

BQ25619 I²C Controlled 1-Cell 1.5-A Battery Charger with 20-mA Termination and 1-A Boost Operation

1 Features

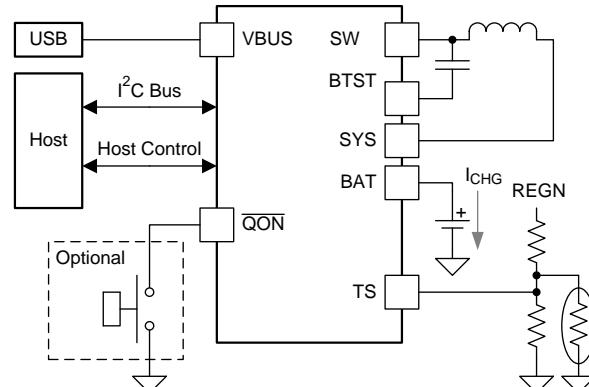
- High-efficiency, 1.5-MHz, synchronous switch-mode buck charger
 - 92% Charge efficiency at 2 A from 5-V input
 - Pulse Frequency Modulation (PFM) mode for light load operations
- Supports USB On-The-Go (OTG)
 - Boost converter with up to 1-A output
 - 92% Boost efficiency at 1-A output
 - Soft-start up to 500- μ F capacitive load
 - PFM Mode for light load operations
- Single Input to support USB input and high voltage adapters
 - Support 3.9-V to 13.5-V input voltage range with 22-V absolute maximum input voltage (VBUS) rating
 - Programmable input current limit (I_{INDPM}) with I²C (100-mA to 3.2-A, 100-mA/step) to support USB 2.0, USB 3.0 standards and high voltage adaptors
 - Maximum power tracking by input voltage limit (V_{INDPM}) up to 5.4 V
 - V_{INDPM} Threshold automatically tracks battery voltage
- Narrow VDC (NVDC) PowerPath management
 - Instant-on works with no battery or deeply discharged battery
 - Ideal diode operation in battery supplement mode
- Flexible I²C configuration and autonomous charging for optimal system performance
- High integration includes all MOSFETs, current sensing and loop compensation
- Low $R_{DS(on)}$ 19.5-m Ω BATFET to minimize the charging loss and extend battery life
 - BATFET Control to support ship mode, wake up and full system reset
- 10- μ A Low battery leakage current with system voltage standby
- 7- μ A Low battery leakage current in ship mode
- High accuracy battery charging profile

- $\pm 0.5\%$ Charge voltage regulation
- $\pm 5\%$ at Charge current regulation
- $\pm 7.5\%$ at Input current regulation
- Remote battery sensing for fast charge
- 20-mA Termination current
- Programmable top-off timer for full battery charging

2 Applications

- Wearable, watches, fitness accessories
- Earphone charging cases

3 Description


The BQ25619 is a highly-integrated 1.5-A switch-mode battery charge management and system PowerPath management device for single cell Li-Ion and Li-polymer battery. The low impedance PowerPath optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life during discharging phase. The I²C serial interface with charging and system settings makes the device a truly flexible solution.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
BQ25619	WQFN (24)	4.00 mm x 4.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Application

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. ADVANCE INFORMATION for pre-production products; subject to change without notice.

Table of Contents

1	Features	1	8.5	Register Maps	30
2	Applications	1	9	Application and Implementation	44
3	Description	1	9.1	Application Information	44
4	Revision History	2	9.2	Typical Application	45
5	Description (continued)	3	10	Power Supply Recommendations	48
6	Pin Configuration and Functions	4	11	Layout	49
7	Specifications	6	11.1	Layout Guidelines	49
	7.1 Absolute Maximum Ratings	6	11.2	Layout Example	49
	7.2 ESD Ratings	6	12	Device and Documentation Support	51
	7.3 Recommended Operating Conditions	6	12.1	Device Support	51
	7.4 Thermal Information	7	12.2	Documentation Support	51
	7.5 Electrical Characteristics	7	12.3	Receiving Notification of Documentation Updates	51
	7.6 Timing Requirements	11	12.4	Community Resources	51
8	Detailed Description	13	12.5	Trademarks	51
	8.1 Overview	13	12.6	Electrostatic Discharge Caution	51
	8.2 Functional Block Diagram	14	12.7	Glossary	51
	8.3 Feature Description	15	13	Mechanical, Packaging, and Orderable	
	8.4 Device Functional Modes	28	Information		52

4 Revision History

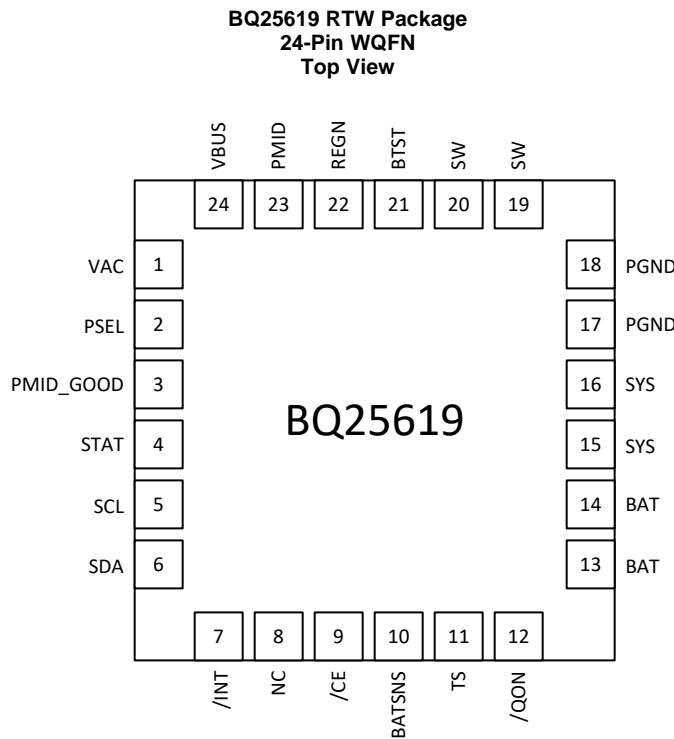
DATE	REVISION	NOTES
June 2019	*	Advance Information Initial release.

5 Description (continued)

The BQ25619 is a highly-integrated 1.5-A switch-mode battery charge management and system PowerPath management device for single cell Li-Ion and Li-polymer battery. It features fast charging with high input voltage support for a wide range of applications including wearables, earphone charging case. Its low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life during discharging phase. Its input voltage and current regulation, and battery remote sensing deliver maximum charging power to battery. The solution is highly integrated with input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4) between system and battery. It also integrates the bootstrap diode for the high-side gate drive for simplified system design. The I²C serial interface with charging and system settings makes the device a truly flexible solution.

The device supports a wide range of input sources, including standard USB host port, USB charging port, and USB compliant high voltage adapter. It is compliant with USB 2.0 and USB 3.0 power spec with input current and voltage regulation. The device takes the result from detection circuit in the system, such as USB PHY device. The device also meets USB On-the-Go (OTG) operation power rating specification by supplying 5 V with current limit up to 1 A.

The PowerPath management regulates the system slightly above battery voltage but does not drop below 3.5-V minimum system voltage (programmable). With this feature, the system maintains operation even when the battery is completely depleted or removed. When the input current limit or voltage limit is reached, the PowerPath management automatically reduces the charge current. As the system load continues to increase, the battery start to discharge the battery until the system power requirement is met. This supplement mode prevents overloading the input source.


The device initiates and completes a charging cycle without software control. It senses the battery voltage and charges the battery in three phases: pre-conditioning, constant current and constant voltage. At the end of the charging cycle, the charger automatically terminates when the charge current is below a preset limit and the battery voltage is higher than recharge threshold. If the fully charged battery falls below the recharge threshold, the charger automatically starts another charging cycle.

The charger provides various safety features for battery charging and system operations, including battery negative temperature coefficient thermistor monitoring, charging safety timer and overvoltage and over-current protections. The thermal regulation reduces charge current when the junction temperature exceeds 110°C. The status register reports the charging status and any fault conditions. Other safety features include battery temperature sensing for charge and boost mode, thermal regulation and thermal shutdown and input UVLO and over-voltage protection. With I²C, the VBUS_GD bit indicates if a good power source is present, and the INT output immediately notifies host when fault occurs.

The device also provides QON pin for BATFET enable and reset control to exit low power ship mode or full system reset function.

The device is available in 24-pin, 4 mm × 4 mm × 0.75 mm thin WQFN package.

6 Pin Configuration and Functions

Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.		
BAT	13	P	Battery connection point to the positive terminal of the battery pack. The internal current sensing resistor is connected between SYS and BAT. Connect a 10 μ F closely to the BAT pin.
	14		
BATNS	10	AIO	Battery voltage sensing pin for charge voltage regulation. in order to minimize the parasitic trace resistance during charging, BATNS pin is connected to the positive terminal of battery pack as close as possible. If BATNS pin is open or short to ground, BATNS_STAT bit is set to 1 and charger regulates the battery voltage through BAT pin.
BTST	21	P	PWM high side driver positive supply. internally, the BTST is connected to the cathode of the boost-strap diode. Connect the 0.047- μ F bootstrap capacitor from SW to BTST.
CE	9	DI	Charge enable pin. When this pin is driven low, battery charging is enabled.
GND	17	P	
	18		Ground
INT	7	DO	Open-drain interrupt Output. Connect the INT to a logic rail through 10-k Ω resistor. The INT pin sends active low, 256- μ s pulse to host to report charger device status and fault.
PMID	23	DO	Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of HSFET. Given the total input capacitance, put 1 μ F on VBUS to GND, and the rest capacitance on PMID to GND.
PMID_GOOD	3	DO	Open drain active high PMID good indicator. Connect to the pull up rail through 10-k Ω resistor. HIGH indicates PMID voltage is below 5.2 V and the current in Q1 is below 110% of input current limit. This signal can be used to drive external p-channel OVPFET to disconnect the PMID from ear phone under charging when input voltage is too high or input current is too high.
PSEL	2	DI	Power source selection input. High indicates 500-mA input current limit. Low indicates 2.4-A input current limit. Once the device gets into host mode, the host can program different input current limit to IINDPM register.

(1) AI = Analog input, AO = Analog Output, AIO = Analog input Output, DI = Digital input, DO = Digital Output, DIO = Digital input Output, P = Power

Pin Functions (continued)

PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.		
QON	12	DI	BATFET enable/reset control input. When BATFET is in ship mode, a logic low of $t_{SHIPMODE}$ duration turns on BATFET to exit ship mode. When BATFET is not in ship mode, a logic low of t_{QON_RST} (minimum 8 s) duration resets SYS (system power) by turning BATFET off for t_{BATFET_RST} (minimum 250 ms) and then re-enable BATFET to provide full system power reset. The host chooses the BATFET reset function with VBUS unplug or not through I ² C bit BATFET_RST_WVBUS. The pin contains an internal pull-up to maintain default high logic.
REGN	22	P	PWM low side driver positive supply output. internally, REGN is connected to the anode of the boost-strap diode. Connect a 4.7- μ F (10-V rating) ceramic capacitor from REGN to analog GND. The capacitor should be placed close to the IC.
SCL	5	DI	I ² C interface clock. Connect SCL to the logic rail through a 10-k Ω resistor.
SDA	6	DIO	I ² C interface data. Connect SDA to the logic rail through a 10-k Ω resistor.
STAT	4	DO	Open-drain interrupt output. Connect the STAT pin to a logic rail via 10-k Ω resistor. The STAT pin indicates charger status. Charge in progress: LOW Charge complete or charger in SLEEP mode: HIGH Charge suspend (fault response): Blink at 1 Hz
SW	19	P	Switching node connecting to output inductor. Internally SW is connected to the source of the n-channel HSFET and the drain of the n-channel LSFET. Connect the 0.047- μ F bootstrap capacitor from SW to BTST.
	20		
SYS	15	P	Converter output connection point. The internal current sensing resistor is connected between SYS and BAT. Connect a 20 μ F closely to the SYS pin.
	16		
TS	11	AI	Temperature qualification voltage input. Connect a negative temperature coefficient thermistor. Program temperature window with a resistor divider from REGN to TS to GND. Charge and OTG suspend when TS pin voltage is out of range. When TS pin is not used, connect a 10-k Ω resistor from REGN to TS and a 10-k Ω resistor from TS to GND or set TS_IGNORE to HIGH to ignore TS pin. It is recommended to use a 103AT-2 thermistor.
VAC	1	AI	Input voltage sensing. This pin must be tied to VBUS.
VBUS	24	P	Charger input voltage. The internal n-channel reverse block MOSFET (RBFET) is connected between VBUS and PMID with VBUS on source. Place a 1-uF ceramic capacitor from VBUS to GND and place it as close as possible to IC.
Thermal Pad	—	P	Ground reference for the device that is also the thermal pad used to conduct heat from the device. This connection serves two purposes. The first purpose is to provide an electrical ground connection for the device. The second purpose is to provide a low thermal-impedance path from the device die to the PCB. This pad should be tied externally to a ground plane.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Voltage	VAC (converter not switching)	-2	30	V
	VBUS (converter not switching)	-2	22	V
	PMID (converter not switching)	-0.3	22	V
	SW	-0.3	16	V
	BAT, SYS (converter not switching)	-0.3	7	V
	BTST	-0.3	22	V
Voltage	BATSNS (converter not switching)	-0.3	7	V
Voltage	PSEL, STAT, SCL, SDA, \overline{INT} , PMID_GOOD, \overline{CE} , TS, \overline{QON}	-0.3	7	V
Output Sink Current	SDA, STAT, \overline{INT} , PMID_GOOD		6	mA
T_J	Junction temperature	-40	150	°C
T_{stg}	Storage temperature	-55	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Rating* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Condition*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	± 2000
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. [Following sentence optional; see the wiki.] Manufacturing with less than 500-V HBM is possible with the necessary precautions. [Following sentence optional; see the wiki.] Pins listed as $\pm WWW$ V and/or $\pm XXX$ V may actually have higher performance.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. [Following sentence optional; see the wiki.] Manufacturing with less than 250-V CDM is possible with the necessary precautions. [Following sentence optional; see the wiki.] Pins listed as $\pm YYY$ V and/or $\pm ZZZ$ V may actually have higher performance.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{VBUS}	Input voltage	3.9	13.5	V	
V_{BAT}	Battery voltage		4.52	V	
I_{VBUS}	Input current		3.2	A	
I_{SW}	Output current (SW)		3.2	A	
I_{BAT}	Fast charging current		1.5	A	
T_A	Ambient temperature	-40	85	°C	
T_J	Junction temperature	-40	110	°C	
L	Inductance		1	μ H	
C_{VBUS}	VBUS capacitance		1	μ F	
C_{PMID}	PMID capacitance		10	μ F	
C_{SYS}	SYS capacitance		10	μ F	
C_{BAT}	BAT capacitance		10	μ F	
C_{REGN}	REGN capacitance		4.7	μ F	
C_{BTST}	BTST capacitance		47	nF	

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		BQ25619	UNIT
		RTW (WQFN)	
		24 Pins	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (JEDEC ⁽¹⁾)	31.9	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	27	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	9.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.4	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	9.2	°C/W
$R_{\theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	2.8	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

