******************************************************************************** * SN74AHC04.cir * 2.0 * 2019-11-14 00:00:00 * Texas Instruments Incorporated. * Standard Logic, SLHR * 12500 TI Blvd * Dallas, TX -75243 * * Revision History: * Rev 2.0: 01/01/2019 * - Model generated from datasheet values * - Built using generic logic gate behavioral pspice model V2 * - Built using an automated model which generalizes parts under same family * - Performance is expected typical behavior at 25C * - Written for and tested with Tina-TI Version 9.3.100.244 SF-TI * - Accurate power consumption with dyanmic as well as static Icc * ******************************************************************************** *[Disclaimer] * This model is designed as an aid for customers of Texas Instruments. * TI and its licensors and suppliers make no warranties, either expressed * or implied, with respect to this model, including the warranties of * merchantability or fitness for a particular purpose. The model is * provided solely on an "as is" basis. The entire risk as to its quality * and performance is with the customer. * *[Copyright] *(C) Copyright 2019 Texas Instruments Incorporated.All rights reserved. * * ******************************************************************************** * SN74AHC04 ******************************************************************************** .SUBCKT SN74AHC1G04 Y A VCC AGND XU1 Y A VCC VCC AGND LOGIC_GATE_2PIN_OD_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 .ENDS .SUBCKT LOGIC_GATE_2PIN_OD_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 OUT A B VCC GND .PARAM VCC_ABS_MAX = 7 .PARAM VCC_MAX = 5.5 .PARAM RA = 880000000 .PARAM RB = 880000000 .PARAM CA = 1e-11 .PARAM CB = 1e-11 .PARAM ROEZ = 20000000 .PARAM COEZ = 3e-12 RA A GND {RA} RB B GND {RB} CA A GND {CA} CB B GND {CB} XUA NA A VCC GND LOGIC_INPUT_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 XUB NB B VCC GND LOGIC_INPUT_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 XUG NA NB NOUTG VCC GND LOGIC_FUNCTION_2_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 XOUTPD NOUTG NOUTTPD VCC GND TPD_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 XUOUT NOUTTPD NOUT_INT VCC GND LOGIC_PP_OUTPUT_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 XICC VCC GND NVIOUT LOGIC_ICC_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 SICC VCC GND VCC GND SW1 H1 NVIOUT GND VIOUT 1 VIOUT NOUT_INT OUTsw 0 SIOFF OUTsw OUT VCC GND SW2 DA2 GND A D1 DB2 GND B D1 DO2 GND OUT D1 RDA1 NA1 GND 1e6 SDA1 NA1 A VCC GND SW2 RDB1 NB1 GND 1e6 SDB1 NB1 B VCC GND SW2 RDO1 NO1 GND 1e6 SDO1 NO1 OUT VCC GND SW2 .MODEL SW1 VSWITCH VON = {VCC_ABS_MAX} VOFF = {VCC_MAX} RON = 10 ROFF = 60e6 .MODEL SW2 VSWITCH VON = {0.55} VOFF = {0.45} RON = 10m ROFF = 100e6 .MODEL D1 D .ENDS .SUBCKT LOGIC_INPUT_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 OUT IN VCC VEE .PARAM STANDARD_INPUT_SELECT = 1 .PARAM SCHMITT_TRIGGER_INPUT_SELECT = 0 ESTD_THR VSTD_THR VEE TABLE {V(VCC,VEE)} = +(1,0.5) +(1.8,0.9) +(2.5,1.25) +(3.3,1.65) +(5,2.5) +(6,3) ETRP_P VTRP_P VEE TABLE {V(VCC,VEE)} = +(4.5,1.5) +(5.5,1.6) ETRP_N VTRP_N VEE TABLE {V(VCC,VEE)} = +(4.5,0.7) +(5.5,0.8) EHYST VHYST VEE TABLE {V(VCC,VEE)} = +(4.5,0.8) +(5.5,0.8) ETRUE NTRUE VEE VALUE = {V(VCC,VEE)} EFALSE NFALSE VEE VALUE = {0} EBETA BETA VEE VALUE = {V(VHYST,VEE)/(V(NTRUE,VEE) - V(NFALSE,VEE) + V(VHYST,VEE))} EFB NFB VEE VALUE = {(1 - V(BETA,VEE))*V(IN,VEE) + V(BETA,VEE)*V(CURR_OUT,VEE)} EREF NREF VEE VALUE = {0.5*(1 - V(BETA,VEE))*(V(VTRP_P,VEE) + V(VTRP_N,VEE)) + + 0.5*V(BETA,VEE)*(V(NTRUE,VEE) + V(NFALSE,VEE))} EDIFF NDIFF VEE VALUE = {V(NFB,NREF)} ESWITCH VSWITCH VEE VALUE = {0.5*(-SGN(V(NDIFF,VEE)) + ABS(SGN(V(NDIFF,VEE))))} ESWITCH1 VSWITCH1 VEE VALUE = {0.5*(SGN(V(NDIFF,VEE)) + ABS(SGN(V(NDIFF,VEE))))} GCOMP VEE CURR_OUT VALUE = {SCHMITT_TRIGGER_INPUT_SELECT*0.5*V(VCC,VEE)*(SGN(V(NDIFF,VEE)) + ABS(SGN(V(NDIFF,VEE))))} GSTD VEE CURR_OUT VALUE = {STANDARD_INPUT_SELECT*0.5*V(VCC,VEE)*(SGN(V(IN,VSTD_THR)) + ABS(SGN(V(IN,VSTD_THR))))} ROUT CURR_OUT VEE 1 EMID MID VEE VALUE = {0.5*(V(VCC,VEE) + V(VEE))} EARG NARG VEE VALUE = {V(CURR_OUT,VEE) - V(MID,VEE)} EOUT OUT VEE VALUE = {0.5*(SGN(V(NARG,VEE)) + ABS(SGN(V(NARG,VEE) ) ) )} .PARAM MAXICC = .0009 .PARAM VT = .7 .PARAM VCC_MIN = 2 EV_VT1 VTN VEE VALUE = { VT } EV_VT2 VTP VEE VALUE = { V(VCC,VEE) - VT } ETEST TEST VEE VALUE = {.9*V(VCC,VEE)} EVTHDIFF VTH_DIFF VEE VALUE = {V(IN,VSTD_THR)} EVTHPDIFF VTHP_DIFF VEE VALUE = {V(IN,VTRP_P)} EVTHNDIFF VTHN_DIFF VEE VALUE = {V(IN,VTRP_N)} EVTNDIFF VTN_DIFF VEE VALUE = { V(IN,VTN) } EVTPDIFF VTP_DIFF VEE VALUE = { V(IN,VTP) } GICCVA VCC VEE VALUE = { (-ABS(( (1+SGN(V(VTN_DIFF,VEE)) ) )/2 -1) * + 2*MAXICC*((V(IN,VEE)-VT)/V(VCC,VEE))^2)*(1 + SGN(V(VCC,VEE) - VCC_MIN))*V(VSWITCH,VEE)} GICCVB VCC VEE VALUE = { (ABS(( (1+SGN(V(VTHP_DIFF,VEE)) ) )/2 -1) * + 2*MAXICC*((V(IN,VEE)-VT)/V(VCC,VEE))^2)*(1 + SGN(V(VCC,VEE) - VCC_MIN))*V(VSWITCH,VEE)} GICCVC VCC VEE VALUE = { ( ABS( (1+SGN(V(VTHN_DIFF,VEE)) ) )/2 * + 2*MAXICC*((V(IN,VEE)-(V(VCC,VEE)-VT))/V(VCC,VEE))^2)*(1 + SGN(V(VCC,VEE) - VCC_MIN))*V(VSWITCH1,VEE)} GICCVD VCC VEE VALUE = { (-ABS( (1+SGN(V(VTP_DIFF,VEE)) ) )/2 * + 2*MAXICC*((V(IN,VEE)-(V(VCC,VEE)-VT))/V(VCC,VEE))^2)*(1 + SGN(V(VCC,VEE) - VCC_MIN))*V(VSWITCH1,VEE)} .ENDS .SUBCKT LOGIC_FUNCTION_2_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 A B OUT VCC VEE .PARAM AND = 0 .PARAM NAND = 1 .PARAM OR = 0 .PARAM NOR = 0 .PARAM XOR = 0 .PARAM XNOR = 0 GAND VEE N1 VALUE = {AND*V(A,VEE)*V(B,VEE)} GNAND VEE N1 VALUE = {NAND*(1 - V(A,VEE)*V(B,VEE))} GOR VEE N1 VALUE = {OR*(MIN(V(A,VEE) + V(B,VEE),1))} GNOR VEE N1 VALUE = {NOR*(1 - MIN(V(A,VEE) + V(B,VEE),1))} GXOR VEE N1 VALUE = {XOR*((1 - V(A,VEE))*V(B,VEE) + V(A,VEE)*(1 - V(B,VEE)))} GXNOR VEE N1 VALUE = {XNOR*(1 - ((1 - V(A,VEE))*V(B,VEE) + V(A,VEE)*(1 - V(B,VEE))))} RN1 N1 VEE 1 EOUT OUT VEE N1 VEE 1 .ENDS .SUBCKT TPD_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 IN OUT VCC VEE .PARAM TPDELAY1 = 1N .PARAM RS = 10K .PARAM CS = {-TPDELAY1/(RS*LOG(0.5))} ETPDNORM NTPDNORM VEE TABLE {V(VCC,VEE)} = +(3.3,5.75) +(5,4) G1 IN N1 VALUE = {V(IN,N1)/(V(NTPDNORM,VEE)*RS)} RZ IN N1 10G C1 N1 VEE {CS} E1 N2 VEE VALUE = {0.5*(1 + SGN(V(N1,VEE) - 0.5))} EOUT OUT VEE N2 VEE 1 .ENDS .SUBCKT LOGIC_PP_OUTPUT_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 IN OUT VCC VEE EROH NROH VEE TABLE {V(VCC,VEE)} = +(2,1200) +(3,63) +(4.5,42) EROL NROL VEE TABLE {V(VCC,VEE)} = +(2,1200) +(3,54) +(4.5,27.75) E1 N1 VEE VALUE = {V(VCC,VEE)*V(IN,VEE)} GOUT N1 OUT VALUE = {V(N1,OUT)*(V(IN,VEE)/V(NROH,VEE) + (1 - V(IN,VEE))/V(NROL,VEE))} .ENDS .SUBCKT LOGIC_ICC_AHC_1i_NAND_PP_CMOS_SN74AHC1G04 VCC VEE VIOUT .PARAM ICC = 1.25e-07 .PARAM VCC_MAX = 5.5 .PARAM VCC_MIN = 2 GICC VCC VEE VALUE = {ICC*0.5*(1 + SGN(V(VCC,VEE) - VCC_MIN))} EGNDF GNDF 0 VALUE = {0.5*(V(VCC) + V(VEE))} GOUTP VCC GNDF VALUE = {V(VIOUT,VEE)*0.5*(SGN(V(VIOUT,VEE)) + ABS(SGN(V(VIOUT,VEE))))} GOUTN GNDF VEE VALUE = {V(VIOUT,VEE)*0.5*(SGN(V(VIOUT,VEE)) + ABS(SGN(V(VIOUT,VEE))))} .ENDS