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Electromagnetic interference (EMI)
• I built my 65 W adapter prototype and resolved all functional issues

• I ran first-pass EMI scan – and my design failed – badly! ~100 dBµV
– How can I fix the EMI?
– Where do I start?

• This presentation will show how to get to a result like this, 
without necessarily adding a big EMI filter

48 dB 
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Agenda
• Introduction to EMI testing
• What causes EMI
• Differential-mode vs common-mode EMI 
• EMI mitigation options
• Analyzing the transformer 
• Troubleshooting & debug
• 65 W USB-PD example design using active clamp flyback (ACF) topology
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Product Sector CISPR Standard EN Standard FCC Standard
Automotive CISPR 25 EN 55025 --

Multimedia CISPR 32 EN 55032 Part 15

ISM CISPR 11 EN 55011 Part 18

Household appliances, electric 
tools and similar apparatus

CISPR 14-1 EN 55014-1 --

Lighting equipment CISPR 15 EN 55015 Part 15/18

Conducted emissions (CE) standards

4

• Summary of main product standards for conducted emissions

Reference: 
Timothy Hegarty, “An overview of conducted EMI specifications for power supplies,”  http://www.ti.com/lit/wp/slyy136/slyy136.pdf

http://www.ti.com/lit/wp/slyy136/slyy136.pdf


How conducted EMI is measured

[1] EN55022, 2010, “Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement”

• Equipment under test (EUT) placed on 
non-conductive table

• Horizontal & vertical ground planes
– Or screened room

• EUT powered through line impedance 
stabilization network (LISN)

• Measure high-frequency (HF) 
emissions from LISN
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LISN – Line impedance stabilization network
• Presents stable, consistent & repeatable line source impedance
• Separation of power source noise current for measurement 

• Low frequency power current passes straight through from AC source
• “Total” noise levels measured separately on L1 (live) and L2 (neutral)

** Functional equivalent circuit of a LISN, not a complete schematic **

EMI Receiver
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EMI receiver – Built-in detector types
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Component parasitics
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• Parasitic elements are the 
dominant cause of EMI issues

• EMI noise is coupled & propagated
through parasitic elements:
– Capacitive coupling
– Inductive coupling

• EMI filter performance is dominated by 
parasitic elements at higher frequency:
– Parasitic capacitance of inductors
– Parasitic inductance of capacitors
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LISN + EMI filter + power supply
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LISN – measures noise EMI filter – limits noise 
that gets to the LISN
(CM – red, DM – blue)

Power supply – generates the 
noise
(parasitic cap – red dotted)
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DM EMI filter and current path
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• DM EMI filter limits DM noise that gets to the LISN
– X-caps divert current away from LISN, keep local to power supply
– DM choke high impedance reduces size of current flowing to LISN
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CM EMI filter and current path
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• CM EMI filter limits CM noise that gets to the LISN
– Y-caps divert current away from LISN, keep local to the power supply
– CM choke high impedance reduces size of current flowing to LISN
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Why care about differential-mode (DM) EMI?
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• DM noise conducts to the AC utility supply network
• Long AC distribution cables – act as good dipole antenna
• Will inadvertently radiate switching noise and interfere with radio communications

– (E.g., noise @ ~100 MHz will affect FM radio) 



How is DM EMI generated?
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• Switching ripple current produces ripple voltage across ESR (& ESL)
• Ripple voltage is the DM noise that needs to be attenuated/filtered
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Mitigation options for DM noise
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• Include EMI at the design phase 
– Make design & component choices to minimize DM EMI signal amplitude
– Chose frequency, inductance, etc. to minimize PK-PK ripple current
– Choose capacitors with low ESR to minimize PK-PK ripple voltage
– Good PCB layout important to minimize EMI

• Design sufficient DM LC filter to reduce the ripple that gets onto the AC line input
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DM filter design methodology
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• Measure, simulate or calculate time-domain current 
waveform

• Fourier analysis of time-domain switching current 
– Convert waveform into harmonic components