7.5 Electrical Characteristics

$V_{V\text{BUS_UVLOZ}} < V_{V\text{BUS}} < V_{V\text{BUS_OV}}$ and $V_{V\text{BUS}} > V_{\text{BAT}} + V_{\text{SLEEP}}$, $T_J = -40^\circ\text{C}$ to $+125^\circ\text{C}$, and $T_J = 25^\circ\text{C}$ for typical values (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
QUIESCENT CURRENTS						
I_{Q_BAT}	Quiescent battery current (BATSNS, BAT, SYS, SW)	VBAT = 4.5V, VBUS floating or VBUS = 0V - 5V, SCL, SDA = 0V or 1.8V, $T_J < 85^\circ\text{C}$, BATFET enabled (OVPFET_DIS=0)	10	TBD	µA	
I_{SD_BAT}	Shipmode battery current (BATSNS, BAT, SYS, SW)	VBAT = 4.5V, VBUS floating or VBUS = 0V - 5V, SCL, SDA = 0V or 1.8V, $T_J < 85^\circ\text{C}$, BATFET disabled (OVPFET_DIS=1)	7	TBD	µA	
$I_{Q_V\text{BUS}}$	Quiescent input current (VBUS) in converter switching	Charge disabled, converter switching, ISYS = 0A	3		mA	
$I_{SD_V\text{BUS}}$	Quiescent input current in HIZ	VAC/VBUS = 5V, High-Z mode, no battery	37	50	µA	
		VAC/VBUS = 12V, High-Z mode, no battery	68	90	µA	
I_{Q_OTG}	Quiescent battery current (BATSNS, BAT, SYS, SW) in OTG	VBAT = 4.5V, VBUS = 5V, OTG mode enabled, converter switching, $I_{V\text{BUS}} = 0\text{A}$	2.4		mA	
V_{BUS} / V_{BAT} SUPPLY						
$V_{V\text{BUS_O}_P}$	VBUS operating range		3.9	13.5	V	
$V_{V\text{BUS_UVLOZ}}$	VBUS rising for active I ₂ C, no battery	VBUS rising		3.3	3.7	V
$V_{V\text{BUS_UVLO}}$	VBUS falling to turnoff I ₂ C, no battery	VBUS falling		3	3.3	V
$V_{V\text{BUS_PRESENT}}$	VBUS to enable REGN	VBUS rising		3.65	3.9	V
$V_{V\text{BUS_PRESENTZ}}$	VBUS to disable REGN	VBUS falling		3.15	3.4	V
V_{SLEEP}	Enter Sleep mode threshold	VBUS falling, VBUS - VBAT, VBAT = 4V	15	60	110	mV
V_{SLEEPZ}	Exit Sleep mode threshold	VBUS rising, VBUS - VBAT, VBAT = 4V	115	220	340	mV
V_{ACOV}	VAC overvoltage rising threshold to turn off switching	VAC rising, OVP[1:0]=00	5.42	5.7	5.99	V
		VAC rising, OVP[1:0]=01	6.099	6.42	6.741	V
		VAC rising, OVP[1:0]=10	10.45	11	11.55	V
		VAC rising, OVP[1:0]=11	13.5	14.2	14.85	V
	VAC overvoltage falling threshold to resume switching	VAC falling, OVP[1:0]=00	5.31	5.59	5.87	V
		VAC falling, OVP[1:0]=01	5.98	6.3	6.61	V
		VAC falling, OVP[1:0]=10	10.24	10.78	11.32	V
		VAC falling, OVP[1:0]=11	13.1	13.9	14.6	V

Electrical Characteristics (continued)

$V_{VBUS_UVLOZ} < V_{VBUS} < V_{VBUS_OV}$ and $V_{VBUS} > V_{BAT} + V_{SLEEP}$, $T_J = -40^\circ\text{C}$ to $+125^\circ\text{C}$, and $T_J = 25^\circ\text{C}$ for typical values (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{BAT_UVLOZ}	BAT voltage for active I2C, no VBUS	VBAT rising	2.5		V
$V_{BAT_DPL_Z}$	BAT depletion rising threshold to turnon BATFET	VBAT rising	2.35	2.8	V
V_{BAT_DPL}	BAT depletion falling threshold to turnoff BATFET	VBAT falling	2.18	2.62	V
V_{POORSR_C}	Bad adapter detection threshold	VBUS falling	3.75	3.9	4.0
POWER-PATH MANAGEMENT					
V_{SYS_MIN}	Typical minimum system regulation voltage	VBAT=3.2V < SYS_MIN = 3.5V, ISYS = 0A	3.5	3.65	V
V_{SYS_OVP}	System overvoltage threshold	VREG = 4.35V, Charge disabled, ISYS = 0A		4.7	V
$R_{ON_QBL_K}$ (Q1)	Blocking FET on-resistance	$T_J = 25^\circ\text{C}$	45	TBD	$\text{m}\Omega$
		$T_J = -40^\circ\text{C} - 125^\circ\text{C}$	45	TBD	$\text{m}\Omega$
R_{ON_QHS} (Q2)	High-side switching FET on-resistance	$T_J = 25^\circ\text{C}$	62	TBD	$\text{m}\Omega$
		$T_J = -40^\circ\text{C} - 125^\circ\text{C}$	62	TBD	$\text{m}\Omega$
R_{ON_QLS} (Q3)	Low-side switching FET on-resistance	$T_J = 25^\circ\text{C}$	71	TBD	$\text{m}\Omega$
		$T_J = -40^\circ\text{C} - 125^\circ\text{C}$	71	TBD	$\text{m}\Omega$
V_{BATFET_FWD}	BATFET forward voltage in supplement mode	BAT discharge current 10mA, converter running		30	mV
BATTERY CHARGER					
V_{REG_RANGE}	Typical charge voltage regulation range		3.5	4.52	V
V_{REG_STEP}	Typical charge voltage step	4.3V < VREG < 4.52V		10	mV
V_{REG_AC}	Charge voltage accuracy	VREG = 4.1V, $T_J = -40^\circ\text{C} - 85^\circ\text{C}$	4.0795	4.1	4.1205
		VREG = 4.2V, $T_J = -40^\circ\text{C} - 85^\circ\text{C}$	4.179	4.2	4.221
		VREG = 4.35V, $T_J = -40^\circ\text{C} - 85^\circ\text{C}$	4.32825	4.35	4.37175
		VREG = 4.45V, $T_J = -40^\circ\text{C} - 85^\circ\text{C}$	4.427	4.45	4.48
I_{CHG_RANGE}	Typical charge current regulation range		0	1.5	A
I_{CHG_STEP}	Typical charge current regulation step			20	mA
I_{CHG_ACC}	Fast charge current regulation accuracy	$I_{CHG} = 0.24\text{A}$, VBAT = 3.1V or 3.8V, $T_J = -40^\circ\text{C} - 85^\circ\text{C}$	0.2112	0.24	0.2688
		$I_{CHG} = 0.72\text{A}$, VBAT = 3.1V or 3.8V, $T_J = -40^\circ\text{C} - 85^\circ\text{C}$	0.6768	0.72	0.7632
		$I_{CHG} = 1.50\text{A}$, VBAT = 3.1V or 3.8V, $T_J = -40^\circ\text{C} - 85^\circ\text{C}$	1.41	1.5	1.59
I_{PRECHG_RANGE}	Typical pre-charge current range		20	260	mA
I_{PRECHG_STEP}	Typical pre-charge current step			20	mA
I_{PRECHG_ACC}	Precharge current accuracy	VBAT = 2.6V, IPRECHG = 20mA	28	40	52
		VBAT = 2.6V, IPRECHG = 120mA	84	120	156
I_{TERM_RANGE}	Typical termination current range		60	780	mA
I_{TERM_STEP}	Typical termination current step			60	mA

Electrical Characteristics (continued)

$V_{VBUS_UVLOZ} < V_{VBUS} < V_{VBUS_OV}$ and $V_{VBUS} > V_{BAT} + V_{SLEEP}$, $T_J = -40^\circ\text{C}$ to $+125^\circ\text{C}$, and $T_J = 25^\circ\text{C}$ for typical values (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
I_{TERM_AC}	Termination current accuracy ITERM=60mA, ICHG>260mA, VREG=4.35V, $T_J = -40^\circ\text{C}$ - 85°C (char, all codes)	42	60	78	mA	
	ITERM=20mA, ICHG<260mA, VREG=4.35V, $T_J = -40^\circ\text{C}$ - 85°C (char, all codes)	10	20	30	mA	
V_{BAT_SHO} RTZ	Battery short voltage rising threshold to start pre-charge	VBAT rising	2.15	2.25	2.35	V
V_{BAT_SHO} RT	Battery short voltage falling threshold to stop pre-charge	VBAT falling	1.85	2	2.15	V
I_{BAT_SHO} RT	Battery short trickle charging current	VBAT < V_{BAT_SHORTZ}	70	90	110	mA
V_{BATLOW} V	Battery LOWV rising threshold to start fast-charge	VBAT rising	3	3.12	3.24	V
	Battery LOWV falling threshold to stop fast-charge	VBAT falling	2.7	2.8	2.9	V
V_{RECHG}	Battery recharge threshold	VRECHG=0, VBAT falling	90	120	150	mV
		VRECHG=1, VBAT falling	200	230	265	mV
I_{BAT_LOA} D	Battery discharge load current			30	mA	
I_{SYS_LOA} D	System discharge load current			30	mA	
R_{ON_QBA} T (Q4)	Battery FET on-resistance	$T_J = 25^\circ\text{C}$	19.5	23.4	$\text{m}\Omega$	
		$T_J = -40^\circ\text{C}$ - 125°C	19.5	29.25	$\text{m}\Omega$	
R_{BATSNS}	BATP Input Resistance	EN_HIZ = 1		1	$\text{M}\Omega$	
BATTERY OVER-VOLTAGE PROTECTION						
V_{BAT_OVP}	Battery overvoltage rising threshold	VBAT rising, as percentage of VREG	103	104	105	%
	Battery overvoltage falling threshold	VBAT falling, as percentage of VREG	101	102	103	%
INPUT VOLTAGE / CURRENT REGULATION						
V_{INDPM_R} ANGE	Typical input voltage regulation range		3.9	5.4	V	
V_{INDPM_S} TEP	Typical input voltage regulation step		100		mV	
V_{INDPM_A} CC	Typical input voltage regulation accuracy		4.365	4.5	4.635	%
V_{INDPM_T} RACK	VINDPM threshold to track battery voltage	VBAT = 4.35V, VDPM_BAT_TRACK = VBAT+200mV	4.4135	4.55	4.6865	V
I_{INDPM_R} ANGE	Typical input current regulation range		0.1	3.2	A	
I_{INDPM_S} TEP	Typical input current regulation step		100		mA	
I_{INDPM_A} C	Input current regulation accuracy	IINDPM = 500mA	450	462.5	500	mA
I_{INDPM_A} C	Input current regulation accuracy	IINDPM = 900mA	750	832.5	900	mA
I_{INDPM_A} C	Input current regulation accuracy	IINDPM = 1500mA	1300	1387.5	1500	mA
THERMAL REGULATION AND THERMAL SHUTDOWN						
T_{REG}	Junction temperature regulation accuracy	TREG = 90°C	90		°C	
		TREG = 110°C	110		°C	
T_{SHUT}	Thermal Shutdown Rising threshold	Temperature Increasing	150		°C	

Electrical Characteristics (continued)

$V_{VBUS_UVLOZ} < V_{VBUS} < V_{VBUS_OV}$ and $V_{VBUS} > V_{BAT} + V_{SLEEP}$, $T_J = -40^\circ\text{C}$ to $+125^\circ\text{C}$, and $T_J = 25^\circ\text{C}$ for typical values (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Thermal Shutdown Falling threshold		Temperature Decreasing	130		°C	
JEITA THERMISTOR COMPARATOR (CHARGE MODE)						
V_{T1_RISE}	TS pin voltage rising threshold, Charge suspended above this voltage.	As Percentage to REGN (0°C w/ 103AT)	72.4	73.3	74.2	%
V_{T1_FALL}	TS pin voltage falling threshold. Charge re-enabled to 20% of ICHG and VREG below this voltage.	As Percentage to REGN	71.5	72	72.5	%
V_{T2_RISE}	TS pin voltage rising threshold, Charge back to 20% of ICHG and VREG above this voltage.	As Percentage to REGN, JEITA_T2=5°C w/ 103AT	70.25	70.75	71.25	%
		As Percentage to REGN, JEITA_T2=10°C w/ 103AT	67.75	68.25	68.75	%
		As Percentage to REGN, JEITA_T2=15°C w/ 103AT	64.75	65.25	65.75	%
		As Percentage to REGN, JEITA_T2=20°C w/ 103AT	61.75	62.25	62.75	%
V_{T2_FALL}	TS pin voltage falling threshold. Charge back to ICHG and VREG below this voltage.	As Percentage to REGN, JEITA_T2=5°C w/ 103AT	68.7	69.2	69.7	%
		As Percentage to REGN, JEITA_T2=10°C w/ 103AT	66.45	66.95	67.45	%
		As Percentage to REGN, JEITA_T2=15°C w/ 103AT	63.7	64.2	64.7	%
		As Percentage to REGN, JEITA_T2=20°C w/ 103AT	60.7	61.2	61.7	%
V_{T3_FALL}	TS pin voltage falling threshold. Charge to ICHG and 4.1V below this voltage.	As Percentage to REGN, JEITA_T3=40°C w/ 103AT	47.75	48.25	48.75	%
		As Percentage to REGN, JEITA_T3=45°C w/ 103AT	44.25	44.75	45.25	%
		As Percentage to REGN, JEITA_T3=50°C w/ 103AT	40.2	40.7	41.2	%
		As Percentage to REGN, JEITA_T3=55°C w/ 103AT	37.2	37.7	38.2	%
V_{T3_RISE}	TS pin voltage rising threshold. Charge back to ICHG and VREG above this voltage.	As Percentage to REGN, JEITA_T3=40°C w/ 103AT	48.8	49.3	49.8	%
		As Percentage to REGN, JEITA_T3=45°C w/ 103AT	45.3	45.8	46.3	%
		As Percentage to REGN, JEITA_T3=50°C w/ 103AT	41.3	41.8	42.3	%
		As Percentage to REGN, JEITA_T3=55°C w/ 103AT	38.5	39	39.5	%
V_{T5_FALL}	TS pin voltage falling threshold, charge suspended below this voltage.	As Percentage to REGN (60°C w/ 103AT)	33.7	34.2	35.1	%
V_{T5_RISE}	TS pin voltage rising threshold. Charge back to ICHG and 4.1V above this voltage.	As Percentage to REGN	35	35.5	36	%
COLD / HOT THERMISTOR COMPARATOR (OTG MODE)						
V_{BCOLD_RISE}	TS pin voltage rising threshold, OTG is suspended above this voltage.	As Percentage to REGN (-20°C w/ 103AT)	79.5	80	80.5	%
V_{BCOLD_FALL}	TS pin voltage falling threshold		71.5	72	72.5	%
V_{BHOT_RISE}	TS pin voltage threshold. OTG is suspended below this voltage.	As Percentage to REGN, (65°C w/ 103AT)	30.2	31.2	32.2	%
V_{BHOT_FALL}	TS pin voltage rising threshold	As Percentage to REGN, JEITA_T3=55°C w/103AT	38.5	39	39.5	%

Electrical Characteristics (continued)

