EN_HIZ			

- e. Here is a brief description of what the other icons on the left side panel are. Select through these icons to configure other operations of the battery charger.
 - Home n Quick Start Charger Config 4 Chip Config Reverse Mode Config 4 **A** Status & Faults I2C Interrupts . ADC Config & Results 0 Command Sequence Ŀ Registers ∋ Back
- 12. Set EN_CHG to enabled. Plug in jumper 13.
- 13. Set power supply 1 to 40V, measure

 $V(J1(VAC)) = 40V \pm 0.5V$ $I(J1(IAC)) = 1.2A \pm 0.5A$ $V(J3(VBAT)) = 23. V \pm 0.5V$ $I(J3(IBAT)) = 2A \pm 0.5A$

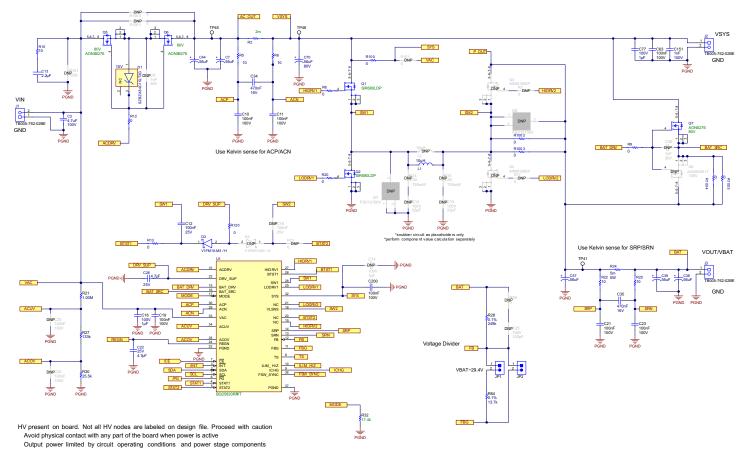
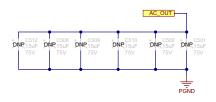
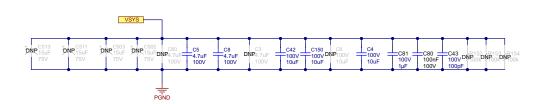
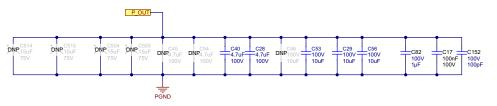
Use the following guidelines to test the BQ25820 EVM power path:

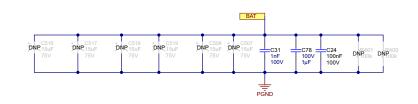
- 1. Disconnect the power supply from J1 (VIN and PGND) and disconnect Load 1 from J3 (VOUT and PGND).
- 2. Connect the output of power supply 1 to J3 (VOUT and PGND).
- 3. Set power supply 1 for 20V DC, 8A current limit and then turn off power supply.
- 4. Connect a voltage meter across J2 (VSYS) and J2 (PGND).
- 5. Turn on power supply 1, measure $V(J2(VSYS)) = 20V \pm 0.5V$.