• Establish required attenuation at each frequency 
– To get sufficient margin below the required EMI limit

• Design the DM filter to achieve required attenuation 
– Need to check all frequencies of interest
– Typically limited by lowest frequency inside 

measurement band
– Typically EMI starts at 150 kHz for AC/DC PSU 

to meet EN55022 or EN55032
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DM filter choke practical considerations
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• Choke requires high attenuation over wide bandwidth:
– Load current amplitude typically several amps
– At 50 dBµV, current in LISN 50 Ω resistor only ~6.3 µA

• Beware inductance roll-off with DC-bias
– Must not saturate to be effective – needs high current rating
– Consider the peak line current for non-PFC – high crest factor

• Switching power stage has fast changing magnetic fields
– Beware filter bypassing & noise coupling 

• Parasitic capacitance across DM inductor very important
– Reduces effectiveness, especially at high frequency

• Example: To filter 300 kHz component, typically set LC freq. ~30 kHz
– Expect ~40 dB attenuation at 300 kHz (double-pole Þ 40 dB/decade)
– With parasitic cap Þ more like 30 dB attenuation only – even worse at higher frequency
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Why care about common-mode (CM) EMI?
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• Again, AC distribution cables and output load cables act as good uni-polar antenna 
• CM noise will radiate from the cables and interfere with radio communications 



How is CM EMI generated? 
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• Switching voltage across parasitic capacitance causes CM current flow to EARTH
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How is CM EMI generated? 
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• Switching voltage across parasitic capacitance causes CM current flow to EARTH
• CM noise also radiated to other circuit nodes
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Observing the time-domain CM signal at the output
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• Useful debug technique – ball-park indication of CM performance
– Remove Y-cap temporarily (maximize signal)
– Power EUT through LISN, with resistor loads
– Wind several turns of wire around the load cables to 

create capacitive sensing coil (pickup coil)
– Connect scope EARTH lead to LISN EARTH
– Connect scope tip to sensing coil
– Scope plot shows how much CM is coupled to output



Interpretation of time-domain CM signal
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• Will see “switch-node” shaped waveform –
coupled to output

• Large PK-PK amplitude Þ bad CM noise
– Will require significant CM filtering to suppress
– Result from ACF example with 100 dBµV EMI

• Small PK-PK amplitude Þ good CM noise
– “Balanced” structure giving low CM
– Will require much smaller CM filter

• Residual HF “spikes” Þ should only need small 
HF CM choke

2 V/div, 2 µs/div 

200 mV/div, 10 µs/div 



Mitigation options for CM noise
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1. Shielding: 
– Reduce flow of HF current to EARTH

2. Cancellation: 
– Arrange transformer and power stage for 

balanced CM

3. Filtering: 
– Increase impedance of the EARTH return 

path
– Provide alternative routes for the HF current
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1. CM mitigation by shielding
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1. Shielding inside the transformer
– Internal shields between pri & sec

2. Shielding outside the transformer
– GNDed flux-band

3. Shielding of noisy circuit nodes
– GNDed heatsinks over/around high-voltage 

switching nodes

4. Shielding of EMI filter from switching cct.
– GNDed shields/enclosures around filter

1 2

4 3



Transformer internal shielding
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• Shield added to keep most of CM current local to primary 
• Shield is 1-turn winding Þ lower induced voltage, less voltage across parasitic 

capacitance between shield & sec Þ less CM current flows
• Shield must be thin (< 50 µm) Þ minimize induced eddy current loss

– Eddy currents get very significant as FSW increases



2. CM mitigation by cancellation/balance
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• Single-ended topologies – can add explicit 
additional cancellation elements
– Add auxiliary (AUX) transformer winding
– AUX voltage proportional to CM waveform
– Arrange AUX polarity for opposite phase

– Capacitor to inject cancelling current, ICM2, to 
balance CM current from primary, ICM1