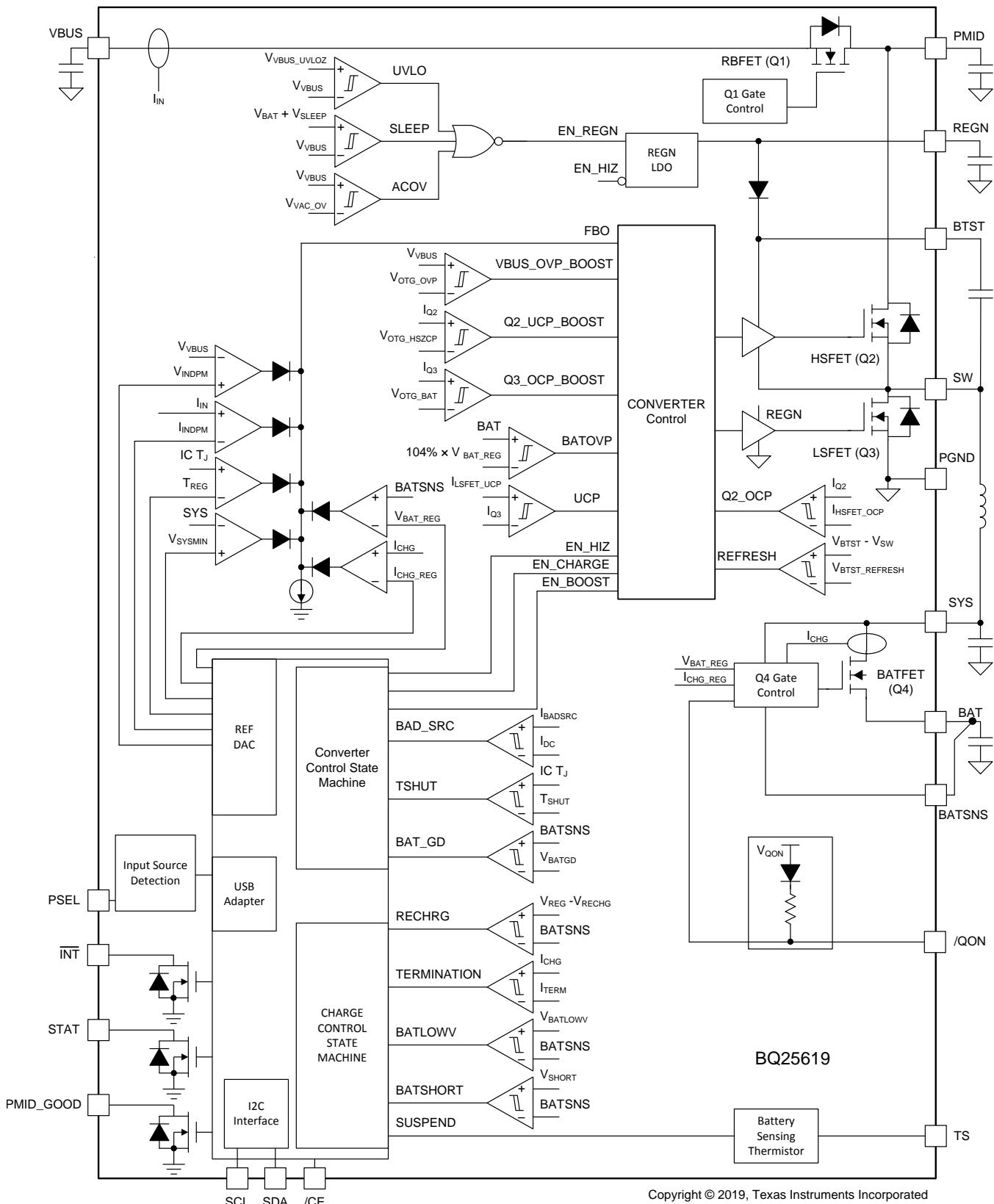
$V_{VBUS_UVLOZ} < V_{VBUS} < V_{VBUS_OV}$ and $V_{VBUS} > V_{BAT} + V_{SLEEP}$, $T_J = -40^\circ\text{C}$ to $+125^\circ\text{C}$, and $T_J = 25^\circ\text{C}$ for typical values (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SWITCHING CONVERTER					
F_{SW}	PWM switching frequency	Oscillator frequency	1.32	1.5	1.68
D_{MAX}	Maximum PWM Duty Cycle	GBD		97	%
CONVERTER PROTECTION					
I_{LSOCP}	LSFET cycle by cycle current limit		5.2	8	A
I_{LSZCP}	LSFET under current falling threshold		100	160	mA
I_{HSOCP}	HSFET cycle by cycle current limit		5.2	8	A
I_{HSZCP}	HSFET under current falling threshold		100	160	mA
I_{BLK_OCP}	BLKFET over-current threshold	As percentage of IINDPM setting	115		%
I_{BLK_UCP}	BLKFET under-current threshold	From sync mode to non-sync mode	100		mA
OTG MODE CONVERTER					
V_{OTG_BAT}	Battery voltage exiting OTG mode	BAT falling	2.4	2.5	2.6
V_{OTG_RANGE}	Typical OTG mode voltage regulation range		4.6	5.15	V
$V_{OTG_AC_C}$	OTG mode voltage regulation accuracy	$V_{VBUS} = 0\text{A}$, $OTG_VLIM = 5\text{V}$	4.6	5	5.15
$I_{OTG_OCP_Q4}$	OTG mode battery discharge current clamp on Q4		5	6	
$V_{OTG_OV_P}$	OTG mode overvoltage threshold on PMID		5.45	5.6	5.75
REGN LDO					
V_{REGN}	REGN LDO output voltage	$V_{VBUS} = 5\text{V}$, $I_{REGN} = 20\text{mA}$	4.58	4.7	4.8
		$V_{VBUS} = 9\text{V}$, $I_{REGN} = 20\text{mA}$	5.6	6	6.65
I_{REGN}	REGN LDO current limit	$V_{VBUS} = 5\text{V}$, $V_{REGN} = 3.8\text{V}$	50		mA
I2C INTERFACE (SCL, SDA)					
V_{IH}	Input high threshold level, SDA and SCL	Pull up rail 1.8V	1.3		V
V_{IL}	Input low threshold level	Pull up rail 1.8V		0.4	V
V_{OL}	Output low threshold level	Sink current = 5mA		0.4	V
I_{IN_BIAS}	High-level leakage current	Pull up rail 1.8V		1	mA
LOGIC INPUT PIN					
V_{IH}	Input high threshold level (/CE, PSEL)		1.3		V
V_{IL}	Input low threshold level (/CE, PSEL)			0.4	V
I_{IN_BIAS}	High-level leakage current (/CE, PSEL)	Pull up rail 1.8V		1	mA
LOGIC OUTPUT PIN					
V_{OL}	Output low threshold level (/INT, STAT, PMID_GOOD)	Sink current = 5mA		0.4	V
I_{OUT_BIAS}	High-level leakage current (/INT, STAT, PMID_GOOD)	Pull up rail 1.8V		1	mA

7.6 Timing Requirements

		MIN	NOM	MAX	UNIT
VBUS / VBAT POWER UP					
t_{VBUS_OV}	VBUS OVP Reaction-time		130		ns
$t_{POORSRC}$	Bad adapter detection duration		30		ms
$t_{POORSRC_RETRY}$	Bad adapter detection retry wait time		2		s
BATTERY CHARGER					

Timing Requirements (continued)


		MIN	NOM	MAX	UNIT
t_{TERM_DGL}	Deglitch time for charge termination		30		ms
$t_{RECHG_DG_L}$	Deglitch time for recharge threshold		30		ms
$t_{BAT_OVP_D_GL}$	Deglitch time for battery overvoltage to disable charge		1		μ s
t_{TOP_OFF}	Typical top-off timer accuracy	24	30	36	min
t_{SAFETY}	Charge safety timer accuracy, CHG_TIMER = 20hr	18	20	24	hr
t_{SAFETY}	Charge safety timer accuracy, CHG_TIMER = 10hr	9	10	12	hr
QON Timing					
$t_{SHIPMODE}$	QON low time to turn on BATFET and exit shipmode	0.9		1.3	s
t_{QON_RST}	QON low time before BATFET full system reset	8		12	s
$t_{BATFET_RS_T}$	BATFET off time during full system reset		250	400	ms
$t_{BATFET_DL_Y}$	Delay time before BATFET turn off in ship mode	10		15	s
I2C INTERFACE					
f_{SCL}	SCL clock frequency			1000	kHZ
DIGITAL CLOCK AND WATCHDOG					
f_{LPDIG}	Digital low-power clock (EN_HIZ = 1)	18	30	45	kHz
f_{DIG}	Digital power clock (EN_HIZ = 0)	1.35	1.5	1.65	MHz
t_{LP_WDT}	Watchdog Reset time (EN_HIZ = 1, WATCHDOG = 160s)	100	160		s
t_{WDT}	Watchdog Reset time (EN_HIZ = 0, WATCHDOG = 160s)	136	160		s

8 Detailed Description

8.1 Overview

The BQ25619 device is a highly integrated 1.5-A switch-mode battery charger for single cell Li-Ion and Li-polymer battery. It includes the input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4), and bootstrap diode for the high-side gate drive.

8.2 Functional Block Diagram

Copyright © 2019, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Power-On-Reset (POR)

The device powers internal bias circuits from the higher voltage of VBUS and BAT. When VBUS rises above V_{VBUS_UVLOZ} or BAT rises above V_{BAT_UVLOZ} , the sleep comparator, battery depletion comparator and BATFET driver are active. I²C interface is ready for communication and all the registers are reset to default value. The host can access all the registers after POR.

8.3.2 Device Power Up from Battery without Input Source

If only battery is present and the voltage is above depletion threshold (V_{BAT_DPLZ}), the BATFET turns on and connects battery to system. The REGN stays off to minimize the quiescent current. The low RDSON of BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.

The device always monitors the discharge current through BATFET. When the system is overloaded or shorted ($I_{BAT} > I_{BATFET_OCP}$), the device turns off BATFET immediately.

As the device has I²C, when BATFET turns off due to over-current, the device sets BATFET_DIS bit to indicate BATFET is disabled until the input source plugs in again or one of the methods described in *BATFET Enable (Exit Ship Mode)* is applied to re-enable BATFET.

8.3.3 Power Up from Input Source

When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all the bias circuits. It detects and sets the input current limit before the buck converter is started. The power up sequence from input source is as listed:

1. Power Up REGN LDO
2. Poor Source Qualification
3. Input Source Type Detection is based on PSEL to set default input current limit (IINDPM threshold).
4. Input Voltage Limit Threshold Setting (VINDPM threshold)
5. Power Up Converter

8.3.3.1 Power Up REGN LDO

The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. It also provides bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well. The REGN is enabled when all the below conditions are valid:

- $V_{VBUS} > V_{VBUS_UVLOZ}$
- In buck mode, $V_{VBUS} > V_{BAT} + V_{SLEEPZ}$
- In boost mode, $V_{VBUS} < V_{BAT} + V_{SLEEP}$.
- After 220-ms delay is completed

During high impedance mode when EN_HIZ bit is 1, REGN LDO turns off. The battery powers up the system.

8.3.3.2 Poor Source Qualification

After REGN LDO powers up, the device starts to check current capability of the input source. The first step is poor source detection.

- VBUS voltage above $V_{POORSRC}$ when pulling I_{BADSRC} (typical 30 mA)

With I²C, once the input source passes poor source detection, the status register bit VBUS_GD is set to 1 and the INT pin is pulsed to signal to the host.

If the device fails the poor source detection, it repeats poor source qualification every 2 seconds.

8.3.3.3 Input Source Type Detection (IINDPM Threshold)

After poor source detection, the device runs input source detection through PSEL pin. The PSEL pin sets input current limit 0.5 A (HIGH) or 2.4 A (LOW) in the register. After input source type detection is completed, PMID_GOOD pin is asserted to HIGH and PG_STAT bit goes to 1.

Feature Description (continued)

With I²C, after input source type detection is completed, an $\overline{\text{INT}}$ pulse is asserted to the host. in addition, the following register bits are updated:

1. Input Current Limit (IINDPM) register is updated from detection result
2. VBUS_STAT bit is updated to indicate USB or other input source
3. PG_STAT bit is updated to indicate good adapter plugs in

The host can over-write IINDPM register to change the input current limit if needed.

8.3.3.3.1 PSEL Pins Sets Input Current Limit

The device with PSEL pin directly takes the USB PHY device output to decide whether the input is USB host or charging port. When the device operates in host-control mode, the host needs to IINDET_EN bit set to 1 to update the IINDPM register. When the device is in default mode, PSEL value updates IINDPM in real time.

Table 1. Input Current Limit Setting from PSEL

INPUT DETECTION	PSEL PIN	INPUT CURRENT LIMIT (ILIM)	VBUS_STAT
USB SDP	High	500 mA	001
Adapter	Low	2.4A	011

8.3.3.4 Input Voltage Limit Threshold Setting (VINDPM Threshold)

The device VINDPM is in default set at 4.5 V (3.9 V - 5.4 V in I²C). The device supports dynamic VINDPM setting to tracks the battery voltage. The actual input voltage limit will be the higher of the VINDPM setting and VBAT + offset voltage in VINDPM_BAT_TRACK[1:0].

8.3.3.5 Power Up Converter in Buck Mode

After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. The system voltage is powered from converter instead of the battery. If battery charging is disabled, BATFET turns off. Otherwise, BATFET stays on to charge the battery.

The device provides soft-start when system rail is ramped up. When the system rail is below V_{BAT_SHORT} , the input current is limited to the lower of 200 mA or IINDPM register setting. After the system rises above V_{BAT_SHORTZ} V, the device input current limit is the value set by IINDPM register.

As a battery charger, the device deploys a highly efficient 1.5-MHz step-down switching regulator. The fixed frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery voltage, charge current and temperature, simplifying output filter design.

The converter supports PFM operation at light load in buck mode. The PFM_DIS bit can be used to disable PFM operation in buck configuration.

8.3.3.6 HIZ Mode with Adapter Present

By setting EN_HIZ bit to 1 with adapter, the device enters high impedance state (HIZ). In HIZ mode, the system is powered from battery even with good adapter present. The device is in the low input quiescent current state with Q1 RBFET, REGN LDO and the bias circuits off.

8.3.4 Boost Mode Operation From Battery

The device supports boost converter operation to deliver power from the battery to other portable devices through USB port. The output voltage is regulated at 5V (programmable 4.6 V/4.75 V/5.0 V/5.15 V) in I²C spins and output current is up to 1 A. The user needs to have at least 400 mV between VBAT and OTG regulation voltage to power up OTG reliably. In other words, BOOSTV[1:0] setting has to be 4.75 V or higher if battery voltage is 4.35 V.

The boost operation is enabled if the conditions are valid:

1. Register setting: BATFET_DIS = 0, CHG_COFNIG = 0 and OTG_CONFIG = 1
2. BAT above V_{OTG_BAT} set by Min_VBAT_SEL bit,

3. VBUS less than BAT+V_{SLEEP} (in sleep mode) before converter starts
4. Voltage at TS (thermistor) pin is within acceptable range (V_{BHOT_RISE} < V_{TS} < V_{BCOLD_RISE})

During boost mode, the status register VBUS_STAT bits is set to 111.

The converter supports PFM operation at light load in boost mode. The PFM_DIS bit can be used to disable PFM operation in boost configuration.

The BQ25619 keeps Q1 FET off during the boost mode. During adapter plug-in or removal, the charger will automatically transit between charging mode and OTG mode by setting OTG_CONFIG bit and CHG_CONFIG bit both to 1. When adapter plugs in, and the conditions to start a new charge cycle are valid, the device is in charging mode. When the adapter is removed and boost enable conditions are valid, the device is in OTG mode and power the accessories connected to PMID.

