
1 Introduction

2 Calibration Constants in Data Flash

Application Report
SLVA148A–October 2003–Revised September 2004

bq2083, bq2084 and bq2085 Calibration Procedure
Doug Williams.. PMP Portable Power

ABSTRACT

This application report describes the optional calibration of the offsets, voltage,
temperature, current, and coulomb counter in the bq2083, bq2084, and bq2085
advanced gas gauge devices. Additional programming details and examples are
provided in two appendixes.

The bq2083, bq2084, and bq2085 advanced gas gauges have two separate analog to digital converters,
which can be calibrated for gain and offset to improve measurement accuracy. One converter (generally
referred to as ADC) is used for cell voltage, temperature, and high speed current measurements. The
other (generally referred to as Coulomb Counter) is for normal current measurement and coulomb
counting.

The gas gauge firmware has a routine, which automatically measures and compensates for the offset in
each converter. However, this function is only performed at the beginning of the sleep mode, which is
initiated when both the SMB data and clock lines are held low and no charge or discharge current is
flowing. This is a thorough offset calibration, requiring approximately 20 seconds to complete.

For a calibration strategy that minimizes overall cycle time, the automatic offset routine has both
advantages and disadvantages. The advantage is that the procedure is done without the use of any
capital equipment, and totally unattended. The disadvantage is that since the module must first be
assembled and programmed, it is undesirable to wait 20 seconds for an auto-offset calibration before
proceeding with the gain calibrations.

The calibration strategy uses a quick (less than 2 seconds) tester-based offset calibration, adequate
enough to insure accuracy in the subsequent gain calibrations. Then the device is free to complete its
auto-offset calibration in sleep mode when the part is not using precious calibration resources.

CC Offset is the measured offset for the Coulomb Counter. This value is automatically measured each
time the gas gauge enters the sleep mode. The typical value for the bq2083/5 is 1500 (units are 584 nV).
Typical for the bq2084 is 15000 (units are 146 nV).

ADC Offset is the measured offset for the ADC. This value is automatically measured each time the gas
gauge enters the sleep mode. The typical value for the bq2083/5 is 5(units are 584 nV). Typical for the
bq2084 is 15 (units are 146 nV).

DSC Offset is the measured offset for the ADC, when it is used to measure current in the fast mode. This
value is automatically measured each time the gas gauge enters the sleep mode. The typical value for the
bq2083/5 is 5 (units are 584 nV). Typical for the bq2084 is 15(units are 146 nV).

bq2083, bq2084 and bq2085 Calibration ProcedureSLVA148A–October 2003–Revised September 2004 1

www.ti.com

3 Initial Current/Voltage Offset Calibration

Initial Current/Voltage Offset Calibration

AFE Ref is the full scale adjustment for the AFE and ADC combination. Typical value is 9750 (units are
0.1 mV)

Temperature Offset is simply the difference between the measured temperature and the actual
temperature. It is, therefore, not strictly an offset, but rather a value that compensates for the thermistor
and associated resistor divider errors. Typical value is 0 (units are 0.1°).

Sense Resistor Gain is the full scale adjustment for the current measurement. Typical value is 15312 for a
0.02-Ω resistor. The value can be expressed in calibrated ohms. Units are 0.0032653 Ω.

Coulomb Counter Delta is the charge that is counted for each bit of the coulomb counter. Typical for the
bq2083/5 is 5.575e+005 (units are mAh / 232). Typical for the bq2084 is 1.414e+005 (units are mAh/232)

Table 1. Calibration Constants

bq2083/85 bq2084CONSTANT NAME DATA TYPE USED FORADDRESS ADDRESS

CC Offset 0xc1, 0xc2 0xd2, 0xd3 Signed integer Current and Coulomb Counter offset

ADC Offset 0xc4 0xd5 Signed byte Voltage measurement offset

DSC Offset 0xc3 0xd4 Signed byte Fast current measurement offset

AFE Ref 0xb8, 0xb9 0xc9 Unsigned integer Voltage and temperature measurement gain

Temperature Offset 0xc5 0xd6 Signed byte Temperature offset

Sense Resistor Gain 0xbA, 0xbb 0xcb, 0xcc Unsigned integer Current measurement gain

Coulomb Counter Delta 0xbcC ~ 0xbfF 0xcd ~ 0xd0 Xemics floating point Coulomb Counter gain

The offset of the Coulomb Counter converter can be determined by reading its value in calibration mode,
with its input internally shorted. The following steps should be followed for initial offset calibration of both
converters:

1. Put the part into calibration mode by sending the word 0x0653 to command 0x00. Note that once the
part is in calibration mode, none of the standard SBS commands work.