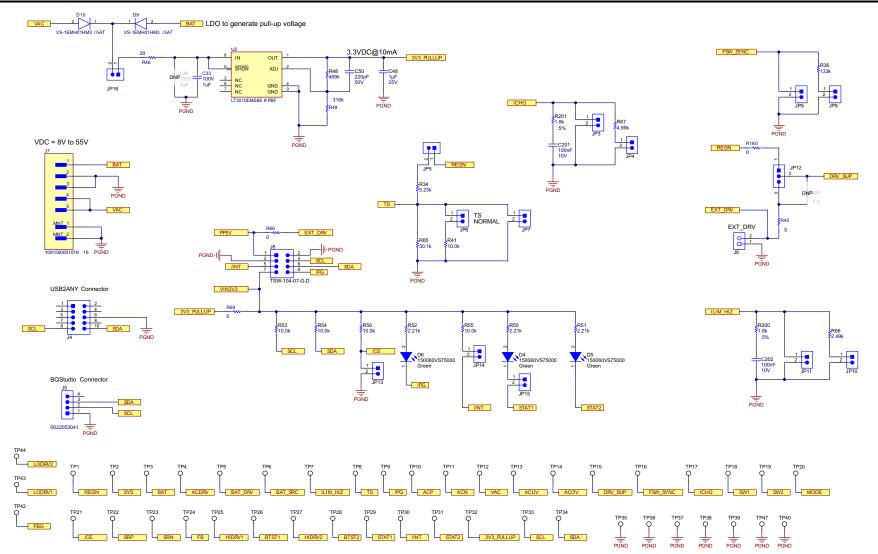
3 Hardware Design Files

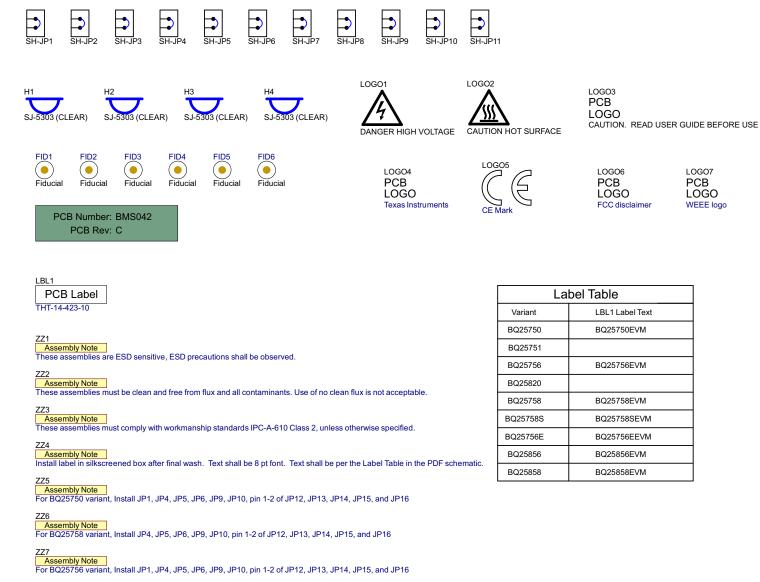
The following sections includes the hardware design files for BQ25820EVM. This section includes the schematics, board layouts, and Bill of Materials (BOM).