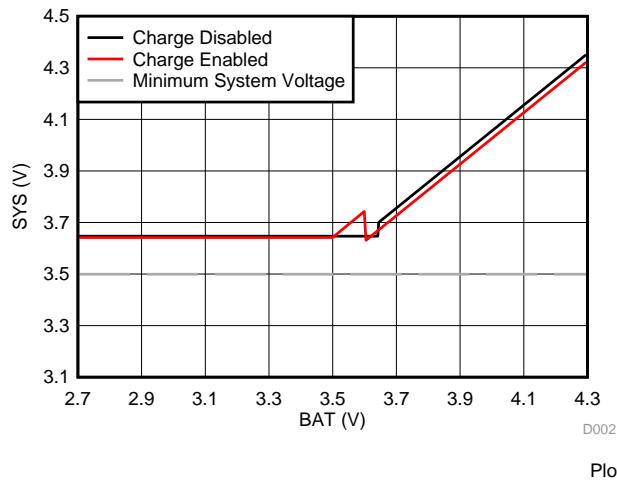
8.3.5 PowerPath Management

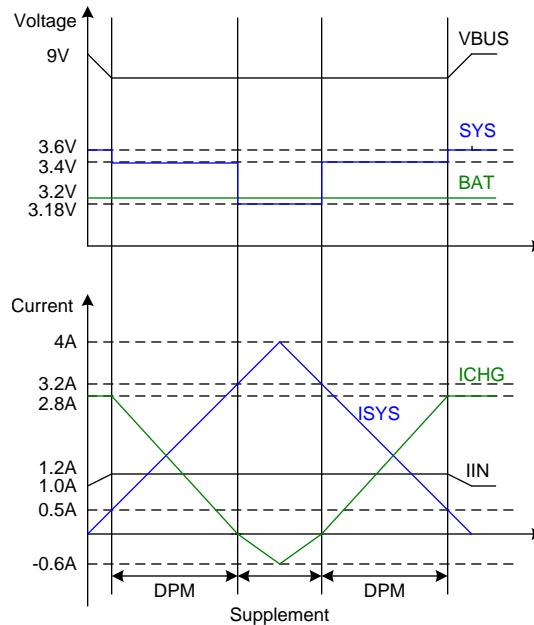
The device accommodates a wide range of input sources from USB, wall adapter, to car charger. The device provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or both.

8.3.5.1 Narrow VDC Architecture

When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode), and the system is typically 180 mV above the minimum system voltage setting. As the battery voltage rises above the minimum system voltage, BATFET is fully on and the voltage difference between the system and battery is the VDS of BATFET.

When the battery charging is disabled and above minimum system voltage setting or charging is terminated, the system is always regulated at typically 50 mV above battery voltage. The status register VSYS_STAT bit goes to 1 when the system is in minimum system voltage regulation.




Figure 1. System Voltage vs Battery Voltage

8.3.5.2 Dynamic Power Management

To meet maximum current limit in USB spec and avoid over loading the adapter, the device features Dynamic Power management (DPM), which continuously monitors the input current and input voltage. When input source is over-loaded, either the current exceeds the input current limit (IINDPM) or the voltage falls below the input voltage limit (VINDPM). The device then reduces the charge current until the input current falls below the input current limit and the input voltage rises above the input voltage limit.

When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to drop. Once the system voltage falls below the battery voltage, the device automatically enters the supplement mode where the BATFET turns on and battery starts discharging so that the system is supported from both the input source and battery.

During DPM mode, the status register bits VINDPM_STAT or IINDPM_STAT goes to 1. [Figure 2](#) shows the DPM response with 9-V/1.2-A adapter, 3.2-V battery, 2.8-A charge current and 3.5-V minimum system voltage setting.

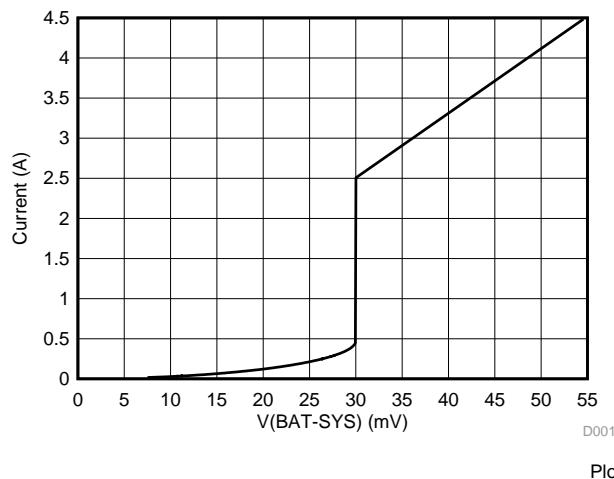


Figure 2. DPM Response

8.3.5.3 Supplement Mode

When the system voltage falls below the battery voltage, the BATFET turns on and the BATFET gate is regulated the gate drive of BATFET so that the minimum BATFET VDS stays at 30 mV when the current is low. This prevents oscillation from entering and exiting the supplement mode.

As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until the BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge current. [Figure 3](#) shows the V-I curve of the BATFET gate regulation operation. BATFET turns off to exit supplement mode when the battery is below battery depletion threshold.

Plot1

Figure 3. BAFET V-I Curve

8.3.6 Battery Charging Management

The device charges 1-cell Li-Ion battery with up to 3.0-A charge current for high capacity tablet battery. The 19.5-mΩ BATFET improves charging efficiency and minimize the voltage drop during discharging.

8.3.6.1 Autonomous Charging Cycle

With battery charging is enabled (CHG_CONFIG bit = 1 and \overline{CE} pin is LOW), the device autonomously completes a charging cycle without host involvement. The device default charging parameters are listed in **Table 2**. The host configures the power path and charging parameters by writing to the corresponding registers through I²C.

Table 2. Charging Parameter Default Setting

DEFAULT MODE	BQ25619
Charging voltage	4.20 V
Charging current	340 mA
Pre-charge current	40 mA
Termination current	60 mA
Temperature profile	JEITA
Safety timer	10 hours

A new charge cycle starts when the following conditions are valid:

- Converter starts
- Battery charging is enabled (CHG_CONFIG bit = 1 and I_{CHG} register is not 0 mA and \overline{CE} is low)
- No thermistor fault on TS. (TS pin can be ignored by setting TS_IGNORE bit to 1)
- No safety timer fault
- BATFET is not forced to turn off (BATFET_DIS bit = 0)

The charger device automatically terminates the charging cycle when the charging current is below termination threshold, battery voltage is above recharge threshold, and device not is in DPM mode or thermal regulation. When a fully charged battery is discharged below recharge threshold (selectable through VRECHG bit), the device automatically starts a new charging cycle. After the charge is done, toggle \overline{CE} pin or CHG_CONFIG bit can initiate a new charging cycle.

The STAT output indicates the charging status: charging (LOW), charging complete or charge disable (HIGH) or charging fault (Blinking). The status register (CHRG_STAT) indicates the different charging phases: 00-charging disable, 01-precharge, 10-fast charge (constant current) and constant voltage mode, 11-charging done. Once a charging cycle is completed, an INT is asserted to notify the host.

8.3.6.2 Battery Charging Profile

The device charges the battery in five phases: battery short, preconditioning, constant current, constant voltage and top-off trickle charging (optional). At the beginning of a charging cycle, the device checks the battery voltage and regulates current and voltage accordingly.

Resistance between charger output and battery cell terminal such as board routing, connector, MOSFETs and sense resistor can force the charging process to move from constant current to constant voltage too early and increase charge time. To speed up the charging cycle, the device provides BATSNS pin to extend the constant current charge time to delivery maximum power to battery. BATSNS can be disabled through BATSNS_DIS bit.

Table 3. Charging Current Setting

VBAT	CHARGING CURRENT	DEFAULT SETTING	CHRG_STAT
< 2.2 V	I_{SHORT}	25 mA	01
2.2 V to 3 V	I_{PRECHG}	40 mA	01
> 3 V	I_{CHG}	340 mA	10

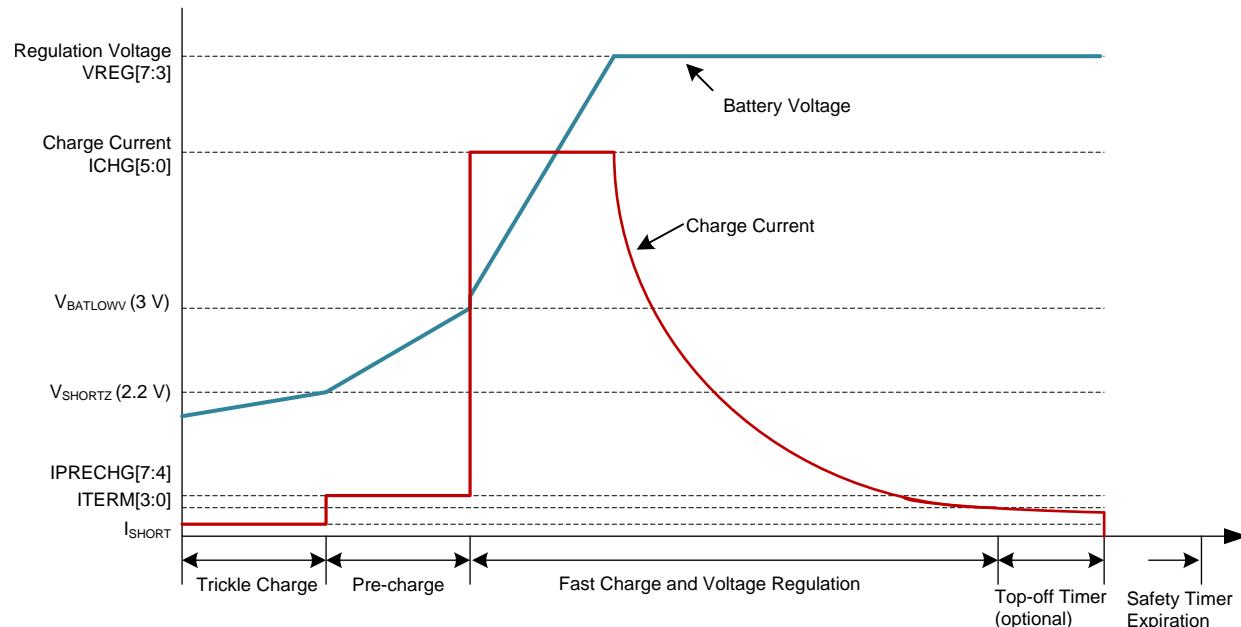


Figure 4. Battery Charging Profile

8.3.6.3 Charging Termination

The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is below termination current. After the charging cycle is completed, the BATFET turns off. The STAT is asserted HIGH to indicate charger done. The converter keeps running to power the system, and BATFET can turn on again to engage *Supplement Mode*.

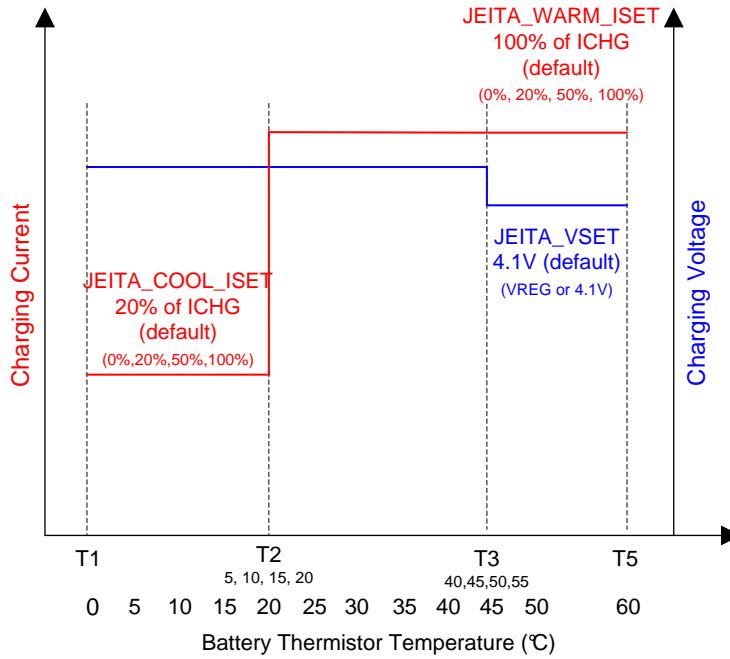
If the charger device is in IINDPM/VINDPM regulation, or thermal regulation, the actual charging current will be less than the termination value. In this case, termination is temporarily disabled.

When termination occurs, STAT pin goes HIGH. The status register CHRG_STAT is set to 11, and an $\overline{\text{INT}}$ pulse is asserted to the host. Termination can be disabled by writing 0 to EN_TERM bit prior to charge termination.

Due to the termination current accuracy, the actual termination current may be higher than the termination target. In order to compensate for termination error, a programmable top-off timer can be applied after termination is detected. The top-off timer will follow safety timer constraints, such that if safety timer is suspended, so will the top-off timer. Similarly, if safety timer is doubled, so will the termination timer. TOPOFF_ACTIVE bit reports whether the top off timer is active or not. The host can read CHRG_STAT and TOPOFF_ACTIVE to find out the termination status. STAT pin stays HIGH during top-off timer counting cycle.

The top-off timer settings are read in once termination is detected by the charger. Programming a top-off timer value (01, 10, 11) after termination will have no effect unless a recharge cycle is initiated. Top-off timer will immediately stop if it is disabled (00). An $\overline{\text{INT}}$ is asserted to the host when entering top-off timer segment as well as when top-off timer expires.

8.3.6.4 Thermistor Qualification


The charger device provides a single thermistor input for battery temperature monitor.

8.3.6.4.1 JEITA Guideline Compliance During Charging Mode

To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high temperature ranges.

To initiate a charge cycle, the voltage on TS pin must be within the VT1 to VT5 thresholds. If TS voltage exceeds the T1-T5 range, the controller suspends charging, TS fault is reported and waits until the battery temperature is within the T1 to T5 range.

At cool temperature (T1-T2), the charge current is reduced to programmable fast charge current (0%, 20% default, 50%, 100% of ICHG, by JEITA_ISET). At warm temperature (T3-T5), the charge voltage is reduced to 4.1 V or kept at VREG (JEITA_VSET), and programmable charger current (0%, 20%, 50%, 100% default). The charger provides more flexible settings on T2 and T3 threshold as well to program the temperature profile beyond JEITA.

Figure 5. JEITA Profile

Equation 1 through describe updates to the resistor bias network.

$$RT2 = \frac{R_{NTC,T1} \times R_{NTC,T5} \times \left(\frac{1}{V_{T5}} - \frac{1}{V_{T1}} \right)}{R_{NTC,T1} \times \left(\frac{1}{V_{T1}} - 1 \right) - R_{NTC,T5} \times \left(\frac{1}{V_{T5}} - 1 \right)}$$

$$RT1 = \frac{\frac{1}{V_{T1}} - 1}{\frac{1}{R_{T2}} + \frac{1}{R_{NTC,T1}}}$$

(1)

Select 0°C to 60°C range for Li-ion or Li-polymer battery:

- $RTH_{COLD} = 27.28 \text{ K}\Omega$ (0°C)
- $RTH_{HOT} = 3.02 \text{ K}\Omega$ (60°C)
- $RT1 = 5.3 \text{ K}\Omega$
- $RT2 = 31.4 \text{ K}\Omega$

8.3.6.4.2 Boost Mode Thermistor Monitor During Battery Discharge Mode

For battery protection during boost mode, the device monitors the battery temperature to be within the V_{BCOLD} and V_{BHOT} thresholds (programmable). When RT1 is 5.3 KΩ and RT2 is 31.4 KΩ, T_{BCOLD} default is -19°C and $TBHOT$ default is 60°C. When temperature is outside of the temperature thresholds, the boost mode is suspended. In addition, $VBUS_STAT$ bits are set to 000 and NTC_FAULT is reported. Once temperature returns within thresholds, the boost mode is recovered and NTC_FAULT is cleared.