2. Send calibration command 0x54 to place the part in internal calibration mode. This places an internal
short across the current input.

3. This is an oversampling integrating converter with greater than 20-bit resolution where multiple
samples are averaged. However, a new current conversion only occurs every 250 ms. To assure an
accurate reading of a contiguous block of conversions; conversions must be read from the part in
sequence after they become available.

In a tight loop, use calibration command 0x50 to read a counter that is incremented each time a new
250-ms sample is available. When an increment of this counter is detected, read the value of the latest
conversion using calibration command 0x56. Sum four such successive readings, and then multiply that
value by 16. Save this value as CC Offset.
4. Obtaining the voltage ADC Offset is slightly more difficult to perform, although it only needs to be read

once. This step may not be necessary to meet your system voltage accuracy specifications. After
detecting a new 250-ms sample with command 0x50, issue the SET_FLAG_OFFSET calibration
command 0x63. This starts the process of measuring the ADC offset. After issuing this command, then
is necessary to wait at least 250 milliseconds, and then use command 0x53 to read a block of voltage
values. The ADC Offset is in the tenth data byte that is returned.

5. Use command 0x5e to force the part to reset. This causes it to exit calibration mode and return to
normal. Be sure to wait at least 200 milliseconds after issuing the command to insure a complete reset.

6. Write the CC Offset unsigned integer to data flash (use address in table). Write the ADC Offset signed
byte to data flash. In addition, the ADC Offset value should be written to DSC Offset signed byte in
data flash. The DSC offset is the offset value used when the ADC is employed as a fast current
measurement device for certain alarm functions. See Appendix B for flash memory write commands.

bq2083, bq2084 and bq2085 Calibration Procedure2 SLVA148A–October 2003–Revised September 2004

www.ti.com

4 Voltage Gain Calibration

5 Temperature Calibration

6 Current Gain Calibration

Voltage Gain Calibration

The following sequence provides the voltage gain calibration:

1. For maximum gain accuracy, insure that a valid ADC Offset value has been written to the part, either
from the procedure above or from the automatic offset calibration routine.

2. Read the old full-scale value AFE Ref from its data flash location (recommended). Or, use the default
value for first time calibration.

3. Apply a known set of cell voltages to the AFE. The absolute value is not critical, but an accurate actual
value should be known and traceable to the local standards lab.

4. Read the SBS reported voltage, using Command 0x09. For maximum accuracy, the voltage should be
read several times and averaged.

5. Calculate the new full scale value as:
AFE Ref (new) = (Actual Voltage/Reported Voltage) x AFE Ref (old).

6. Write the AFE Ref unsigned integer to data flash.

The temperature calibration is actually just an offset between the gas gauge reported temperature and the
correct temperature. Follow the steps below to calibrate the temperature measurement function of the gas
gauge.

1. Set the Temperature Offset to 0 by writing 0 to this location in data flash
2. Read the measured temperature from the gas gauge using the SBS command 0x08. The value is in

units of 0.1°K.
3. Calculate the Temperature Offset as: –10 × [(MeasuredTemperature/10) – Actual Temperature in °K]
4. Write the resulting Temperature Offset signed byte value to data flash.

Current gain calibration requires the application of approximately 2 amps of discharge current through the
device being calibrated. The absolute test current value is not critical, but an accurate actual value must
be known and traceable to the local standards lab.

The Coulomb Counter Delta value is stored in a floating point format known as Xemics Floating Point. This
is not the standard IEEE floating point that you may be familiar with. See Appendix A for Visual Basic
code examples that convert this format to and from decimal. You will not be required to read this value; to
verify correct flash writing, you can just compare the actual 4 bytes read with those previously written
without worrying about the number that they represent.

Follow the steps below to calibrate the current gain:

1. To insure gain accuracy, valid DSC Offset and CC Offset values must have been written to the part,
either from the offset procedure above or from the automatic offset calibration routine.

2. With the 2 amp discharge load applied, read the reported SBS current using command 0x0a. For
maximum accuracy, read it at least three times and calculate the average.

3. Calculate the new sense resistor gain value as:
Sense Resistor Gain(new) = (Actual Current/Reported Current) ×Sense Resistor Gain(old).

4. Write the Sense Resistor Gain (unsigned integer) to data flash.
5. Calculate the new Coulomb Counter Delta for the bq2083 and bq2085 as:

Coulomb Counter Delta = Sense Resistor Gain/32767/3600 x 232. For the bq2084, the formula is:
Coulomb Counter Delta = Sense Resistor Gain / 32767 / 3600 / 4 x 232.

6. Write Coulomb Counter Delta to data flash, using Xemics Floating Point format. Use the equivalent of
the Xemics_Dec2Storage function in Appendix A. It returns four bytes. Byte 1 is written to the lowest
data flash location shown in the Table, Byte 2 to the next location, etc.

bq2083, bq2084 and bq2085 Calibration ProcedureSLVA148A–October 2003–Revised September 2004 3

www.ti.com

Appendix A Xemics Floating Point

A.1 Function Xemics_Dec2Storage(ByVal X As Double) As String

Function Xemics_Dec2Storage(ByVal X As Double) As String

The following VB function can be used to convert a decimal value to the Xemics Floating Point format. This, or
similar technique is required to store the Coulomb Counter Delta factor. The supporting HexByte function is also
included. The user may prefer to create a function that just returns the four bytes in the arguments, rather than
converting to an 8-character hex string as this one does.

The reverse function is also included here for informational purposes, but is not required for calibration since the
old factor is not required.

Dim iByte1 As Integer
Dim iByte2 As Integer
Dim iByte3 As Integer
Dim iByte4 As Integer
Dim iExp As Integer
Dim bNegative As Boolean
Dim fMantissa As Double

’// Don't blow up with logs of zero
If X = 0 Then X = 0.0000001

If X < 0 Then
bNegative = True
X = -X
End If

’// find the correct exponent
iExp = Int((LOG(X) / LOG(2)) + 1) ’// remember - log of any base is ln(x)/ln(base)

’// MS byte is the exponent + 0x80
iByte1 = iExp + 128

’// Divide input by this exponent to get mantissa
fMantissa = X / 2 ^ iExp

’// Scale it up
fMantissa = fMantissa / 2 ^ -24

’// Split the mantissa into 3 bytes
iByte2 = fMantissa \ 2 ^ 16
iByte3 = (fMantissa - (iByte2 * 2 ^ 16)) \ 2 ^ 8
iByte4 = fMantissa - (iByte2 * 2 ^ 16) - (iByte3 * 2 ^ 8)

’// subtract the sign bit if number is positive
If False = bNegative Then iByte2 = iByte2 And &H7F

Xemics_Dec2Storage = HexByte(iByte1) & HexByte(iByte2) & HexByte(iByte3) & HexByte(iByte4)
End Function

Xemics Floating Point4 SLVA148A–October 2003–Revised September 2004

www.ti.com

A.2 Function HexByte(vDecimalByte) As String

A.3 Function Xemics_Storage2Dec(vMSByte, vMidHiByte, vMidLoByte, vLSByte) As Double

Function HexByte(vDecimalByte) As String

Dim s As String

s = Hex$(vDecimalByte)
If Len(s) = 1 Then s = "0" & s
HexByte = s

End Function

Dim bIsPositive As Boolean
Dim fExponent As Double
Dim fResult As Double

’// Get the sign, its in the 0x00 80 00 00 bit
If (vMidHiByte And 128) = 0 Then bIsPositive = True

’// Get the exponent, it's 2^(MSbyte - 0x80)
fExponent = 2 ^ (vMSByte - 128)

’// Or in 0x80 to the MidHiByte
vMidHiByte = vMidHiByte Or 128

’// get value out of midhi byte
fResult = (vMidHiByte) * 2 ^ 16

’// add in midlow byte
fResult = fResult + (vMidLoByte * 2 ^ 8)

’// add in LS byte
fResult = fResult + vLSByte

’// multiply by 2^-24 to get the actual fraction
fResult = fResult * 2 ^ -24

’// multiply fraction by the ‘exponent’ part
fResult = fResult * fExponent

’// Make negative if necessary
If False = bIsPositive Then fResult = -fResult

Xemics_Storage2Dec = fResult

End Function

Xemics Floating PointSLVA148A–October 2003–Revised September 2004 5

www.ti.com

Appendix B Writing and Reading Data Flash

B.1 Writing to Data Flash With Command 0x50

B.2 Reading from Data Flash With Commands 0x51 and 0x52

B.3 Reading/Writing Data Flash With the SMB Block Protocol

B.4 For the bq2083 and bq2085

Writing to Data Flash With Command 0x50

There are two methods to write and read flash. The simplest method uses commands 0x50, 0x51 and 0x52 as
described below. This covers the complete range of the data flash for the bq2083 and bq2085. However, the
bq2084 contains many data flash locations outside of this range (above address 0xff). The preferred technique,
for both types of devices is to read and write entire blocks. This is generally faster if there are several locations to
read and/or write. This technique also allows full programming of the bq2084 data flash constants.

The user may use Command 0x50 to write individual bytes up through 0xff only. The first parameter is the
data byte, the second is the address.

For example, writing a 16-bit integer requires two writes:
lError = WriteSMBusWord(&H50, yDataMS, yAddress)
lError = WriteSMBusWord(&H50, yDataLS, yAddress + 1)

The user may use Command 0x51 to set the address (up to 0xff only) of the flash byte to read. Then use
Command 0x52 to read the byte. When setting the address, the first byte is a dummy. For example, to
read an integer:

‘set flash address for ms data byte
lError = WriteSMBusWord(&H51, yDummy, yAddress)

'read ms byte
lError = ReadSMBusWord(&H52, yDummy, yDataMS)

'set flash address for ls data byte
lError = WriteSMBusWord(&H51, yDummy, yAddress + 1)

'read ls byte
lError = ReadSMBusWord(&H52, yDummy, yDataLS)

lDataWord = (256 * CLng(yDataMS)) + yDataLS

The flash data can be read or written with the following read/write page commands which use the SMB
Block protocol. In order to write, however, the entire block must first be read, then edited and written back.

0x58 64 bytes Reads/Writes data flash locations 0x0000-0x003f
0x59 64 bytes Reads/Writes data flash locations 0x0040-0x007f
0x5a 64 bytes Reads/Writes data flash locations 0x0080-0x00bf
0x5b 42 bytes Reads/Writes data flash locations 0x00c0-0x00e9

Writing and Reading Data Flash6 SLVA148A–October 2003–Revised September 2004

www.ti.com

B.5 For the bq2084

For the bq2084

Or use:

0x60 16 bytes Reads/Writes data flash locations 0x0000-0x000f
0x61 16 bytes Reads/Writes data flash locations 0x0010-0x001f
0x62 16 bytes Reads/Writes data flash locations 0x0020-0x002f
0x63 16 bytes Reads/Writes data flash locations 0x0030-0x003f
0x64 16 bytes Reads/Writes data flash locations 0x0040-0x004f
0x65 16 bytes Reads/Writes data flash locations 0x0050-0x005f
0x66 16 bytes Reads/Writes data flash locations 0x0060-0x006f
0x67 16 bytes Reads/Writes data flash locations 0x0070-0x007f
0x68 16 bytes Reads/Writes data flash locations 0x0080-0x008f
0x69 16 bytes Reads/Writes data flash locations 0x0090-0x009f
0x6a 16 bytes Reads/Writes data flash locations 0x00a0-0x00af
0x6b 16 bytes Reads/Writes data flash locations 0x00b0-0x00bf
0x6c 16 bytes Reads/Writes data flash locations 0x00c0-0x00cf
0x6d 16 bytes Reads/Writes data flash locations 0x00d0-0x00df
0x6e 10 bytes Reads/Writes data flash locations 0x00e0-0x00e9

For the bq2084

0x58 64 bytes Reads/Writes data flash locations 0x0000-0x003f
0x59 64 bytes Reads/Writes data flash locations 0x0040-0x007f
0x5a 64 bytes Reads/Writes data flash locations 0x0080-0x00bf
0x5b 64 bytes Reads/Writes data flash locations 0x00c0-0x00ff
0x5c 52 bytes Reads/Writes data flash locations 0x0100-0x133

Or use:

0x60 16 bytes Reads/Writes data flash locations 0x0000-0x000f
0x61 16 bytes Reads/Writes data flash locations 0x0010-0x001f
0x62 16 bytes Reads/Writes data flash locations 0x0020-0x002f
0x63 16 bytes Reads/Writes data flash locations 0x0030-0x003f
0x64 16 bytes Reads/Writes data flash locations 0x0040-0x004f
0x65 16 bytes Reads/Writes data flash locations 0x0050-0x005f
0x66 16 bytes Reads/Writes data flash locations 0x0060-0x006f
0x67 16 bytes Reads/Writes data flash locations 0x0070-0x007f
0x68 16 bytes Reads/Writes data flash locations 0x0080-0x008f
0x69 16 bytes Reads/Writes data flash locations 0x0090-0x009f
0x6a 16 bytes Reads/Writes data flash locations 0x00a0-0x00af
0x6b 16 bytes Reads/Writes data flash locations 0x00b0-0x00bf
0x6c 16 bytes Reads/Writes data flash locations 0x00c0-0x00cf
0x6d 16 bytes Reads/Writes data flash locations 0x00d0-0x00df
0x6e 16 bytes Reads/Writes data flash locations 0x00e0-0x00ef
0x6f 16 bytes Reads/Writes data flash locations 0x00f0-0x00ff
0x70 16 bytes Reads/Writes data flash locations 0x0100-0x10f
0x71 16 bytes Reads/Writes data flash locations 0x0110-0x011f
0x72 16 bytes Reads/Writes data flash locations 0x0120-0x012f
0x73 4 bytes Reads/Writes data flash locations 0x0130-0x133

Writing and Reading Data FlashSLVA148A–October 2003–Revised September 2004 7

www.ti.com

B.6 Some Example VB Code

Some Example VB Code

In the function below, it is demonstrated how to write a word to flash using the 16 byte SMB block
commands above. ReadSMBusByteArray() and WriteSMBusByte Array are low level communication
functions that implement the SMBus block commands.

g_fWRITE_DELAY is a delay value of 0.12 seconds to insure that the block write has completed.

Function WriteFlashWord(iAddress As Integer, yDataMS As Byte, yDataLS As Byte) As Long
Dim lerror As Long
Dim yDtaRow(16) As Byte
Dim yNextDtaRow(16) As Byte
Dim bWrapAround As Boolean
Dim iLen As Integer
Dim iLenNext As Integer
iLen = 16
iLenNext = 16

'//Is this a wrap-around write?
If (iAddress Mod 16) = 15 Then bWrapAround = True

'//Read the data flash row
lerror = ReadSMBusByteArray(&h60 + (iAddress \ 16), yDtaRow(), iLen)

'//Read the following row if needed
If bWrapAround Then
lerror = ReadSMBusByteArray(&h60 + (iAddress \ 16) + 1, yNextDtaRow(), iLenNext)
End If

'//Modify elements in first data row
yDtaRow(iAddress Mod 16) = yDataMS

If (False = bWrapAround) Then
yDtaRow((iAddress Mod 16) + 1) = yDataLS
Else
yNextDtaRow(0) = yDataLS
End If

'//Write the row(s) back
lerror = WriteSMBusByteArray(&h60 + (iAddress \ 16), yDtaRow(), iLen)
If (True = bWrapAround) Then
‘
// wait for block write to finish
DoDelay g_fWRITE_DELAY
lerror = WriteSMBusByteArray(&h60 + (iAddress \ 16) + 1, yNextDtaRow(), iLenNext)

Else
'//wait for block write to finish
DoDelay g_fWRITE_DELAY
End If

WriteFlashWord = lerror

End Function

Writing and Reading Data Flash8 SLVA148A–October 2003–Revised September 2004

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Calibration Constants in Data Flash
	3 Initial Current/Voltage Offset Calibration
	4 Voltage Gain Calibration
	5 Temperature Calibration
	6 Current Gain Calibration
	Appendix A Xemics Floating Point
	A.1 Function Xemics_Dec2Storage(ByVal X As Double) As String
	A.2 Function HexByte(vDecimalByte) As String
	A.3 Function Xemics_Storage2Dec(vMSByte, vMidHiByte, vMidLoByte, vLSByte) As Double
	Appendix B  Writing and Reading Data Flash
	B.1 Writing to Data Flash With Command 0x50
	B.2 Reading from Data Flash With Commands 0x51 and 0x52
	B.3 Reading/Writing Data Flash With the SMB Block Protocol
	B.4 For the bq2083 and bq2085
	B.5 For the bq2084
	B.6 Some Example VB Code