3.1 Schematic


Figure 3-1. BQ25820EVM Schematic





3.2 PCB Layout

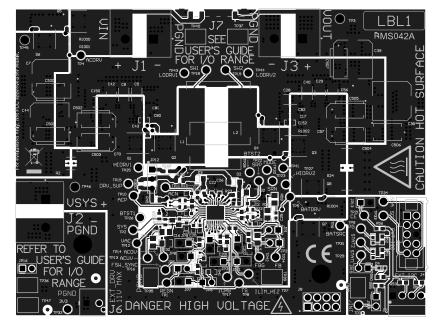


Figure 3-2. Top Layer and Overlay

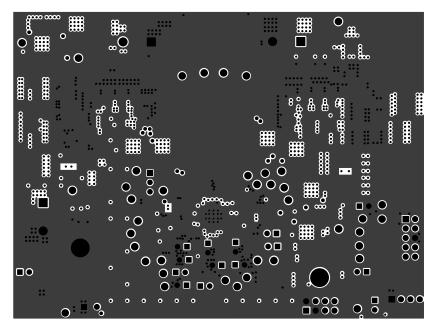


Figure 3-3. Layer 2 -GND

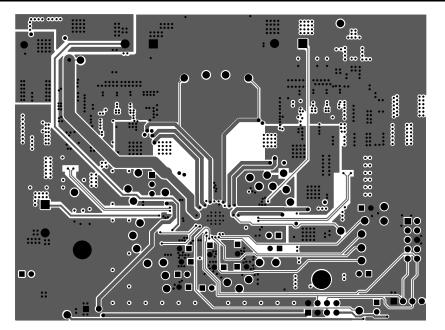


Figure 3-4. Signal Layer 1

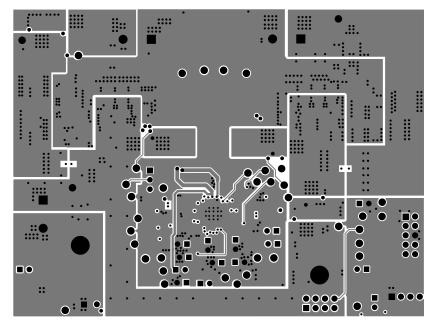


Figure 3-5. Signal Layer 2

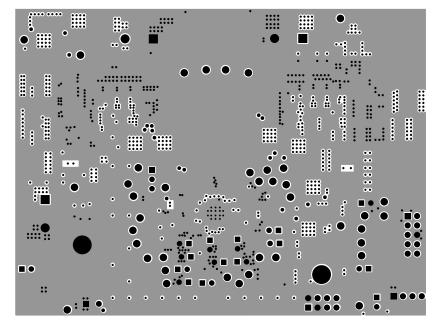


Figure 3-6. Layer 5 - GND

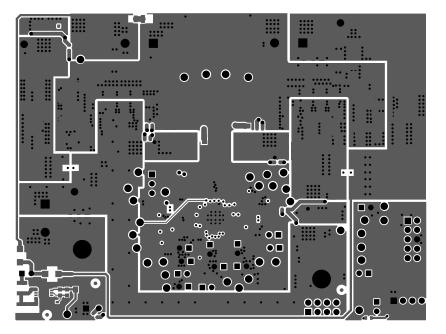


Figure 3-7. Bottom Layer and Overlay

3.3 Bill of Materials

Table 3-1. Bill of Materials

Designator	Quantity	Value	Description	Part Number	Package Reference	Manufacturer
C2, C5, C8, C28, C40	5	4.7µF	4.7uF ±10% 100V Ceramic Capacitor X7S 1210 (3225 Metric)	GCJ32DC72A475KE01L	1210	Murata
C4, C29, C42, C53, C56, C150	6	10µF	10µF ±10% 100V Ceramic Capacitor X7R 1210 (3225 Metric)	C3225X7R2A106K250AC	1210	TDK
C7, C38, C39, C44, C57, C70	6	56µF	56μF 80V Aluminum - Polymer Capacitors Radial, Can - SMD 28mOhm 1000 Hrs at 125°C	80SXV56M	SMT_CAP_10MM3_10M M3	Panasonic
C10, C11, C17, C19, C21, C23, C24, C63, C80, C200	10	0.1uF	CAP, CERM, 0.1µF, 100V,+/- 10%, X7R, AEC- Q200 Grade 1, 0603	НМК107В7104КАНТ	0603	Taiyo Yuden
C12	1	0.1uF	CAP, CERM, 0.1uF, 25V, +/- 10%, X7R, 0603	06033C104KAT2A	0603	AVX
C13	1		Cap Ceramic 2.2uF 100V X7R 10% SMD 1210 FlexiTerm 125C Plastic T/R	CGA6N3X7R2A225K230AE	1210	TDK Corporation
C16, C77, C78, C81, C82	5	1uF	CAP, CERM, 1µF, 100V,+/- 10%, X7R, AEC- Q200 Grade 1, 0805	08051C105K4Z2A	0805	AVX
C22, C26	2	4.7µF	Cap Ceramic 4.7uF 25V X7R 10% Pad SMD 0805 +125°C Automotive T/R	CGA4J1X7R1E475K125AE	0805	TDK Corporation
C31, C151	2	1000pF	Multilayer Ceramic Capacitors MLCC - SMD/SMT CGA 0603 100V 1000pF X7R 10% AEC-Q200	CGA3E2X7R2A102K080AA	0603	ТDК
C33	1	1µF	General Purpose Ceramic Capacitor, 1210, 1uF, 10%, X7R, 15%, 100V	12101C105KAT2A	1210	AVX
C34, C35	2	0.47uF	CAP, CERM, 0.47uF, 16V, +/- 10%, X7R, 0603	C0603C474K4RACTU	0603	Kemet
C43, C152	2	100pF	Multilayer Ceramic Capacitors MLCC - SMD/SMT CGA 0603 100V 100pF C0G 5% AEC-Q200	CGA3E2C0G2A101J080AA	0603	ТDК
C48	1	1uF	CAP, CERM, 1uF, 25V, +/- 10%, X7R, 0805	C0805C105K3RACTU	0805	Kemet
C50	1	220pF	CAP, CERM, 220pF, 50V, +/- 10%, X7R, 0603	C0603C221K5RACTU	0603	Kemet
C201, C202	2	0.1uF	CAP, CERM, 0.1uF, 10V, +/- 10%, X7R, 0603	C0603C104K8RACTU	0603	Kemet
D1	1		Zener Diode Single 15V 5% 300hm 300mW Automotive 3-Pin SOT-23 T/R	SZBZX84C15LT3G	SOT23	On Semiconductor
D3	1		Diode Schottky 1A Surface Mount DO-219AB (SMF)	V1FM10-M3/H	DO-219AB	Vishay
D4, D5, D6	3	Green	LED, Green, SMD	150060VS75000	LED_0603	Wurth Elektronik
D9, D10	2		Diode Standard 100V 1A Surface Mount DO-214AC (SMA)	VS-1EMH01HM3/5AT	DO-214AC	Vishay
FID1, FID2, FID3, FID4, FID5, FID6	6		Fiducial mark. There is nothing to buy or mount.	N/A	N/A	N/A