8.3.6.5 Charging Safety Timer

The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The safety timer is 2 hours when the battery is below $V_{BATLOWV}$ threshold and 10 hours (10/20 hours) when the battery is higher than $V_{BATLOWV}$ threshold. When safety timer expires, STAT pin is blinking at 1 Hz to report a fault.

The user can program fast charge safety timer through I²C (CHG_TIMER bits). When safety timer expires, the fault register CHRG_FAULT bits are set to 11 and an INT is asserted to the host. The safety timer (both fast charge and pre-charge) can be disabled through I²C by setting EN_TIMER bit

During IINDPM/VINDPM regulation, or thermal regulation, or JEITA cool/warm when fast charge current is reduced, the safety timer counts at half clock rate, because the actual charge current is likely below the setting. For example, if the charger is in input current regulation (IINDPM_STAT = 1) throughout the whole charging cycle, and the safety time is set to 10 hours, the safety timer will expire in 20 hours. This half clock rate feature can be disabled by writing 0 to TMR2X_EN bit.

During faults such as BAT_FAULT, NTC_FAULT leading to charging suspend, safety timer is suspended as well. Once the fault goes away, timer resumes. If user stops the current charging cycle, and start again, timer gets reset (toggle CE pin or CHRG_CONFIG bit).

8.3.7 Ship Mode and QON Pin

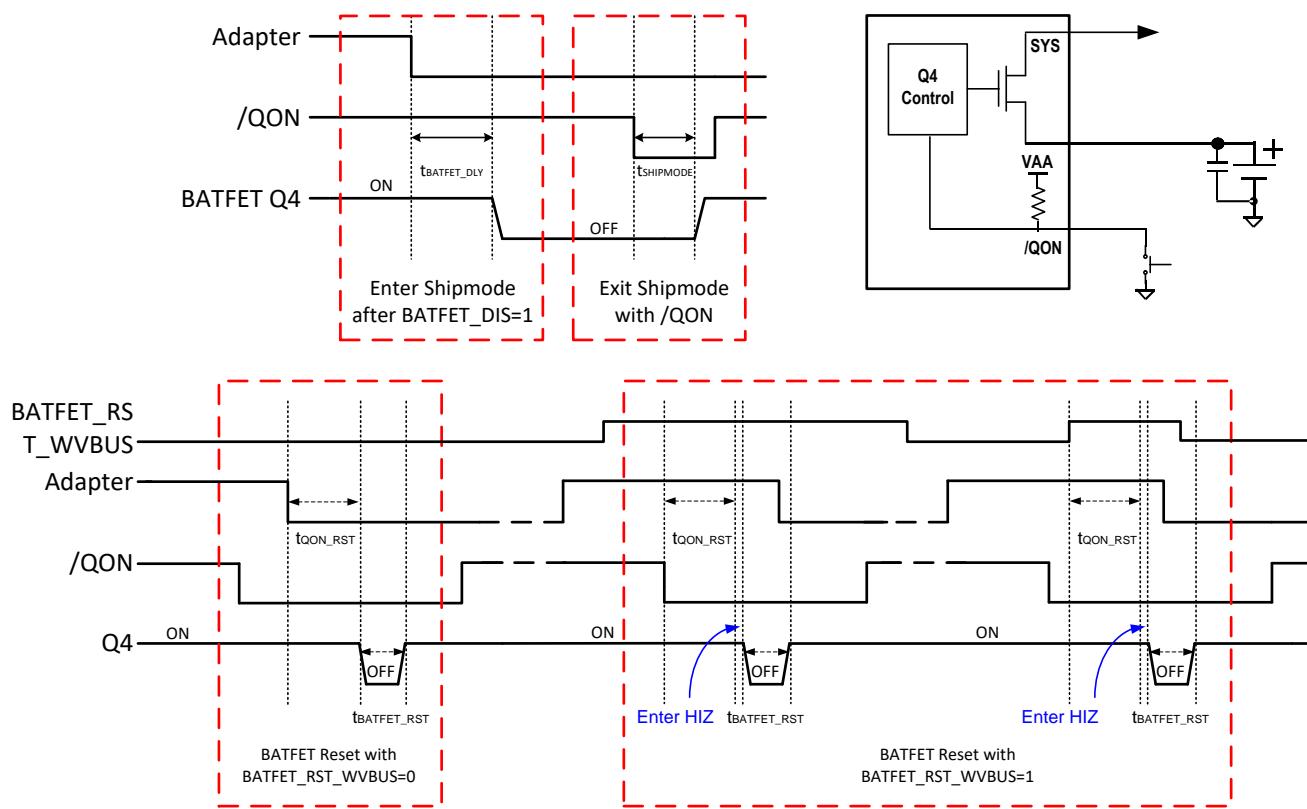
8.3.7.1 BATFET Disable Mode (Enter Ship Mode)

To extend battery life and minimize power when system is powered off during system idle, shipping, or storage, the device turns off BATFET so that the system voltage is floating to minimize the battery leakage current. When the host set BATFET_DIS bit, the charger can turn off BATFET immediately or delay by t_{BATFET_DLY} as configured by BATFET_DLY bit. To set the device into ship mode with adapter present, the host has to first set BATFET_RST_VBUS to 1 and then BATFET_DIS to 1. The charger will turn off BATFET (no charging, no supplement) while the adapter is still attached. When adapter is removed, the charger will enter ship mode.

8.3.7.2 BATFET Enable (Exit Ship Mode)

When the BATFET is disabled (in ship mode) and indicated by setting BATFET_DIS, one of the following events can enable BATFET to restore system power:

1. Plug in adapter
2. Clear BATFET_DIS bit
3. Set REG_RST bit to reset all registers including BATFET_DIS bit to default (0)
4. A logic high to low transition on QON pin with $t_{SHIPMODE}$ deglitch time to enable BATFET to exit ship mode. EN_HIZ bit is set to 1 (regardless of adapter present or not). Host has to set EN_HIZ bit to 0 before OTG mode enable. Once adapter plugs in, EN_HIZ will be cleared.


8.3.7.3 BATFET Full System Reset

The BATFET functions as a load switch between battery and system when input source is not plugged-in. When BATFET_RST_EN=1 and BATFET_DIS=0, BATFET full system reset function is enabled. By changing the state of BATFET from on to off, systems connected to SYS can be effectively forced to have a power-on-reset. After the reset is complete, device is in POR state, and all the registers are in POR default settings. The QON pin supports push-button interface to reset system power without host by changing the state of BATFET.

When the QON pin is driven to logic low for t_{QON_RST} , BATFET reset process starts. The BATFET is turned off for t_{BATFET_RST} and then it is re-enabled to reset system power. This function can be disabled by setting BATFET_RST_EN bit to 0.

BATFET full system reset functions either with or without adapter present. If BATFET_RST_WVBUS=1, the system reset function starts after t_{QON_RST} when QON pin is pushed to LOW. Once the reset process starts, the device first get into HIZ mode to turn off the converter, and then power cycle BATFET. If BATFET_RST_WVBUS=0, the system reset function doesn't start till t_{QON_RST} after QON pin is pushed to LOW and adapter is removed.

After BATFET full system reset is complete, the device will power up again if EN_HIZ is not set to 1 before the system reset.

Figure 6. QON Timing

8.3.8 Status Outputs (STAT, INT, PMID_GOOD)

8.3.8.1 Power Good Indicator (PG_STAT Bit)

The PG_STAT bit goes 1 goes LOW to indicate a good input source when:

- VBUS above V_{VBUS_UVLO}
- VBUS above battery (not in sleep)
- VBUS below V_{ACOV} threshold
- VBUS above $V_{POORSRC}$ (typical 3.8 V) when I_{BADSRC} (typical 30 mA) current is applied (not a poor source)
- Completed *input Source Type Detection*

8.3.8.2 Charging Status Indicator (STAT)

The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED.

Table 4. STAT Pin State

CHARGING STATE	STAT INDICATOR
Charging in progress (including recharge)	LOW
Charging termination (top off timer may be running)	HIGH
Sleep mode, charge disable, OTG boost mode	HIGH
Charge suspend (input over-voltage, TS fault, safety timer fault or system over-voltage)	Blinking at 1 Hz

8.3.8.3 Interrupt to Host (INT)

In some applications, the host does not always monitor the charger operation. The $\overline{\text{INT}}$ pulse notifies the system on the device operation. The following events will generate 256- μs INT pulse.

- Good input source detected
 - VBUS above battery (not in sleep)
 - VBUS below V_{ACOV} threshold
 - VBUS above $V_{POORSRC}$ (typical 3.8 V) when I_{BADSRC} (typical 30 mA) current is applied (not a poor source)
- Input removed
- USB/adapter source identified during *Input Source Type Detection*.
- Charge Complete
- Any FAULT event in REG09
- VINDPM / IINDPM event detected (maskable)
- Top off timer starts and expires

REG09[7:0] and REG0A[6:4] report charger operation faults and status change to the host. When a fault/status change occurs, the charger device sends out INT and keeps the state in REG09[7:0]/REG0A[6:4] until the host reads the registers. Before the host reads REG09[7:0]/REG0A[6:4] and all the ones are cleared, the charger device would not send any INT upon new fault/status change. To read the current status, the host has to read REG09/REG0A two times consecutively. The first read reports the pre-existing register status and the second read reports the current register status.

8.3.8.4 PMID Voltage Indicator (PMID_GOOD)

In BQ25619, the accessory devices is connected on PMID pin to get power from either adapter through Q1 or battery through boost mode. In boost mode, the device regulates PMID voltage around 5 V as a stable power supply to the accessory devices. However, when adapter plugs in, its voltage could be as high as 13.5 V. During the fault condition in the accessory device, its current could exceed the rating of the adapter. PMID_GOOD goes from HIGH to LOW when one of the following conditions is valid:

- Q1 turns off when adapter is present.
- PMID voltage exceeds 5.6 V (V_{OTG_OVP})
- Q1 current exceeds 115% of IINDPM threshold. (I_{BLK_OCP})
- PMID voltage falls below $V_{POORSRC}$.
- During OTG mode, when BATFET over current ($I_{OTG_OCP_Q4}$) is detected.

Once PMID_GOOD is asserted, host may take actions to disconnect the accessories from the PMID. The device will keep charging the battery if all the charge enable conditions are valid.

8.3.9 Protections

8.3.9.1 Voltage and Current Monitoring in Buck Mode

8.3.9.1.1 Input Over-Voltage Protection (ACOV)

The input voltage is sensed via the VAC pin and the ACDRV pin is used to control the external FET gate for protection. The OVP threshold is 14.2 V, and can be programmed at 5.7 V/6.4 V/11 V/14.2 V via OVP register bits. ACOV event will immediately stop converter switching whether in buck or boost mode. The device will automatically resume normal operation once the input voltage drops back below the OVP threshold.

During input over-voltage event (ACOV), the fault register CHRG_FAULT bits are set to 01. An $\overline{\text{INT}}$ pulse is asserted to the host.

8.3.9.1.2 System Over-Voltage Protection (SYSOVP)

The charger device clamps the system voltage during load transient so that the components connect to system would not be damaged due to high voltage. SYSOVP threshold is about 300 mV above system regulation voltage. Upon SYSOVP, converter stops switching immediately to clamp the overshoot. The charger provides 30-mA discharge current to bring down the system voltage.

8.3.9.2 Voltage and Current Monitoring in Boost Mode

8.3.9.2.1 VBUS Soft Start

When the boost function is enabled, the device soft-starts boost mode to avoid inrush current.

8.3.9.2.2 Boost Mode Over-Voltage Protection

When the PMID voltage rises above regulation target and exceeds V_{OTG_OVP} , the device stops switching immediately and the device exits OTG mode. OTG_CONFIG bit is set to 0. During boost over-voltage, the fault register bit BOOST_FAULT is set to 1 to indicate fault in boost operation. An INT is asserted to the host.

8.3.9.2.3 PMID Over-Current Protection

The BQ25619 closely monitors the battery discharge current through BATFET (Q4) to ensure safe boost mode operation. During over-current condition when output current exceeds $I_{OTG_OCP_Q4}$, the device stops converter in 100 μ s. When over-current condition is detected, the fault register bit BOOST_FAULT is set high to indicate fault in boost operation. An INT is asserted to the host. If the over-current condition is removed, the boost converter returns to normal operation.

8.3.9.3 Thermal Regulation and Thermal Shutdown

8.3.9.3.1 Thermal Protection in Buck Mode

Besides the battery temperature monitor on TS pin, the device monitors the internal junction temperature T_J to avoid overheat the chip and limits the IC surface temperature in buck mode. When the internal junction temperature exceeds thermal regulation limit (110°C), the device lowers down the charge current. During thermal regulation, the actual charging current is usually below the programmed battery charging current. Therefore, termination is disabled, the safety timer runs at half the clock rate, and the status register THERM_STAT bit goes high.

Additionally, the device has thermal shutdown to turn off the converter and BATFET when IC surface temperature exceeds T_{SHUT} 150°C. The BATFET and converter is enabled to recover when IC temperature is 130°C. The fault register CHRG_FAULT is set to 1 during thermal shutdown and an INT is asserted to the host.

8.3.9.3.2 Thermal Protection in Boost Mode

Besides the battery temperature monitor on TS pin, The device monitors the internal junction temperature to provide thermal shutdown during boost mode. When IC junction temperature exceeds T_{SHUT} 150°C, the boost mode is disabled by setting OTG_CONFIG bit low . When IC junction temperature is below 145°C, the host can re-enable OTG mode.

8.3.9.4 Battery Protection

8.3.9.4.1 Battery Over-Voltage Protection (BATOVP)

The battery over-voltage limit is clamped at 4% above the battery regulation voltage. When battery over voltage occurs, the charger device immediately stops switching. The fault register BAT_FAULT bit goes high and an INT is asserted to the host.

8.3.9.4.2 Battery Over-Discharge Protection

When battery is discharged below $V_{BAT_DPL_FALL}$, the BATFET will latch off to protect battery from over discharge. To recover from over-discharge latch-off, an input source plug-in is required at VAC/VBUS.

8.3.9.4.3 System Over-Current Protection

$I_{OTG_OCP_Q4}$ sets battery discharge current limit. Once $IBAT > I_{OTG_OCP_Q4}$, charger will latch off Q4 and put the device into ship mode. All methods to exit ship mode are valid to bring the part out of Q4 latch off.

8.3.10 Serial Interface

The device uses I²C compatible interface for flexible charging parameter programming and instantaneous device status reporting. I²CTM is a bi-directional 2-wire serial interface developed by Philips Semiconductor (now NXP Semiconductors). Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). Devices can be considered as masters or slaves when performing data transfers. A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.

The device operates as a slave device with address 6BH, receiving control inputs from the master device like micro controller or a digital signal processor through REG00-REG14. Register read beyond REG14(0x14) returns 0xFF. The I²C interface supports both standard mode (up to 100 kbits), and fast mode (up to 400 kbits). connecting to the positive supply voltage via a current source or pull-up resistor. When the bus is free, both lines are HIGH. The SDA and SCL pins are open drain.

8.3.10.1 Data Validity

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each data bit transferred.

