

WEBENCH[®] Design Report

Design : 4055510/220 TPS62262TDRVRQ1 TPS62262TDRVRQ1 2.7V-3.9V to 1.20V @ 0.35A VinMin = 2.7V VinMax = 3.9V Vout = 1.2V Iout = 0.35A Device = TPS62262TDRVRQ1 Topology = Buck Created = 2/11/16 3:51:28 PM BOM Cost = \$0.00 BOM Count = 4 Total Pd = 0.08W

1. This regulator device is qualified for Automotive applications. All passives and other components selected in this design may not be qualified for Automotive applications. The user is required to verify that all components in the design meet the qualification and safety requirements for their specific application. View WEBENCH(R) Disclaimer.

My Comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cin	ТDК	C5750X7R2A475M Series= X7R	Cap= 4.7 uF ESR= 2.482 mOhm VDC= 100.0 V IRMS= 0.0 A	1	NA	2220 54 mm ²
2.	Cout	ТDК	C4532X7R1E106M Series= X7R	Cap= 10.0 uF ESR= 2.019 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.43	1812 23 mm ²
3.	L1	Coilcraft	LPS6225-222MLB	L= 2.2 µH DCR= 45.0 mOhm	1	NA	LPS6225 64 mm ²
4.	U1	Texas Instruments	TPS62262TDRVRQ1	Switcher	1	\$0.76	S-PWSON-N6 9 mm ²

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	180.0 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	57.0 mA	Current	Output capacitor RMS ripple current
3.	IC Irms	350.0 mA	Current	Calculated current across IC
4.	L Ipp Max	197.0 mA	Current	Inductor Peak to Peak Current calculated Max
5.	L Ipp Min	154.0 mA	Current	Inductor Peak to Peak Current calculated Min
6.	L1 Irms	350.0 mA	Current	Inductor ripple current
7.	BOM Count	4	General	Total Design BOM count
8.	FootPrint	150.0 mm ²	General	Total Foot Print Area of BOM components
9.	Frequency	2.25 MHz	General	Switching frequency
10.	IC Tolerance	6.0 mV	General	IC Feedback Tolerance
11.	Pout	420.0 mW	General	Total output power
12.	Total BOM	\$0.0	General	Total BOM Cost
13.	Cin Vdrop	3.92 V	Op_Point	Calculated voltage across input cap
14.	Cout Vdrop	1.21 V	Op_Point	Calculated voltage across output capacitor
15.	ESR Zero Freq	6.92 MHz	Op_Point	ESR Zero Frequency
16.	IC Vdrop	3.92 V	Op_Point	Calculated voltage across IC
17.	LC Conner Freq	33.932 kHz	Op_Point	LC conner frequency
18.	Vout OP	1.2 V	Op_Point	Operational Output Voltage
19.	Cross Freq	105.644 kHz	Op_point	Bode plot crossover frequency
20.	Duty Cycle	33.8 %	Op_point	Duty cycle
21.	Efficiency	84.119 %	Op_point	Steady state efficiency
22.	Gain Marg	-30.265 dB	Op_point	Bode Plot Gain Margin
23.	IC Tj	109.0 degC	Op_point	IC junction temperature
24.	IOUT_OP	350.0 mA	Op_point	lout operating point
25.	Phase Marg	41.994 deg	Op_point	Bode Plot Phase Margin
26.	VIN_OP	3.9 V	Op_point	Vin operating point
27.	Vout p-p	1.3 mV	Op_point	Peak-to-peak output ripple voltage
28.	Cin Pd	47.0 μW	Power	Input capacitor power dissipation
29.	Cout Pd	7.0 μŴ	Power	Output capacitor power dissipation
30.	IC Pd	78.0 mW	Power	IC power dissipation
31.	M1 Rdson Max	468.0 mOhm	Power	High side FET Rdson max
32.	M1 Rdson Min	383.0 mOhm	Power	High side FET Rdson min
33.	M2 Rdson Max	361.0 mOhm	Power	Low side FET Rdson Max
34.	M2 Rdson Min	240.0 mOhm	Power	Low side FET Rdson Min
35.	Total Pd	78.0 mW	Power	Total Power Dissipation
36.	Vout Tolerance	500.0 m%		Vout Tolerance based on IC Tolerance and voltage divider resistors if
				applicable

Design Inputs

#	Name	Value	Description
1.	lout	350.0 m	Maximum Output Current
2.	VinMax	3.9	Maximum input voltage
3.	VinMin	2.7	Minimum input voltage
4.	Vout	1.2	Output Voltage
5.	base_pn	TPS62262-Q1	Base Product Number
6.	source	DC	Input Source Type
7.	Та	105.0	Ambient temperature

Design Assistance

Copyright © 2016, Texas Instruments Incorporated

2

1. The TPS62262-Q1 is qualified for Automotive applications. All passives and other components selected in this design may not be qualified for Automotive applications. The user is required to verify that all components in the design meet the qualification and safety requirements for their specific application

2. TPS62262-Q1 Product Folder : http://www.ti.com/product/TPS62262%2DQ1 : contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.