lardware Design Files						TEXAS INSTRUME				
Table 3-1. Bill of Materials (continued)										
Designator	Quantity	Value	Description	Part Number	Package Reference	Manufacturer				
H1, H2, H3, H4	4		Bumpon, Hemisphere, 0.44 X 0.20, Clear	SJ-5303 (CLEAR)	Transparent Bumpon	3M				
J1, J2, J3	3			TB005-762-02BE	TERM_CONN	CUI Devices				
J4	1		Header (shrouded), 100mil, 5x2, High- Temperature, Gold, TH	N2510-6002-RB	5x2 Shrouded header	3М				
J5	1		Header (friction lock), 100mil, 4x1, R/A, TH	0022053041	4x1 R/A Header	Molex				
J6	1		Terminal Block, 3.5mm, 2x1, Tin, TH	0393570002	Terminal Block, 3.5mm, 2x1, TH	Molex				
J7	1		Conn Board to Board HDR 5 POS 3mm Solder RA SMD T/R	109159005101916	CONN_SSL_PLUG5	KYOCERA AVX				
J8	1		Header, 100mil, 4x2, Gold, TH	TSW-104-07-G-D	4x2 Header	Samtec				
JP1, JP2, JP3, JP4, JP5, JP6, JP7, JP8, JP9, JP10, JP11, JP13, JP14, JP15, JP16	15		Header, 100mil, 2x1, Tin, TH	PEC02SAAN	Header, 2 PIN, 100mil, Tin	Sullins Connector Solutions				
JP12	1		Header, 100mil, 3x1, Tin, TH	PEC03SAAN	Header, 3 PIN, 100mil, Tin	Sullins Connector Solutions				
L1	1	10uH	Commercial Inductors, High Saturation Series 10uH 16.5A 12mΩ 20%	IHLP6767GZER100M01	SMT_INDUCTOR_17MM 15_17MM15	Vishay				
LBL1	1		Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll	THT-14-423-10	PCB Label 0.650 x 0.200 inch	Brady				
PCB1	1		Printed Circuit Board	BMS042		Any				
Q1, Q2	2		N-Channel 80V 31.8A (Ta), 130A (Tc) 6.25W (Ta), 104W (Tc) Surface Mount PowerPAK® SO-8	SIR680LDP-T1-RE3	SO-8	Vishay				
Q5,Q6, Q7	3		N-Channel 80V 100A (Tc) 215W (Tc) Surface Mount 8-DFN-EP (5x6)	AON6276	DFN8	Alpha & Omega Semiconductor				
R2	1	2m	2 mOhms ±1% 6W Chip Resistor 2512 (6432 Metric) Automotive AEC-Q200, Current Sense, Moisture Resistant, Pulse Withstanding Metal Element	WSLF25122L000FEA	2512	Vishay				
R5, R6, R22, R25	4	10	RES Thick Film, 10Ω, 1%, 0.1W, 100ppm/°C, 0603	CRCW060310R0FKEB	0603	Vishay				
R8, R9, R12, R13, R20, R68, R69, R100, R160	9	0	Thick Film Resistors - SMD 1/10watt ZEROohm Jumper	CRCW06030000Z0EA	0603	Vishay				
R10	1	10	RES Thick Film, 10Ω, 1%, 0.75W, 100ppm/°C, 1206	CRCW120610R0FKEAHP	1206	Vishay Dale				
R21	1	1.00Meg	Thick Film Resistors - SMD 1/8Watt 1Mohms	CRCW08051M00FKEAC	0805	Vishay / Dale				