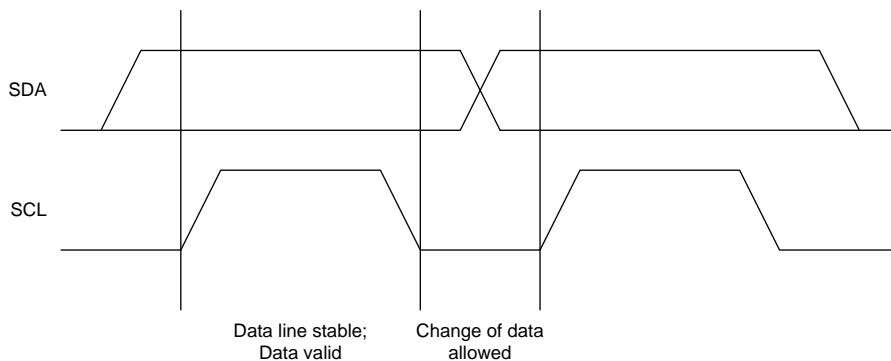


Figure 7. Bit Transfer on the I²C Bus

8.3.10.2 START and STOP Conditions

All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the SCL is HIGH defines a STOP condition. START and STOP conditions are always generated by the master. The bus is considered busy after the START condition, and free after the STOP condition.

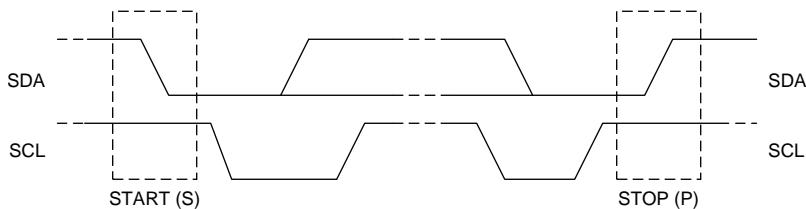
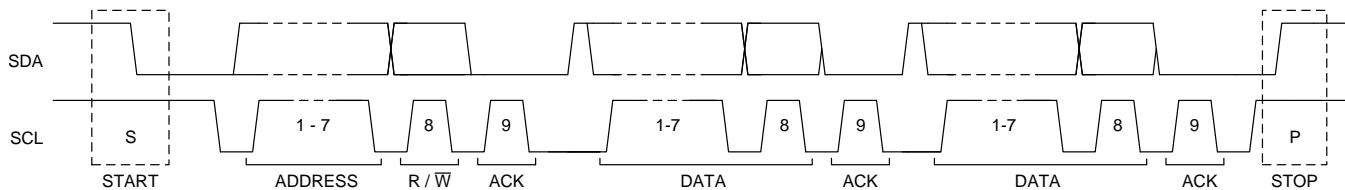


Figure 8. TS START and STOP conditions

8.3.10.3 Byte Format

Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed some other function, it can hold the clock line SCL low to force the master into a wait state (clock stretching). Data transfer then continues when the slave is ready for another byte of data and release the clock line SCL.

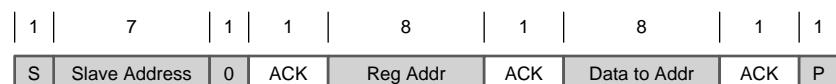
Figure 9. Data Transfer on the I²C Bus

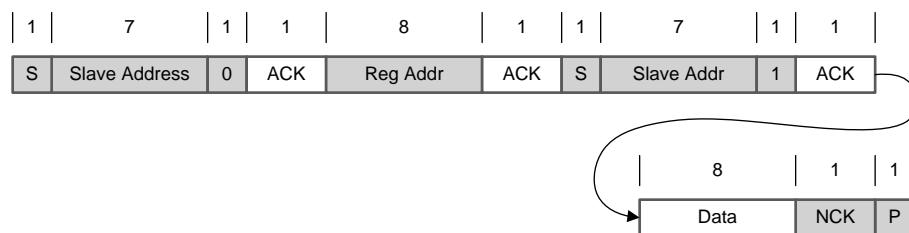

8.3.10.4 Acknowledge (ACK) and Not Acknowledge (NACK)

The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter that the byte was successfully received and another byte may be sent. All clock pulses, including the acknowledge ninth clock pulse, are generated by the master. The transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line LOW and it remains stable LOW during the HIGH period of this clock pulse.

When SDA remains HIGH during the ninth clock pulse, this is the Not Acknowledge signal. The master can then generate either a STOP to abort the transfer or a repeated START to start a new transfer.

8.3.10.5 Slave Address and Data Direction Bit


After the START, a slave address is sent. This address is 7 bits long followed by the eighth bit as a data direction bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).


Figure 10. Complete Data Transfer

8.3.10.6 Single Read and Write

If the register address is not defined, the charger IC send back NACK and go back to the idle state.

Figure 11. Single Write

Figure 12. Single Read

8.3.10.7 Multi-Read and Multi-Write

The charger device supports multi-read and multi-write on REG00 through REG0C.

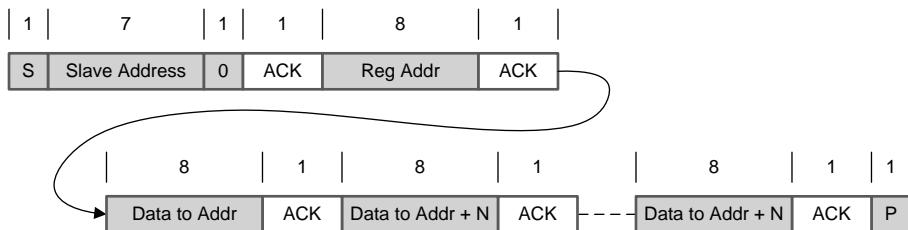


Figure 13. Multi-Write

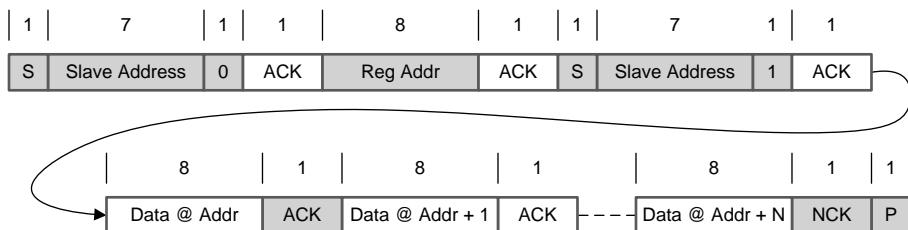


Figure 14. Multi-Read

REG09[7:0]/REG0A[6:4] are fault/status change register. They keep all the fault/status information from last read until the host issues a new read. For example, if Charge Safety Timer Expiration fault occurs but recovers later, the fault register REG09 reports the fault when it is read the first time, but returns to normal when it is read the second time. In order to get the fault information at present, the host has to read REG09/REG0A for the second time.

8.4 Device Functional Modes

8.4.1 Host Mode and Default Mode

The device is a host controlled charger, but it can operate in default mode without host management. In default mode, the device can be used an autonomous charger with no host or while host is in sleep mode. When the charger is in default mode, WATCHDOG_FAULT bit is HIGH. When the charger is in host mode, WATCHDOG_FAULT bit is LOW.

After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the registers are in the default settings.

In default mode, the device keeps charging the battery with 10-hour fast charging safety timer. At the end of the 10-hour, the charging is stopped and the buck converter continues to operate to supply system load. Any write command to device transitions the charger from default mode to host mode. All the device parameters can be programmed by the host. To keep the device in host mode, the host has to reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT bit is set), or disable watchdog timer by setting WATCHDOG bits = 00.

All the device parameters can be programmed by the host. To keep the device in host mode, the host has to reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT bit is set), or disable watchdog timer by setting WATCHDOG bits = 00.

Device Functional Modes (continued)

Figure 15. Watchdog Timer Flow Chart

8.5 Register Maps

I²C Slave Address: 6BH

Default I²C Slave Address: 0x6B (1101 011B + R/W)

Table 5. I²C Registers

Address	Access Type	Acronym	Register Name	Section
00h	R/W	REG00	Input Current Limit	Go
01h	R/W	REG01	Charger Control 0	Go
02h	R/W	REG02	Charge Current Limit	Go
03h	R/W	REG03	Precharge and Termination Current Limit	Go
04h	R/W	REG04	Battery Voltage Limit	Go
05h	R/W	REG05	Charger Control 1	Go
06h	R/W	REG06	Charger Control 2	Go
07h	R/W	REG07	Charger Control 3	Go
08h	R	REG08	Charger Status 0	Go
09h	R	REG09	Charger Status 1	Go
0Ah	R	REG0A	Charger Status 2	Go
0Bh	R	REG0B	Part Information	Go
0Ch	R/W	REG0C	Charger Control 4	Go

Complex bit access types are encoded to fit into small table cells. [Table 6](#) shows the codes that are used for access types in this section.

Table 6. I²C Access Type Codes

Access Type	Code	Description
Read Type		
R	R	Read
Write Type		
W	W	Write
Reset Value		
-n		Value after reset
-X		Undefined value

8.5.1 Input Current Limit Register (Address = 00h) [reset = 0Bh]

Figure 16. REG00 Register

7	6	5	4	3	2	1	0
0	0	0	0	1	0	1	1
R/W							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7. REG00 Field Descriptions

Bit	Field	POR	Type	Reset	Description		
7	EN_HIZ	0	R/W	by REG_RST by Watchdog	HIZ mode enable 0 – Disable (default) 1 – Enable		
6	TS_IGNORE	0	R/W	by REG_RST	When charger does not monitor the NTC, host sets this bit to 1 to ignore the TS pin condition during charging and OTG. It saves two resistors in the BOM. 0 – Include TS pin into charge and OTG enable conditions. (default) 1 – Ignore TS pin. Always consider TS is good to allow charging and OTG. NTC_FAULT bits are 000 to report normal status.		
5	BATSNS_DIS	0	R/W	by REG_RST	Select either BATSNS pin or BAT pin to regulate battery voltage. 0 – Enable BATSNS in battery CV regulation. If the device fails BATSNS open/short detection (BATSNS_STAT = 1). Battery voltage is regulated through BAT pin. (default) 1 – Disable BATSNS. Use BAT pin in battery CV regulation.		
4	IINDPM[4]	1	R/W	by REG_RST	1600 mA	Input current limit setting (maximum limit, not typical) Offset: 100 mA Range: 100 mA (000000) – 3.2 A (11111) Default: 2400 mA (10111) IINDPM bits are changed automatically after <i>Input Source Type Detection</i> is completed PSEL HIGH = 500 mA PSEL LOW = 2.4 A Host can reprogram IINDPM register bits after input source detection is completed.	
3	IINDPM[3]	0	R/W	by REG_RST	800 mA		
2	IINDPM[2]	1	R/W	by REG_RST	400 mA		
1	IINDPM[1]	1	R/W	by REG_RST	200 mA		
0	IINDPM[0]	1	R/W	by REG_RST	100 mA		

LEGEND: R/W = Read/Write; R = Read only

8.5.2 Charger Control 0 Register (Address = 01h) [reset = 1Ah]

Figure 17. REG01 Register

7	6	5	4	3	2	1	0
0	0	0	1	1	0	1	0
R/W							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8. REG01 Field Descriptions

Bit	Field	POR	Type	Reset	Description
7	PFM_DIS	0	R/W	by REG_RST by Watchdog	PFM disable 0 – PFM enable (default) 1 – PFM disable
6	WD_RST	0	R/W	by REG_RST by Watchdog	I ² C Watchdog Timer Reset. Back to 0 after watchdog timer reset 0 – Normal (default) 1 – Reset
5	OTG_CONFIG	0	R/W	by REG_RST by Watchdog	OTG boost mode enable. In charging case application, based on adapter plug-in or removal, the charger will automatically transit between charging mode and OTG mode by setting OTG_CONFIG bit and CHG_CONFIG bit both to 1. 0 – OTG disable (default) 1 – OTG enable
4	CHG_CONFIG	1	R/W	by REG_RST by Watchdog	Battery charging buck mode mode enable. Charge is enabled when \overline{CE} pin is pulled low, CHG_CONFIG bit is 1 and charge current is not zero. 0 – Charge Disable 1 – Charge Enable (default)
3	SYS_MIN[2]	1	R/W	by REG_RST	System minimum voltage setting. 000 – 2.6 V
2	SYS_MIN[1]	0	R/W	by REG_RST	001 – 2.8 V 010 – 3 V 011 – 3.2 V 100 – 3.4 V 101 – 3.5 V (default) 110 – 3.6 V 111 – 3.7 V
1	SYS_MIN[0]	1	R/W	by REG_RST	Minimum battery voltage when exiting OTG boost mode. 0 – 2.8 V BAT falling (default) 1 – 2.5 V BAT falling
0	MIN_VBAT_SEL	0	R/W	by REG_RST	

LEGEND: R/W = Read/Write; R = Read only

8.5.3 Charge Current Limit Register (Address = 02h) [reset = 91h]

Figure 18. REG02 Register

7	6	5	4	3	2	1	0
1	0	0	1	0	0	0	1
R/W							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. REG02 Field Descriptions

Bit	Field	POR	Type	Reset	Description	
7	Reserved					
6	Q1_FULLON	0	R/W	by REG_RST	In buck mode, charger will fully turn on Q1 BLKFET according to this bit setting when IINDPM is below 700 mA. When IINDPM is over 700 mA, Q1 is always fully on. 0 – Partially turn on Q1 for better regulation accuracy when IINDPM is below 700 mA. (default) 1 – Fully turn on Q1 for better efficiency when IINDPM is below 700 mA.	
5	ICHG[5]	0	R/W	by REG_RST by Watchdog	640 mA	Fast charge current setting Default: 340 mA (010001) Range: 0 mA (0000001) – 1180 mA (111011), 20 mA/step 1290 mA (111011) – 1500 mA (111111), 70 mA/step ICHG 0 mA disables charge.
4	ICHG[4]	1	R/W	by REG_RST by Watchdog	320 mA	
3	ICHG[3]	0	R/W	by REG_RST by Watchdog	160 mA	
2	ICHG[2]	0	R/W	by REG_RST by Watchdog	80 mA	
1	ICHG[1]	0	R/W	by REG_RST by Watchdog	40 mA	
0	ICHG[0]	1	R/W	by REG_RST by Watchdog	20 mA	

LEGEND: R/W = Read/Write; R = Read only

8.5.4 Precharge and Termination Current Limit Register (Address = 03h) [reset = 12h]

Figure 19. REG03 Register

7	6	5	4	3	2	1	0
0	0	0	1	0	0	1	0
R/W							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. REG03 Field Descriptions

Bit	Field	POR	Type	Reset	Description	
7	IPRECHG[3]	0	R/W	by REG_RST by Watchdog	160 mA	Pre-charge current setting Default: 40 mA (0001) Range: 20 mA (0000) – 260 mA (1100) Offset: 20 mA Note: $I_{PRECHG} > 260$ mA is clamped to 260 mA (1100)
6	IPRECHG[2]	0	R/W	by REG_RST by Watchdog	80 mA	
5	IPRECHG[1]	0	R/W	by REG_RST by Watchdog	40 mA	
4	IPRECHG[0]	1	R/W	by REG_RST by Watchdog	20 mA	
3	ITERM[3]	0	R/W	by REG_RST by Watchdog	160 mA	Termination current setting Default: 60 mA (0010) Range: 20 mA – 260 mA (1100) Offset: 20 mA
2	ITERM[2]	0	R/W	by REG_RST by Watchdog	80 mA	
1	ITERM[1]	1	R/W	by REG_RST by Watchdog	40 mA	
0	ITERM[0]	0	R/W	by REG_RST by Watchdog	20 mA	

LEGEND: R/W = Read/Write; R = Read only

8.5.5 Battery Voltage Limit Register (Address = 04h) [reset = 40h]

Figure 20. REG04 Register

7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	0
R/W							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. REG04 Field Descriptions

Bit	Field	POR	Type	Reset	Description
7	VBATREG[4]	0	R/W	by REG_RST by Watchdog	
6	VBATREG[3]	1	R/W	by REG_RST by Watchdog	Battery voltage setting Default: 4.200 V (01000) 00000 – 00110, 3.5 V - 4.1 V, 100 mV/step 00111 – 4.15 V
5	VBATREG[2]	0	R/W	by REG_RST by Watchdog	01000 – 4.20 V 01001 – 11111 – 4.30 V - 4.52 V, 10 mV/step
4	VBATREG[1]	0	R/W	by REG_RST by Watchdog	
3	VBATREG[0]	0	R/W	by REG_RST by Watchdog	
2	TOPOFF_TIMER[1]	0	R/W	by REG_RST by Watchdog	Top-off timer setting. 00 – Disabled (Default) 01 – 15 minutes
1	TOPOFF_TIMER[0]	0	R/W	by REG_RST by Watchdog	10 – 30 minutes 11 – 45 minutes
0	VRECHG	0	R/W	by REG_RST by Watchdog	Battery recharge threshold setting. 0 – 100 mV (default) 1 – 200 mV

LEGEND: R/W = Read/Write; R = Read only

8.5.6 Charger Control 1 Register (Address = 05h) [reset = 5Ch]

Figure 21. REG05 Register

7	6	5	4	3	2	1	0
0	1	0	1	1	1	0	0
R/W							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. REG05 Field Descriptions

Bit	Field	POR	Type	Reset	Description
7	EN_TERM	1	R/W	by REG_RST by Watchdog	Battery charging termination enable. 0 – Disable 1 – Enable (default)
6	Reserved	0	R/W	by REG_RST by Watchdog	
5	WATCHDOG[1]	0	R/W	by REG_RST by Watchdog	Watchdog timer setting. 00 – Disable timer 01 – 40 s (default) 10 – 80 s 11 – 160 s
4	WATCHDOG[0]	1	R/W	by REG_RST by Watchdog	
3	EN_TIMER	1	R/W	by REG_RST by Watchdog	Battery charging safety timer enable, including both fast charge and pre-charge timers. Precharge timer is 2 hours. Fast charge timer is set by REG05[2] 0 – Disable 1 – Enable timer (default)
2	CHG_TIMER	1	R/W	by REG_RST by Watchdog	Battery fast charging safety timer setting. 0 – 20 hrs 1 – 10 hrs (default)
1	TREG	1	R/W	by REG_RST by Watchdog	Thermal Regulation Threshold: 0 – 90°C 1 – 110°C (default)
0	JEITA_VSET (45C-60C)	0	R/W	by REG_RST by Watchdog	Battery voltage setting during JEITA warm (T3 - T5, typically 45C - 60C) 0 – Set Charge Voltage to 4.1 V (max) (default) 1 – Set Charge Voltage to VREG

LEGEND: R/W = Read/Write; R = Read only

8.5.7 Charger Control 2 Register (Address = 06h) [reset = E6h]

Figure 22. REG06 Register

7	6	5	4	3	2	1	0
1	1	1	0	0	1	1	0
R/W							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. REG06 Field Descriptions

Bit	Field	POR	Type	Reset	Description	
7	OVP[1]	1	R/W	by REG_RST	VAC OVP threshold during buck mode and boost mode. 00 – 5.7 V	
6	OVP[0]	1	R/W	by REG_RST	01 – 6.4 V (5-V input) 10 – 11 V (9-V input) 11 – 14.2 V (12-V input) (default)	
5	BOOSTV[1]	1	R/W	by REG_RST	Boost regulation voltage setting 00 – 4.6 V	
4	BOOSTV[0]	0	R/W	by REG_RST	01 – 4.75 V 10 – 5.0 V (default) 11 – 5.15 V	
3	VINDPM[3]	0	R/W	by REG_RST	800 mV	VINDPM threshold setting Default: 4.5 V (0110) Range: 3.9 V (0000) – 5.4 V (1111) Offset: 3.9 V
2	VINDPM[2]	1	R/W	by REG_RST	400 mV	
1	VINDPM[1]	1	R/W	by REG_RST	200 mV	
0	VINDPM[0]	0	R/W	by REG_RST	100 mV	

LEGEND: R/W = Read/Write; R = Read only

8.5.8 Charger Control 3 Register (Address = 07h) [reset = 4Ch]

Figure 23. REG07 Register

7	6	5	4	3	2	1	0
0	1	0	0	1	1	0	0
R/W							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. REG07 Field Descriptions

Bit	Field	POR	Type	Reset	Description
7	IINDET_EN	0	R/W	by REG_RST by Watchdog	Force input current detection. After the detection is complete, this bit returns to 0. 0 – Not in input current limit detection. (default) 1 – Force input current limit detection when VBUS is present.
6	TMR2X_EN	1	R/W	by REG_RST by Watchdog	Safety timer is slowed by 2X during input DPM, JEITA cool/warm or thermal regulation. 0 – Disable. Safety timer duration is set by REG05[2]. 1 – Safety timer slowed by 2X during input DPM (both V and I) or JEITA cool/warm (except ICHG=100%), or thermal regulation. (default)
5	BATFET_DIS	0	R/W	by REG_RST	BATFET Q4 ON/OFF control. Set this bit to 1 to enter ship mode. To set the device into ship mode with adapter present, the host shall set BATFET_RST_WVBUS to 1 and then BATFET_DIS to 1. 0 – Turn on Q4. (default) 1 – Turn off Q4 after t_{BATFET_DLY} delay time (REG07[3])
4	BATFET_RST_WVBUS	0	R/W	by REG_RST	Start BATFET full system reset with or without adapter present. 0 – Start BATFET full system reset after adapter is removed from VBUS. (default) 1 – Start BATFET full system reset when adapter is present on VBUS.
3	BATFET_DLY	1	R/W	by REG_RST	Delay from BATFET_DIS (REG07[5]) set to 1 to BATFET turn off during ship mode. 0 – Turn off BATFET immediately when BATFET_DIS bit is set. 1 – Turn off BATFET after t_{BATFET_DLY} (typ 10 s) when BATFET_DIS bit is set. (default)
2	BATFET_RST_EN	1	R/W	by REG_RST by Watchdog	Enable BATFET full system reset. The time to start of BATFET full system reset is based on the setting of BATFET_RST_WVBUS bit. 0 – Disable BATFET reset function 1 – Enable BATFET reset function when REG07[5] is also 1. (default)
1	VINDPM_BAT_TRACK[1]	0	R/W	by REG_RST	Sets VINDPM to track BAT voltage. Actual VINDPM is higher of register value and VBAT + VINDPM_BAT_TRACK. 00 – Disable function (VINDPM set by register) (default) 01 – VBAT + 200 mV 10 – VBAT + 250 mV 11 – VBAT + 300 mV
0	VINDPM_BAT_TRACK[0]	0	R/W	by REG_RST	

LEGEND: R/W = Read/Write; R = Read only

8.5.9 Charger Status 0 Register (Address = 08h)

Figure 24. REG08

7	6	5	4	3	2	1	0
x	x	x	x	x	x	x	x
R	R	R	R	R	R	R	R

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. REG08 Field Descriptions

Bit	Field	POR	Type	Reset	Description
7	VBUS_STAT[2]	x	R	NA	VBUS Status register 000 – No input 001 – USB Host SDP (500 mA) → PSEL pin HIGH 011 – Adapter 2.4 A → PSEL pin LOW 111 – OTG Software current limit is reported in IINDPM register
6	VBUS_STAT[1]	x	R	NA	
5	VBUS_STAT[0]	x	R	NA	
4	CHRG_STAT[1]	x	R	NA	Charging status: 00 – Not Charging 01 – Pre-charge or trickle charge (< $V_{BATLOWV}$) 10 – Fast Charging 11 – Charge Termination
3	CHRG_STAT[0]	x	R	NA	
2	PG_STAT	x	R	NA	Power Good status: 0 – Power Not Good 1 – Power Good
1	THERM_STAT	x	R	NA	0 – Not in thermal regulation 1 – In thermal regulation
0	VSYS_STAT	x	R	NA	0 – Not in VSYSMin regulation (BAT > VSYSMin) 1 – In VSYSMin regulation (BAT < VSYSMin)

LEGEND: R/W = Read/Write; R = Read only

8.5.10 Charger Status 1 Register (Address = 09h)

Figure 25. REG09 Register

7	6	5	4	3	2	1	0
1	x	x	x	x	x	x	x
R	R	R	R	R	R	R	R

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. REG09 Field Descriptions

Bit	Field	POR	Type	Reset	Description
7	WATCHDOG_FAULT	1	R	NA	0 – Normal, device is in host mode, 1 – Watchdog timer expiration, device is in default mode.
6	BOOST_FAULT	x	R	NA	0 – Normal, 1 – Fault detected in boost mode, including VBUS overloaded, or VBUS OVP, or battery is too low (any conditions that we cannot start boost function)
5	CHRG_FAULT[1]	x	R	NA	00 – Normal, 01 – Input fault (VAC OVP or VBAT < VBUS < 3.8 V), 10 – Thermal shutdown, 11 – Charge Safety Timer Expiration
4	CHRG_FAULT[0]	x	R	NA	
3	BAT_FAULT	x	R	NA	0 – Normal, 1 – Battery over voltage.
2	NTC_FAULT[2]	x	R	NA	TS fault in buck mode 000 – Normal, 010 – Warm, 011 – Cool, 101 – Cold, 110 – Hot
1	NTC_FAULT[1]	x	R	NA	
0	NTC_FAULT[0]	x	R	NA	TS fault in boost mode 000 – Normal, 101 – Cold, 110 – Hot (Boost mode)

LEGEND: R/W = Read/Write; R = Read only

8.5.11 Charger Status 2 Register (Address = 0Ah)

Figure 26. REG0A Register

7	6	5	4	3	2	1	0
x	x	x	x	x	x	0	0
R	R	R	R	R	R	R/W	R/W

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 17. REG0A Field Descriptions

Bit	Field	POR	Type	Reset	Description
7	VBUS_GD	x	R	NA	0 – VBUS does not pass poor source detection 1 – VBUS passes poor source detection
6	VINDPM_STAT	x	R	NA	0 – Not in VINDPM 1 – In VINDPM
5	IINDPM_STAT	x	R	NA	0 – Not in IINDPM 1 – In IINDPM
4	BATSNS_STAT	x	R	NA	0 – BATSNS pin is in good connection. Regulation battery voltage through BATSNS pin. 1 – BATSNS pin is open/short. Regulate battery voltage through BAT pin.
3	TOPOFF_ACTIVE	x	R	NA	0 – Top off timer not counting. 1 – Top off timer counting
2	ACOV_STAT	x	R	NA	0 – Not in ACOV 1 – In ACOV
1	VINDPM_INT_ MASK	0	R/W	by REG_RST	\overline{INT} is asserted during VINDPM 0 – Allow VINDPM \overline{INT} pulse (default) 1 – Mask VINDPM \overline{INT} pulse
0	IINDPM_INT_ MASK	0	R/W	by REG_RST	\overline{INT} is asserted during IINDPM 0 – Allow IINDPM \overline{INT} pulse (default) 1 – Mask IINDPM \overline{INT} pulse

LEGEND: R/W = Read/Write; R = Read only

8.5.12 Part Information Register (Address = 0Bh)

Figure 27. REG0B Register

7	6	5	4	3	2	1	0
0	0	1	0	1	1	0	0
R/W	R	R	R	R	R	R	R

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 18. REG0B Field Descriptions

Bit	Field	POR	Type	Reset	Description
7	REG_RST	0	R/W	NA	Register reset 0 – Keep current register setting (default) 1 – Reset to default register value and reset safety timer. This bit returns to 0 after register reset is completed.
6	Reserved	0	R	NA	
5	Reserved	1	R	NA	
4	Reserved	0	R	NA	
3	Reserved	1	R	NA	
2	Reserved	1	R	NA	1
1	Reserved	0	R	NA	
0	Reserved	0	R	NA	00

LEGEND: R/W = Read/Write; R = Read only

8.5.13 Charger Control 4 Register (Address = 0Ch) [reset = 75h]

Figure 28. REG0C

7	6	5	4	3	2	1	0
0	1	1	1	0	1	0	1
R/W							

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. REG0C Field Descriptions

Bit	Field	POR	Type	Reset	Description
7	JEITA_COOL_ISET [1]	0	R/W	by REG_RST by Watchdog	Fast charge current setting during cool temperature range (T1 - T2), as percentage of ICHG in REG02[5:0]. 00 – No Charge 01 – 20% of ICHG (default) 10 – 50% of ICHG 11 – 100% of ICHG (safety timer does not become 2X)
6	JEITA_COOL_ISET [0]	1	R/W	by REG_RST by Watchdog	
5	JEITA_WARM_ISET [1]	1	R/W	by REG_RST by Watchdog	Fast charge current setting during warm temperature range (T3 - T5), as percentage of ICHG in REG02[5:0]. 00 – No Charge 01 – 20% of ICHG 10 – 50% of ICHG 11 – 100% of ICHG (safety timer does not become 2X) (default)
4	JEITA_WARM_ISET [0]	1	R/W	by REG_RST by Watchdog	
3	JEITA_VT2 [1]	0	R/W	by REG_RST by Watchdog	00 – VT2% = 70.75% (5.5°C) 01 – VT2% = 68.25% (10°C) 10 – VT2% = 65.25% (15°C) 11 – VT2% = 62.25% (20°C)
2	JEITA_VT2 [0]	1	R/W	by REG_RST by Watchdog	
1	JEITA_VT3 [1]	0	R/W	by REG_RST by Watchdog	00 – VT3% = 48.25% (40°C) 01 – VT3% = 44.75% (44.5°C) 10 – VT3% = 40.75% (50.5°C) 11 – VT3% = 37.75% (54.5°C)
0	JEITA_VT3 [0]	1	R/W	by REG_RST by Watchdog	

LEGEND: R/W = Read/Write; R = Read only

9 Application and Implementation

NOTE

information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

A typical application consists of the device configured as an I²C controlled PowerPath management device and a single cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of smart phones and other portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET Q4) between the system and battery. The device also integrates a bootstrap diode for the high-side gate drive.

