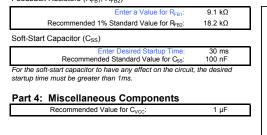


LM21212-1 Design Spreadsheet Rev. 3.2

The cells corresponding to parameters in Blue Text can be edited by the user. Red cells indicate potential design problems. Cells with comments are shown as: Part 1: Power Stage Component Selection

Enter Your Application Parameters Enter Your Input Voltage: Enter Your Output Voltage: 0.9 V Enter the Maximum Output Current: 12 A Enter the Switching Frequency: Enter the Maximum Output Voltage Ripple%: the Maximum Load Step Transient Magnitude: 500 kHz 1 % 8 A Inductor Selection (L) Recommended I 0.41 u⊢ Recommended I_{SAT}: 19.0 A Enter Your Chosen Inductor Value: 0.68 uH Enter The DCR of Your Inductor 5.5 mΩ Capacitor Selection (C_{IN} and C_{OUT}) Minimum Recommended Input Capacitance: 47 µF Minimum Input Capacitor RMS current rating: 4 88 Arms Minimum Recommended Output Capacitance: 472 uF Maximum Output Capacitor ESR: 4 mΩ 330 µF Enter Your Output Capacitor Value

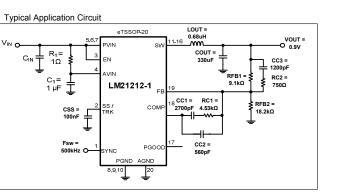

Part 2: Compensation

Compensation Component Selection (R_{C1}, C_{C1}, C_{C2}) 80 kHz er Your D Recommended Standard Value for C_{C1}: 12 nF Recommended 1% Standard Value for Rc1: 22.6 kΩ Recommended Standard Value for Cc2: 27 pF Recommended 1% Standard Value for R_{C2}: 0.649 kΩ Recommended Standard Value for C_{C3}: 1500 pF Enter Your Value for Cont 2.7 nF UPDATE Enter Your Value for R_{C1}: 4.53 kΩ Enter Your Value for C_{C2}: 560 pF Enter Your Value for Rea 0.75 kO Enter Your Value for Coa 1200 pF Loop Characteristics Expected Crossover Frequency: 19 kHz Expected Phase Margin

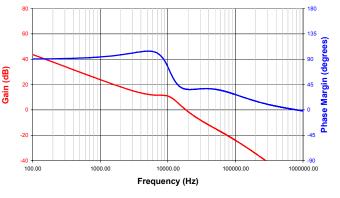
If the phase margin is less than desired, decrease the desired crossover frequency, increase the value of Cc1, or decrease the value of Cc2. A good

starting point for the crossover frequency is 80kHz.

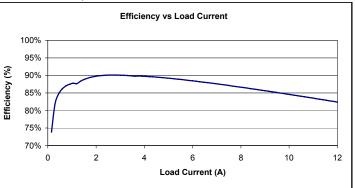
Part 3: Output Voltage and Soft-Start Feedback Resistors (R_{FB1} , R_{FB2})


Part 5: Thermal Performance

Enter Four Bound Fundholore		
Copper Area		
	•	1 in^2
Airflow		
	Þ	0 LFPM


Thermal Characteristics	
THETA JA:	24.8 °C/W
Ambient Temperature:	25 °C
Internal PD at Full Load Current: TJ at Full Load Current:	0.96 W 48.9 °C
I J at Full Load Current:	40.9 0

If the junction temperature (TJ) is greater than desired, increase the copp area or the airflow, or choose a lower switching frequency.


NOTE: THETA JA is reported as an estimate only. Measurements should always be taken to verify the junction temperature in the final design.

Calculated Efficiency vs Load Current

For datasheets, samples, evaluation boards, and design collateral visit:

http://www.national.com/pf/LM/LM21212-1.html