– Injection capacitor explicit physical component 
added to design

– Or can use parasitic capacitance, e.g., CS-AUX, 
part of transformer structure



3. CM mitigation by filtering
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• CM filter uses high-impedance CM chokes and low-impedance Y-capacitors
• CM choke limits the flow of CM current from EARTH through the LISN
• Y-cap provides low impedance to keep CM current local to primary GND and away from LISN
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CM filter choke practical considerations
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• Frequency response of core material 
– High-µ cores Þ high L value @ low freq, but roll off fast at higher freq
– High-freq cores Þ low-µ, smaller L value @ low freq, better vs freq
– Sometimes need to use 2 CM chokes, 1 for LF & 1 for HF

• Split-wound vs bifilar-wound toroid
– Split-wound popular, lower cost, “free” DM choke from leakage field 
– Bifilar Þ 1-side insulated wire, higher cost, but better noise immunity

• Parasitic input-output cap – multi-layer windings
– Parasitic cap depends on number of turns & layers

• High CPAR input-output cap Þ worse @ HF
– Less layers Þ lower L, but also lower CPAR

– Sectional bobbins – used to reduce CPAR

Split-Wound*

Bifilar-Wound*

Multi-Section

L

CPAR

L

*CM choke 3-D images reproduced with permission of Wurth Elektronic



CM filter choke – Impact of CPAR
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• Split-wound 2-layer:
– 25T, 5.1 mH
– Excess pass margin @ LF
– Low pass margin @ 20 MHz

• Bifilar-wound 1-layer:
– 14T, 1.1 mH
– Low input-output CPAR 

– Lower L at LF, but better at HF 
– Better balance across frequency span

• Split-wound 1-layer:
– 14T, 1.4 mH
– Similar low input-output CPAR 

– Similar result as bifilar-wound
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CM choke example
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• Initial split-wound choke had issues due to asymmetric noise coupling 
from transformer 
– Shows up as big difference in EMI on L vs N

*CM choke 3-D image reproduced with permission of Wurth Elektronic



CM choke example
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• Changed to bifilar-wound choke, much 
better EMI result; less difference L vs N

• Much better noise immunity

12 dB 

*CM choke 3-D image reproduced with permission of Wurth Elektronic



Transformer CM noise analysis – PMP21479 ACF
• Initial design – interleaved flyback transformer construction, no internal shielding
• Same transformer used for initial test with poor 100 dbµV EMI result
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• Circuit connections to the ACF power stage
• Note the secondary low-side rectifier – causes inverted secondary winding polarity
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Transformer CM noise analysis – PMP21479 ACF



• Note that primary and secondary waveforms are inverse of each other
• This increases the CM voltage

– Caused by low-side rectifier
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Transformer CM noise analysis – PMP21479 ACF
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• Add CM balance auxiliary layer (purple) in-between inner PRI (noisier) to SEC interface:
– Fill layer completely – acts as shield between PRI & SEC
– Add turns to create CM balance, inject current to balance other PRI-SEC interface

34

Transformer CM balance – PMP21479 ACF

• NOTE: this example shows one way to add CM balance
• But there are many different ways to achieve the same CM result
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• PRI, SEC & AUX bias connections same as before
• CM auxiliary layer starts at PRI GND, and winds in SAME direction as SEC

Transformer CM balance – PMP21479 ACF
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• Waveforms – PRI & SEC same as before
• CM AUX – same phase as secondary – but amplitude increased to compensate for outer 

PRI

Transformer CM balance – PMP21479 ACF
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• CM AUX – need to adjust number of turns to balance the CM nulling

• Waveforms showing: 

A: Slightly under-compensated
B: Slightly over-compensated
C: “Just right”

Transformer CM balance – PMP21479 ACF
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QCLMP DAUX
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CCLMP

A: 0.2 V/div, 5 µs/div 

B: 0.2 V/div, 5 µs/div 

C: 0.2 V/div, 10 µs/div 



Transformer “housekeeping” best practices
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• Center-leg air-gaps only – outer legs will radiate
• “Noisier” windings on inside of layer structure
• Tie ferrite core to local primary GND
• Flux-band to minimize stray coupling 

– GNDing & flux-banding can give >10 dB improvement!
• Interleaving trade-offs

– Lower leakage inductance 
– Higher pri-sec parasitic capacitance, higher CM

• Be aware of internal construction
– Average CM voltage across the pri-sec capacitance
– Arrange winding layers to minimize voltage difference

• Minimizes CM current

Flux-Band + 
EMI Shield 

~15 dB 



PMP21479 65 W ACF USB-PD – Final result 
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• Improve transformer structure, add CM balance/shield winding layer
• Add transformer grounding & flux-banding + EMI shield
• Improve CM choke to bifilar-wound type
• Improve output capacitor location, improve PCB orientation

– Largely “low-cost” improvements
– Small efficiency penalty (eddy loss in cancellation layer)



Summary & conclusions
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• Consider EMI right from the start – inherent part of the power supply design
• Minimize DM & CM EMI noise at source
• DM filter can be designed/calculated/simulated more easily than CM
• CM balance is important – as much as practically possible
• Debug to establish if EMI issue is CM or DM or both
• Assess CM performance in time-domain – compare different transformers
• For isolated PSU, transformer is most important component

– Internal construction details, CM balance, shielding, parasitic capacitance, housekeeping

• EMI filter components – be aware of parasitics and HF effects
• PCB layout and component placement – be aware of stray coupling paths



References
• “Understanding and Optimizing Electromagnetic Compatibility in Switchmode Power Supplies,” 

Bob Mammano & Bruce Carsten, 2002 TI Power Supply Design Seminar.
– http://www.ti.com/lit/slup202

• “Flyback transformer design considerations for efficiency and EMI,” 
Isaac Cohen & Bernard Keogh, 2016/7 TI Power Supply Design Seminar.

– http://www.ti.com/lit/slup338
• “Input EMI Filter Design for Offline Phase-Dimmable LED Power Supplies,” 

James Patterson & Montu Doshi, 2012/3 TI Power Supply Design Seminar.
– http://www.ti.com/lit/slup298

• “Designing low-EMI power converters for industrial & automotive systems,” 
Perry Tsao, David Baba & JP Fung, 2016/7 TI Power Supply Design Seminar.

– http://www.ti.com/lit/slup362
• “Understanding Noise-Spreading Techniques and Their Effects in Switch-Mode Power Applications,” 

John Rice, Dirk Gerhke & Mike Segal, 2008/9 TI Power Supply Design Seminar.
– http://www.ti.com/lit/slup269

• “65W Active clamp flyback with Si FETs reference design for a high power density 5-20V AC/DC adapter,” 
PMP21479, Brian King, 2019.

– http://www.ti.com/tool/PMP21479
41

http://www.ti.com/lit/slup202
http://www.ti.com/lit/slup338
http://www.ti.com/lit/slup298
http://www.ti.com/lit/slup362
http://www.ti.com/lit/slup269
http://www.ti.com/tool/PMP21479


APPENDIX – BACK-UP SLIDES
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Transformer flux-band detailed results – 115 V

• EMI shield only (over switch-node 
and between EMI filter and 
transformer)

• NO flux-band, ferrite core floating
• Biggest improvement ~5-8 MHz



Transformer EMI shield detailed results – 230 V
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• EMI shield only (over switch-node 
and between EMI filter and 
transformer)

• NO flux-band, ferrite core floating
• Biggest improvement ~3-8 MHz
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Transformer flux-band detailed results – 115 V

• EMI shield only (over switch-node and 
between EMI filter and transformer)

• Add flux-band, connected to local 
primary GND

• Much more significant reduction from 
150 kHz to ~4 MHz



Transformer flux-band detailed results – 230 V

46

• EMI shield only (over switch-node and 
between EMI filter and transformer)

• Add flux-band, connected to local 
primary GND

• Much more significant reduction from 
150 kHz to ~4 MHz
– Especially for AVERAGE, which is much 

tougher at 230 V
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