
TI Information – Selective Disclosure

Stepper Motion Control

Brushed, Stepper, Solenoid Drivers

Murugavel Raju

1

TI Information – Selective Disclosure

Easy Motion Control and Ramp Profile

• Running a stepper from 0 to full speed with a mass (inertia) attached to it will result in lost
steps as well as mechanical damage. A trapezoidal velocity ramp profile is commonly
used when starting and stopping a stepper to avoid such issues.

• This profile comprises of a linear acceleration segment, a steady state constant velocity
segment and a linear deceleration segment. This profile is used in the EVM GUI app.

2

TI Information – Selective Disclosure

Easy Motion Control and Ramp Profile Implementation
• The user determines the starting and stopping speed in PPS (pulses per second) for their

application using calculations based on system inertia and the stepper output torque.

• The acceleration and deceleration (ramp up and down) rate in PPSPS (PPS per second)
are also determined by system inertia, desired time and the stepper output torque.

• The target velocity or speed in PPS is determined by the time required for the stepper to
reach its target position.

• Ramp profile implementation with an external microcontroller (The EVM uses MSP430).
– Uses two Timers, one of them with a PWM output.

– The Timer with the PWM output generates the STEP output frequency with 50 % duty cycle.

– The second timer is configured for generating a steady timing of 32 ms.
• Every 32 ms the STEP pulses rate is increased until it reaches the target speed for ramp up.
• Every 32 ms the STEP pulses rate is decreased until it reaches the stopping speed for ramp

down.

– The EVM GUI uses the acceleration rate value for deceleration rate.

– The complete MSP430 CCS project and C-source code files for the DRV8462EVM are available for
download from ti.com, hyperlink. 3

TI Information – Selective Disclosure

Easy Motion Control and Ramp Profile Pseudo Code

Calculate acceleration time

time = (Target speed – Starting
speed)/ Acceleration rate

Calculate steps to target for
acceleration

 Steps2Target = (AccelRate/2 *
time2) + (StartingSpeed * time)

Calculate stepping rate
update

 SteppingRateUpdate =
AccelRate / 32

Has 32 ms lapsed in
Timer 2

Output speed =
Starting speed

frequency Timer 1
PWM 50% duty

STEP output

Start Stepper

Is output STEP rate >=
target speed

No

Yes

Stop acceleration

Yes

No

Output speed = