

TPS659113 Centaurus User Guide

This user's guide can be used as a reference for integrating the TPS659113 power-management integrated circuit (PMIC) into a system using the TI processors DM812x/813x/814x, AM387x, C6A814x, TNETV813x/814x, DRA64x/65x, and TDA1Mx.

Contents

1	Introduction	1
2	Platform Connection	2
3	Power-Up Sequencing	4
4	Getting Started With the TPS659113	8
	List of Figures	
1	Processor Connection With TPS659113	2
2	Example Power Solution With TPS659113	3
3	Power-Up Sequence Timing Diagram	5
	List of Tables	
1	EEPROM Power-Up Sequence of TPS659113	2
2	EEPROM Configuration for TPS659113	Ę

1 Introduction

This user's guide can be used as a reference for connectivity between the TPS659113 PMIC and the TI processors DM812x/813x/814x, AM387x,C6A814x,TNETV813x/814x, DRA64x/65x, and TDA1Mx. The TPS659113 EEPROM bit configuration and power-up sequence is also described. This user's guide does not provide details about the power resources or the functionality of the device. For such information, refer to the full specification document, *TPS659110*, *TPS659112*, *TPS659113 Integrated Power Management Unit Top Specification*.

Platform Connection www.ti.com

2 Platform Connection

Figure 1 shows the detailed connections between the processor and the TPS659113. Figure 2 shows a high-level view of an example multicell system power solution proposal using the TPS659113 for the processor.

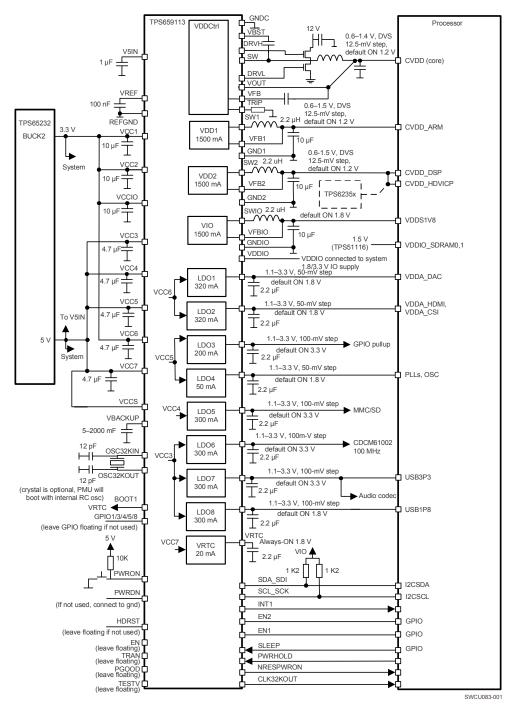


Figure 1. Processor Connection With TPS659113

www.ti.com Platform Connection

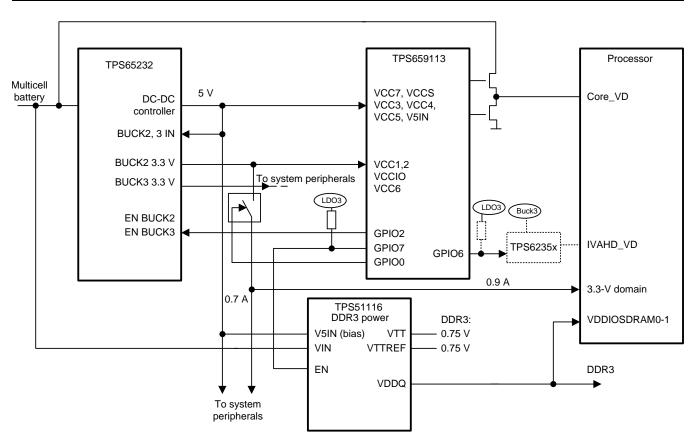


Figure 2. Example Power Solution With TPS659113

Notes for the connection diagram and operation defined by the TPS659113 EEPROM:

- The TPS659113 transitions from NO SUPPLY to OFF to ACTIVE states when a supply is inserted into VCC7 (VMBHI_IT_MSK = 0 in EEPROM).
- The VMBCH threshold of the TPS659113 is programmed as 3.1 V so VCCS must be greater than 3.1 V for an OFF-to-ACTIVE transition
- The voltage level of the main control signals (I2C, INT2, NRESPWRON, EN1, and EN2) is defined by the VDDIO connection.
- When EN1/EN2 is used as a dedicated I²C for voltage scaling, pullup resistors similar to main I²C are needed.
- Depending on the application and consequently the load current and level needed for power optimization, VDD2 of the TPS659113 can be used as supply for HDVICP or an optional discrete DC-DC can be added to system. The TPS659113 power-up sequence supports an enable signal, GPIO6, for the discrete device.
- The PWRHOLD pin is programmed as a GPI in the TPS659113.
- The internal RC oscillator is used for boot. After boot, software can switch to using a crystal oscillator if it has been connected.
- If backup battery is not used, VBACKUP should be connected to VCC7.
- GPIO0 is a push-pull output at the VCC7 level.
- GPIO2, GPIO6, and GPIO7 are open drain-outputs and need an external pullup. These GPIOs can actively pull down after 4 ms from the time the VCC7 supply is valid.

Power-Up Sequencing www.ti.com

3 Power-Up Sequencing

3.1 Power-Up Sequence for Processor

The DM814x requirement for the power-up sequence is:

1.8 V \rightarrow memory 1.5 V/1.8 V \rightarrow 3.3 V \rightarrow 1.2 V

NOTE: The power-up sequence definition was optimized in March 2011. Some early samples of the TPS659113 have a different power-up sequence.

NOTE: Due to updated sequencing requirement from processor

When using the TPS659113:

- Connect GPIO 0 to the 3.3V power supply enable
- · Connect GPIO 7 to the DDR power supply enable

When using the TPS6591133 which has a new power sequence:

- Connect GPIO 0 to the DDR power supply enable
- Connect GPIO 7 to the 3.3V power supply enable

3.2 TPS659113 EEPROM Power-Up Sequence

When the BOOT pin is set high, the TPS659113 powers up with the sequence required by the processor, see Table 1. The correct power-up sequence is configured in the EEPROM (factory programmable only).

Apart from the main power rails required for the processor, several LDO rails are also powered up at initial power up to support system peripherals.

Table 1 lists the power-up sequence for TPS659113.

Figure 3 shows the power-up sequence timing.

Table 1. EEPROM Power-Up Sequence of TPS659113

TPS659113 Power Rail	TPS659113 Sequence Number
Supply insertion to VCC7, VCCS (1)	-
VIO	2
LDO8	3
LDO2, LDO4	4
LDO1	5
LDO3, LDO6	6
GPIO2, GPIO7	7
LDO5, LDO7	8
GPIO0	9
VDDCtrl	10
VDD1, CLK32KOUT	11
VDD2, GPIO6	12
NRESPWRON	14

⁽¹⁾ Supply insertion is the start on event.

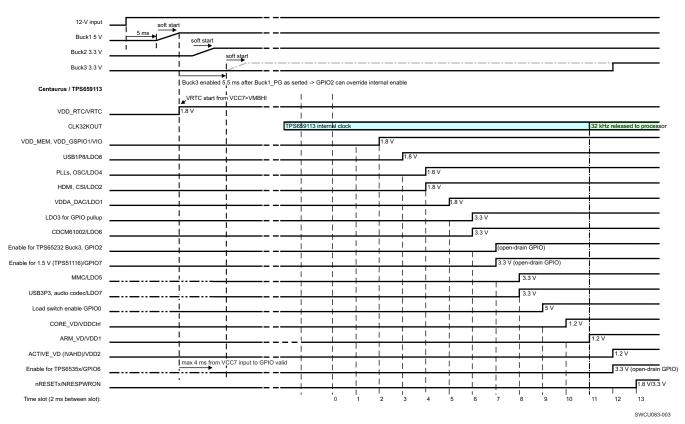


Figure 3. Power-Up Sequence Timing Diagram

Table 2 lists the EEPROM values for the TPS659113.

Table 2. EEPROM Configuration for TPS659113

Register	Bit	Description	Option Selected
VDD1_OP_REG/ VDD1_SR_REG	SEL	VDD1 voltage level selection for boot.	1.2 V
VDD1_REG	VGAIN_SEL	VDD1 gain selection, x1 or x2	x1
EEPROM		VDD1 time slot selection	11
DCDCCTRL_REG	VDD1_PSKIP	VDD1 pulse skip mode enable	Skip enabled
VDD2_OP_REG/ VDD2_SR_REG	SEL	VDD2 voltage level selection for boot	1.2 V
VDD2_REG	VGAIN_SEL	VDD2 gain selection, x1 or x3	x1
EEPROM		VDD2 time slot selection	12
DCDCCTRL_REG	VDD2_PSKIP	VDD2 pulse skip mode enable	Skip enabled
VIO_REG	SEL[3:9]	VIO voltage selection	1.8 V
EEPROM		VIO time slot selection	2
DCDCCTRL_REG	VIO_PSKIP	VIO pulse skip mode enable	Skip enabled
VDDCtrl_OP_REG/ VDDCtrl_SR_REG	SEL	VDDCtrl voltage level selection for boot	1.2 V
EEPROM		VDDCtrl time slot	10
LDO1_REG	SEL[7:2]	LDO1 voltage selection	1.8 V
EEPROM		LDO1 time slot	5
LDO2_REG	SEL[7:2]	LDO2 voltage selection	1.8 V
EEPROM		LDO2 time slot	4
LDO3_REG	SEL[6:2]	LDO3 voltage selection	3.3 V

Power-Up Sequencing www.ti.com

Table 2. EEPROM Configuration for TPS659113 (continued)

Register	Bit	Description	Option Selected
EEPROM		LDO3 time slot	6
LDO4_REG	SEL[7:2]	LDO4 voltage selection	1.8 V
EEPROM		LDO4 time slot	4
LDO5_REG	SEL[6:2]	LDO5 voltage selection	3.3 V
EEPROM		LDO5 time slot	8
LDO6_REG	SEL[6:2]	LDO6 voltage selection	3.3 V
EEPROM		LDO6 time slot	6
LDO7_REG	SEL[6:2]	LDO7 voltage selection	3.3 V
EEPROM		LDO7 time slot	8
LDO8_REG	SEL[6:2]	LDO8 voltage selection	1.8 V
EEPROM		LDO8 time slot	3
CLK32KOUT pin		CLK32KOUT time slot	11
NRESPWRON, NRESPWRON2 pin		NRESPWRON time slot	14
GPIO0 pin		GPIO0 time slot	9
GPIO2 pin		GPIO2 time slot	7
GPIO6 pin		GPIO6 time slot	12
GPIO7 pin		GPIO7 time slot	7
VRTC_REG	VRTC_OFFMASK	0 = VRTC LDO will be in low-power mode during OFF state. 1 = VRC LDO will be in full-power mode during OFF state.	Low-power mode
DEVCTRL_REG	CK32K_CTRL	0 = Clock source is crystal/external clock. 1 = Clock source is internal RC oscillator.	RC
DEVCTRL_REG	DEV_ON	0 = No impact 1 = Will maintain device on, in ACTIVE or SLEEP state	0
DEVCTRL2_REG	TSLOT_LENGTH	Boot sequence time slot duration: 0 = 0.5 ms 1 = 2 ms	2 ms
DEVCTRL2_REG	PWON_LP_OFF	0 = Turn-off after PWRON long press not allowed. 1 = Turn-off after PWRON long press.	1
DEVCTRL2_REG	PWON_LP_RST	0 = No impact 1 = Reset digital core when device is OFF.	0
DEVCTRL2_REG	IT_POL	0 = INT1 signal will be active low. 1 = INT1 signal will be active high.	Active low
INT_MSK_REG	VMBHI_IT_MSK	0 = Device automatically switches on at NO SUPPLY-to-OFF or BACKUP-to-OFF transition. 1 = Start-up is reason required before switch-on.	0 = Automatic switch- on from supply insertion
INT_MSK3_REG	GPIO5_F_IT_MSK	0 = GPIO5 falling edge detection interrupt not masked. 1 = GPIO5 falling edge detection interrupt masked.	Masked
INT_MSK3_REG	GPIO5_R_IT_MSK	0 = GPIO5 rising edge detection interrupt not masked. 1 = GPIO5 rising edge detection interrupt masked.	Masked
INT_MSK3_REG	GPIO4_F_IT_MSK	0 = GPIO4 falling edge detection interrupt not masked. 1 = GPIO4 falling edge detection interrupt masked.	Masked

www.ti.com Power-Up Sequencing

Table 2. EEPROM Configuration for TPS659113 (continued)

Register	Bit	Description	Option Selected
INT_MSK3_REG	GPIO4_R_IT_MSK	0 = GPIO4 rising edge detection interrupt not masked. 1 = GPIO4 rising edge detection interrupt masked.	Masked
GPIO0_REG	GPIO_ODEN	0 = GPIO0 configured as push-pull output. 1 = GPIO0 configured as open-drain output.	Push-pull
WATCHDOG_REG	WATCHDOG_EN	0 = Watchdog disabled 1 = Watchdog enabled, periodic operation with 100 s	Disabled
VMBCH_REG	VMBBUF_BYPASS	0 = Enable input buffer for external resistive divider. 1 = In single-cell system, disable buffer for lower power consumption.	Enable buffer
VMBCH_REG	VMBCH_SEL[5:1]	Select threshold for boot gating comparator COMP1, 2.5–3.5 V.	3.1 V
EEPROM	AUTODEV_ON	0 = PWRHOLD pin is used as PWRHOLD feature. 1 = PWRHOLD pin is GPI. After power-on, DEV_ON is set high internally, no processor action needed to maintain supplies.	PWRHOLD pin is GPI
EEPROM	PWRDN_POL	0 = PWRDN signal is active low. 1 = PWRDN signal is active high.	Active high

4 Getting Started With the TPS659113

4.1 First Initialization

4.1.1 Power-Down Sequence Configuration

To meet processor power-down sequence requirements, select the reverse sequence by setting the PWR_OFF_SEQ bit to 1 in the DEVCTRL_REG register.