9.2 Typical Application

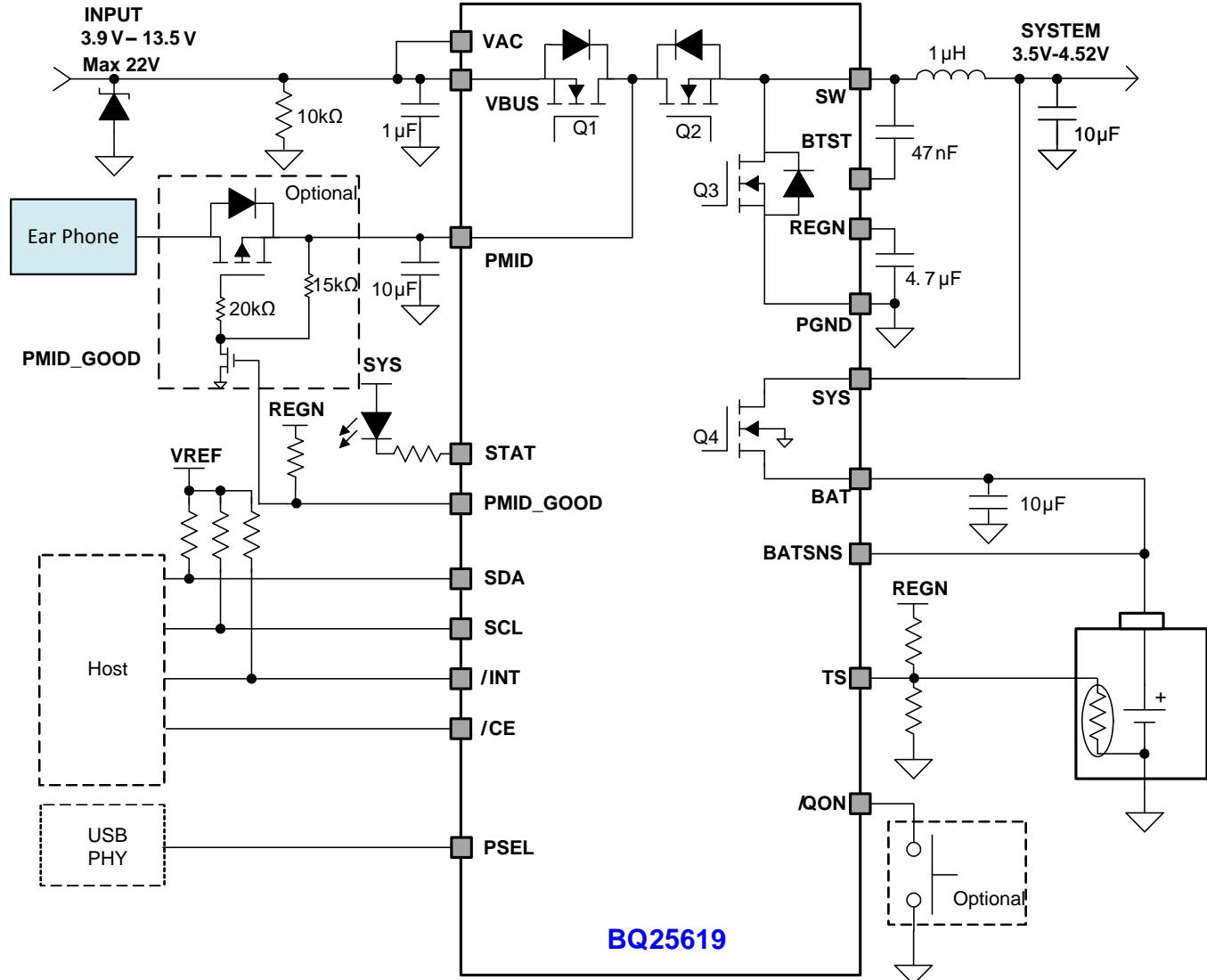


Figure 29. BQ25619 Application Diagram with Optional PMOS

Typical Application (continued)

9.2.1 Design Requirements

For this design example, use the parameters shown in the table below.

Table 20. Design Parameters

PARAMETER	VALUE
VBUS voltage range	3.9 to 13.5 V
Input current limit (REG00[4:0])	2.4 A
Fast charge current limit (RG02[5:0])	1.024 A
Minimum system voltage (REG01[3:1])	3.5 V
Battery regulation voltage (REG04[7:3])	4.2 V

9.2.2 Detailed Design Procedure

9.2.2.1 Inductor Selection

The 1.5-MHz switching frequency allows the use of small inductor and capacitor values to maintain an inductor saturation current higher than the charging current (I_{CHG}) plus half the ripple current (I_{RIPPLE}):

$$I_{SAT} \geq I_{CHG} + (1/2) I_{RIPPLE} \quad (2)$$

The inductor ripple current depends on the input voltage (V_{VBUS}), the duty cycle ($D = V_{BAT}/V_{VBUS}$), the switching frequency (f_S) and the inductance (L):

$$I_{RIPPLE} = \frac{V_{IN} \times D \times (1 - D)}{f_S \times L} \quad (3)$$

The maximum inductor ripple current occurs when the duty cycle (D) is 0.5 or approximately 0.5. Usually inductor ripple is designed in the range between 20% and 40% maximum charging current as a trade-off between inductor size and efficiency for a practical design.

9.2.2.2 Input Capacitor

Design input capacitance to provide enough ripple current rating to absorb input switching ripple current. The worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not operate at 50% duty cycle, then the worst case capacitor RMS current I_{Cin} occurs where the duty cycle is closest to 50% and can be estimated using [Equation 4](#).

$$I_{CIN} = I_{CHG} \times \sqrt{D \times (1 - D)} \quad (4)$$

Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be placed to the drain of the high-side MOSFET and source of the low-side MOSFET as close as possible. Voltage rating of the capacitor must be higher than normal input voltage level. A rating of 25-V or higher capacitor is preferred for 15-V input voltage. Capacitance of 22 μ F is suggested for typical of 3-A charging current.

9.2.2.3 Output Capacitor

Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current. [Equation 5](#) shows the output capacitor RMS current I_{COUT} calculation.

$$I_{COUT} = \frac{I_{RIPPLE}}{2 \times \sqrt{3}} \approx 0.29 \times I_{RIPPLE} \quad (5)$$

The output capacitor voltage ripple can be calculated as follows:

$$\Delta V_O = \frac{V_{OUT}}{8LCf^2} \left(1 - \frac{V_{OUT}}{V_{IN}} \right) \quad (6)$$

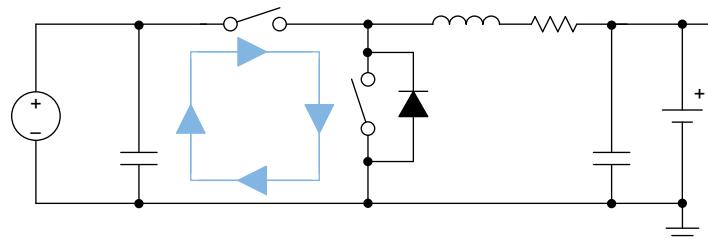
At certain input and output voltage and switching frequency, the voltage ripple can be reduced by increasing the output filter LC.

The charger device has internal loop compensation optimized for $>20\text{-}\mu\text{F}$ ceramic output capacitance. The preferred ceramic capacitor is 10-V rating, X7R or X5R.

10 Power Supply Recommendations

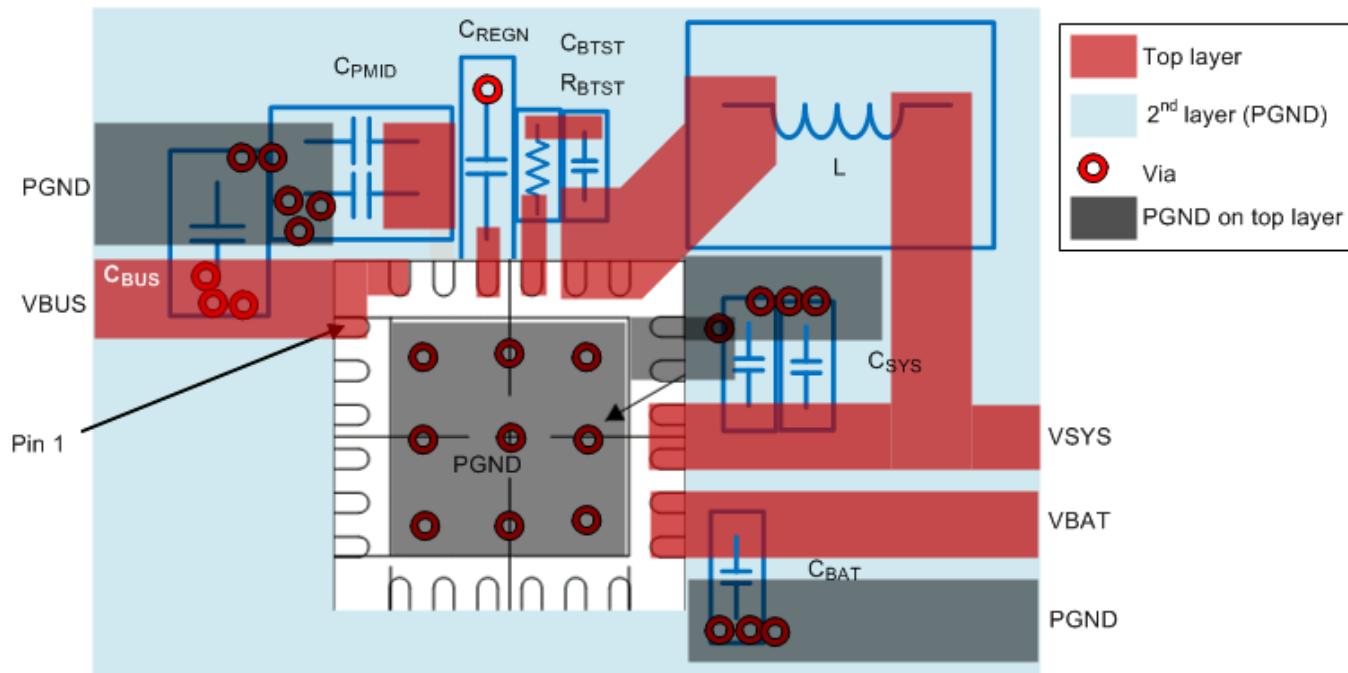
in order to provide an output voltage on SYS, the battery charger device requires a power supply between 3.9 V and 13.5 V input with at least 100-mA current rating connected to VBUS and a single-cell Li-Ion battery with voltage $> V_{BATUVLO}$ connected to BAT. The source current rating needs to be at least 3 A in order for the buck converter of the charger to provide maximum output power to SYS.

11 Layout


11.1 Layout Guidelines

The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the components to minimize high frequency current path loop (see [Figure 30](#)) is important to prevent electrical and magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the proper layout.

1. Place input capacitor as close as possible to PMID pin and GND pin connections and use shortest copper trace connection or GND plane.
2. Place inductor input pin to SW pin as close as possible. Minimize the copper area of this trace to lower electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other trace or plane.
3. Put output capacitor near to the inductor and the device. Ground connections need to be tied to the IC ground with a short copper trace connection or GND plane.
4. Route analog ground separately from power ground. Connect analog ground and connect power ground separately. Connect analog ground and power ground together using thermal pad as the single ground connection point. Or using a $0\text{-}\Omega$ resistor to tie analog ground to power ground.
5. Use single ground connection to tie charger power ground to charger analog ground. Just beneath the device. Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling.
6. Place decoupling capacitors next to the IC pins and make trace connection as short as possible.
7. It is critical that the exposed thermal pad on the backside of the device package be soldered to the PCB ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on the other layers.
8. Ensure that the number and sizes of vias allow enough copper for a given current path.


See the *BQ25619 BMS025 Evaluation Module EVM User's Guide* for the recommended component placement with trace and via locations. For the VQFN information, refer to *Quad Flatpack No-Lead Logic Packages Application Report* and *QFN and SON PCB Attachment Application Report*.

11.2 Layout Example

Figure 30. High Frequency Current Path

Layout Example (continued)

Figure 31. Layout Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following: [BQ25619 BMS025 Evaluation Module EVM User's Guide](#)

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community **TI's Engineer-to-Engineer (E2E) Community.** Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support **TI's Design Support** Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

12.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.7 Glossary

[SLYZ022 — TI Glossary](#).

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
PQ25619RTWR	ACTIVE	WQFN	RTW	24	3000	TBD	Call TI	Call TI	-40 to 85		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

(2) **RoHS:** TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

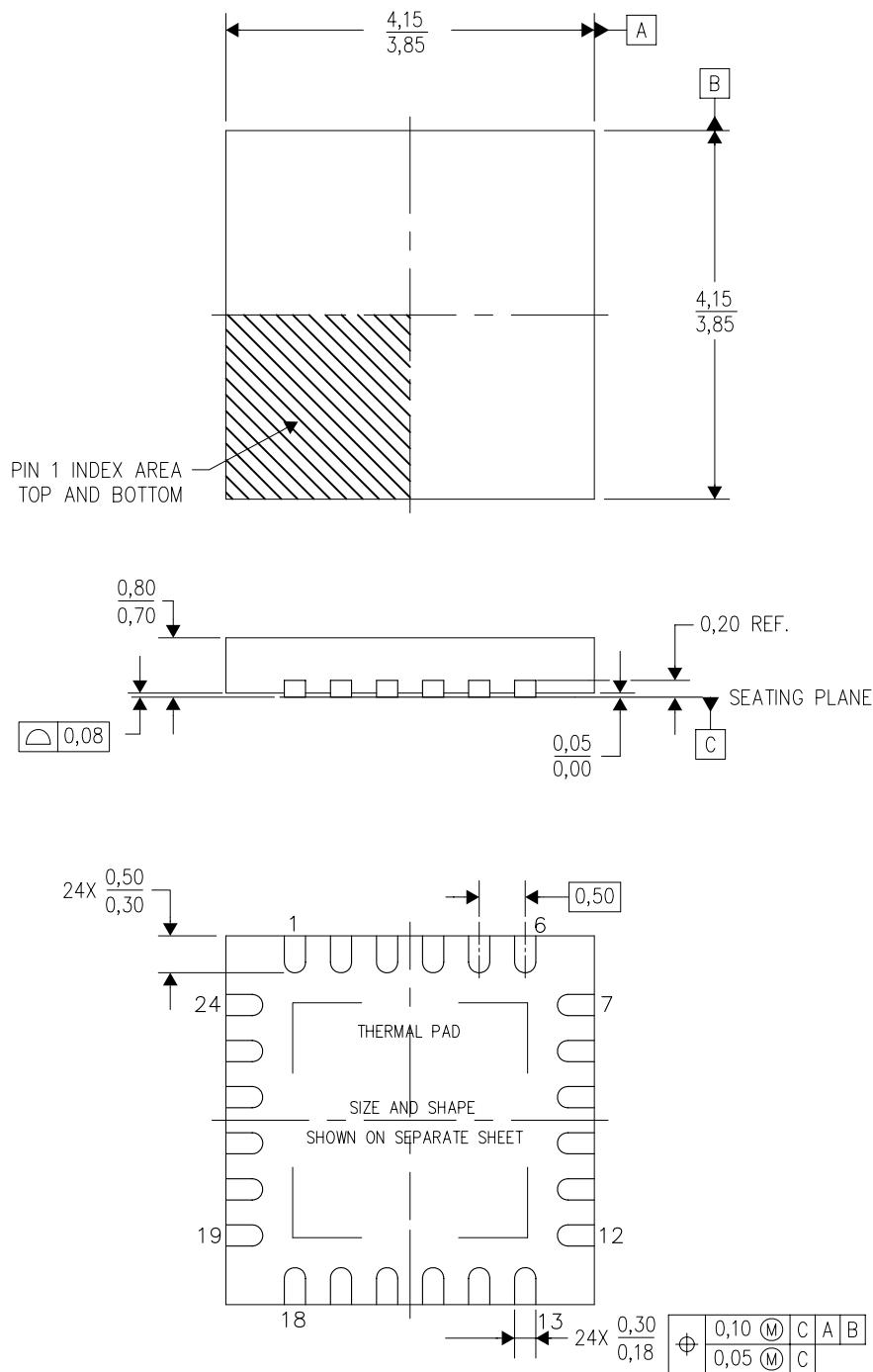
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

RTW (S-PWQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

4206244/C 07/11

NOTES:

- All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- This drawing is subject to change without notice.
- Quad Flatpack, No-Leads (QFN) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.
- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Falls within JEDEC MO-220.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated