void SPI_Init(void)
{
 /* SPI Ports Initialization * Port 3.0, 3.1, 3.2 is used for SIMO SOMI and SCLK respectively , Port 2.0 is Used for nSCS enable*/
 P4SEL0 |= (BIT5 + BIT6 + BIT7);

 P4DIR |= BIT4;
 P4OUT |= BIT4;
 // Set P2.3 to output direction for nSCS

 UCB1CTLW0 |= UCSWRST; // **Put state machine in reset**
 UCB1CTLW0 |= UCMST | UCSYNC | UCMSB; // 3-pin, 8-bit SPI master
 // Clock polarity high, MSB
 UCB1CTLW0 |= UCSSEL_3; // MCLK
 UCB1BRW = 10; // Master Clock divided by 10 used by USCI clk
// UCB1BR1 = 0; //
 UCB1CTLW0 &= ~UCSWRST; // **Initialize USCI state machine**

 DRV83xxSPISet(); // make nSCS pin of DRV83xx low to start communication with master SPI;
 DRV83xxSPIReset(); // make nSCS pin of DRV83xx High to stop communication with master SPI;
 SPIDelay();
}
#define SPI_DELAY 10
#define SPI_BUSY_FLAG 0x01
#define SPI_READ_COMMAND 0x80 // SPI read command
#include "global.h"

void SPIDelay()
{
 volatile unsigned int Delay_Count;

 for (Delay_Count = SPI_DELAY; Delay_Count > 0; Delay_Count--)
 {
 ; // Wait for slave to initialize
 }
}

/*!
 \fn static inline void DRV83xxSPIReset()
 \brief Holds the SPI slave in reset
 */
void DRV83xxSPIReset()
{
 P4OUT |= BIT4; // make nSCS pin of DRV83xx High to stop communication with master SPI;
}

/*!
 \fn static inline void DRV83xxSPIset()
 \brief Releases the AFE SPI slave from reset, so that it can begin accepting characters
 */
void DRV83xxSPISet()
{
 P4OUT &= ~BIT4; // make nSCS pin of DRV83xx low to start communication with master SPI;
}

void SPI_Write(unsigned short address, unsigned short data)
{
 volatile unsigned char dataMSB, dataLSB;
 address = ((address << 3) & 0x078);
 dataLSB = (data & 0x00FF);
 dataMSB = ((data >> 8) & 0x07) | address;

 DRV83xxSPISet(); // make nSCS pin of DRV83xx low to start communication with master SPI;
 while (!(UCB1IFG & UCTXIFG))
 {
 ; // USCI_A0 TX buffer ready?
 }
 UCB1TXBUF = dataMSB; // Transmit first Byte
 while (!(UCB1IFG & UCTXIFG))
 {
 ; // USCI_A0 TX buffer ready?
 }
 UCB1TXBUF = dataLSB; // Transmit Second Byte
 while (UCB1STATW & SPI_BUSY_FLAG)
 {
 ; // Wait till Transmission is complete
 }
 DRV83xxSPIReset(); // make nSCS pin of DRV83xx High to stop communication with master SPI;
 SPIDelay();
}
unsigned int SPI_read(unsigned char regAddr)
{
 unsigned int data;

 // Enable SPI communication by setting appropriate GPIO pins
 // ...
 DRV83xxSPISet();
 UCB1TXBUF = SPI_READ_COMMAND | (regAddr & 0x7F); // Send SPI read command and register address

 while (!(UCB1IFG & UCRXIFG)); // Wait for SPI receive buffer to be ready

 data = UCB1RXBUF; // Read received data

 // Disable SPI communication by resetting appropriate GPIO pins
 // ...
 DRV83xxSPIReset(); // make nSCS pin of DRV83xx High to stop communication with master SPI;
 SPIDelay();
 return data;
}
unsigned short SPI_Read(unsigned char address)
{
 volatile unsigned short dataMSB, dataLSB, data;

 address = ((address << 3) & 0x078);
 DRV83xxSPISet(); // make nSCS pin of DRV83xx low to start communication with master SPI;
 while (!(UCB1IFG & UCTXIFG))
 {
 ; // USCI_A0 TX buffer ready?
 }
 UCB1TXBUF = address | BIT7; // Transmit the Address of the register to be read , Or with BIT7 to indicate read operation
 while (UCB1STATW & SPI_BUSY_FLAG)
 {
 ; // Wait till Transmission is complete
 }
 dataMSB = UCB1RXBUF & 0x07; // Recieve the First byte
 UCB1TXBUF = address; // Transmit Second character
 while (UCB1STATW & SPI_BUSY_FLAG)
 {
 ; // Wait till Transmission is complete
 }
 dataLSB = UCB1RXBUF & 0xFF; // Recieve the Second byte
 DRV83xxSPIReset(); // make nSCS pin of DRV83xx High to stop communication with master SPI;
 SPIDelay();
 data = ((dataMSB << 8) & 0x0700) | dataLSB;
 return (data);
}