4.1.2 I/O Polarity/Muxing Configuration

Voltage scaling for VDD1, VDD2, and VDDCtrl can be done either through the main I²C interface or through dedicated interface EN1/EN2. Refer to the processor documentation for information on which one is supported. To enable the dedicated voltage scaling interface, set the SR_CTL_I2C_SEL bit to 0 in DEVCTRL_REG register.

If sleep mode is supported, program the SLEEPSIG_POL bit in the DEVCTRL2_REG register according to the GPIO from the processor. This can be set to active-low or active-high for SLEEP transitions. Software can configure specific power resources to enter the LOW-POWER or OFF state in sleep mode.

In the DEVCTRL_REG register, set the DEV_SLP bit to 1 to allow the SLEEP transition when requested through the SLEEP pin.

Update the GPIOx configuration (GPIOx_REG) based on your needs.

4.1.3 Define Wake Up/Interrupt Event (SLEEP or OFF)

Select the appropriate bits in the INT_MSK_REG, INT_MSK2_REG, and INT_MSK3_REG registers to enable an interrupt to the processor on the INT1 line.

4.1.4 Backup Battery Configuration

If the system has a backup battery, set the BBCHEN bit to 1 in the BBCH_REG register to enable backup battery charging. The maximum voltage can be set based on backup battery specifications by using the BBSEL bits in the BBCH_REG register.

4.1.5 DC-DC Maximum Current Capability

In VIO_REG, VDD1_REG, and VDD2_REG registers, set ILMAX according to required maximum current.

4.1.6 Sleep Platform Configuration

Configure the state of the LDOs when the SLEEP signal is used. By default, in sleep mode all resources maintain their output voltage and load capability but response to transients (load change) is reduced.

Resources that must provide full load capability must be set in the SLEEP_KEEP_LDO_ON_REG and SLEEP_KEEP_RES_ON_REG registers.

Resources that can be set off in the SLEEP state to optimize power consumption must be set in the SLEEP_SET_LDO_OFF_REG and SLEEP_SET_RES_OFF_REG registers.

4.2 Event Management Through Interrupts

4.2.1 INT STS REG.VMBHI IT

INT_STS_REG.VMBHI_IT indicates that a supply has been connected (PMIC leaving the BACKUP or NO SUPPLY state) and the system must be initialized (see Section 4.1, First Initialization).

4.2.2 INT STS REG.PWRON IT

INT_STS_REG.PWRON_IT is triggered by pressing the PWRON button. If the device is in the OFF or SLEEP state, then this acts as a wake-up event and resources are reinitialized.

4.2.3 INT STS REG.PWRON LP IT

INT_STS_REG.PWRON_LP_IT is the PWRON long-press interrupt. This interrupt is generated when the PWRON button is pressed for 4 seconds. The application processor can make a decision to acknowledge the interrupt. If this interrupt is not acknowledged in the next 1 second, the device interprets this as a power-down event.

4.2.4 INT STS REG.HOTDIE IT

INT_STS_REG.HOTDIE_IT indicates that the temperature of the die is reaching the limit. The software must take action to decrease the power consumption before automatic shutdown.

4.2.5 INT_STS_REG.PWRHOLD_R/F_IT

INT_STS_REG.PWRHOLD_R/F_IT indicates a GPI interrupt event.

4.2.6 INT STS REG.RTC ALARM IT

INT_STS_REG.RTC_ALARM_IT is triggered when the RTC alarm set time is reached.

4.2.7 INT_STS2(3)_REG.GPIO_R/F_IT

INT_STS2_REG.GPIO_R/F_IT indicates a GPIO interrupt event. It can be used to wake up the device from the SLEEP state. This can be an interrupt coming from any peripheral device or alike.

4.2.8 INT_STS_REG3.PWRDN_IT

INT_STS_REG.PWRDN_IT is triggered when PWRDN reset is detected.

4.2.9 INT_STS_REG3.VMBCH2_H/L_IT

INT_STS_REG.VMBCH2_H/L_IT is triggered when comparator2 input (VCCS) is above or below the threshold.

4.2.10 INT STS REG3.WATCHDG IT

INT_STS_REG.WATCHDOG_IT is triggered from the watchdog (periodic or interrupt mode).

Revision History www.ti.com

Revision History

Changes from Original (August 2011) to A Revision			е
•	Changed GPIO0 and EN connections in Figure 2		3
N	OTE: Page numbers for previous revisions may differ from page numbers in the current version.		_

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive amplifier.ti.com Communications and Telecom www.ti.com/communications **Amplifiers Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>