1% Commercial Use

Designator	Quantity	Value	Description	Part Number	Package Reference	Manufacturer
R24	1	5m	5 mOhms ±1% 5W Chip Resistor Wide 4320 (11050 Metric), 2043 Current Sense, Moisture Resistant Metal Foil	FCSL110R005FER	WIDE_4320	Ohmite
R27	1	133k	RES, 133 k, 1%, 0.125 W, AEC-Q200 Grade 0, 0805	ERJ-6ENF1333V	0805	Panasonic
R28	1	249k	Thick Film Resistors - SMD 0805 Anti-Surge Res. 0.1%, 249Kohm	ERJ-PB6B2493V	0805	Panasonic
R30	1	25.5k	RES, 25.5 k, 1%, 0.125 W, AEC-Q200 Grade 0, 0805	ERJ-6ENF2552V	0805	Panasonic
R32	1	17.4k	RES, 17.4 k, 1%, 0.125 W, AEC-Q200 Grade 0, 0805	ERJ-6ENF1742V	0805	Panasonic
R34	1	5.23k	RES, 5.23 k, 1%, 0.1 W, 0603	RC0603FR-075K23L	0603	Yageo
R36	1	133k	RES, 133 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603133KFKEA	0603	Vishay-Dale
R41, R53, R54, R55, R56	5	10.0k	RES, 10.0 k, 1%, 0.1 W, 0603	RC0603FR-0710KL	0603	Yageo
R45, R120	2	0	Thick Film Resistors - SMD 1/8watt ZEROohm Jumper	CRCW08050000Z0EA	0805	Vishay
R46	1	20	Thick Film Resistors - SMD 3/4watt 20ohms 1% High Power AEC-Q200	CRCW121020R0FKEAHP	1210	Vishay Dale
R48	1	499k	RES, 499 k, 1%, 0.1 W, 0603	RC0603FR-07499KL	0603	Yageo
R49	1	316k	Thick Film Chip Resistors 0603 316kΩ 0.1W 1% 100ppm/°C	CR0603-FX-3163ELF	0603	Bourns
R50, R51, R52	3	2.21k	RES, 2.21 k, 1%, 0.1 W, 0603	RC0603FR-072K21L	0603	Yageo
R64	1	13.7k	RES, 13.7 k, 0.1%, 0.125 W, 0805	RG2012P-1372-B-T5	0805	Susumu Co Ltd
R65	1	30.1k	RES, 30.1 k, 1%, 0.1 W, 0603	RC0603FR-0730K1L	0603	Yageo
R66	1	2.49k	RES, 2.49 k, 1%, 0.1 W, 0603	RC0603FR-072K49L	0603	Yageo
R67	1	4.99k	RES, 4.99 k, 1%, 0.1 W, 0603	CRCW06034K99FKEAC	0603	Vishay-Dale
R200, R201	2	1.8k	RES, 1.8 k, 5%, 0.1 W, 0603	RC0603JR-071K8L	0603	Yageo
R1002, R1003, R1004, R1005	4	0	0 Ohms Jumper 0.245W Chip Resistor 0805 (2012 Metric) - Metal Element	JR0805X35E	0805	Ohmite
SH-JP1, SH-JP2, SH-JP3, SH-JP4, SH-JP5, SH-JP6, SH-JP7, SH-JP8, SH-JP9, SH-JP10, SH-JP11	11	1x2	Shunt, 100mil, Gold plated, Black	SNT-100-BK-G	Shunt	Samtec

Table 3-1. Bill of Materials (continued)

Designator	Quantity	Value	Description	Part Number	Package Reference	Manufacturer
TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13, TP14, TP15, TP16, TP17, TP18, TP19, TP20, TP21, TP22, TP23, TP24, TP25, TP26, TP27, TP28, TP29, TP30, TP31, TP32, TP33, TP34, TP41, TP42, TP43, TP44, TP45, TP46	40		Test Point, Miniature, White, TH	5002	White Miniature Testpoint	Keystone
TP35, TP36, TP37, TP38, TP39, TP40, TP47	7		Test Point, Compact, SMT	5016	Testpoint_Keystone_Com pact	Keystone
U1	1		BQ25820RRVT	BQ25820RRVT	VQFN36	Texas Instruments
U2	1		Linear Voltage Regulator IC Positive Adjustable 1 Output 50mA 8-MSOP-EP	LT3010EMS8E-PBF	MSOP8	Analog Devices

4 Additional Information

4.1 Trademarks

 ${\rm Microsoft}^{\circledast}$ and ${\rm Windows}^{\circledast}$ are registered trademarks of Microsoft Corporation. All trademarks are the property of their respective owners.

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision * (July 2024) to Revision A (August 2024)	Page
•	Added Communication Interface Setup section to include GUI selection	6
•	Updated board image setup	7

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated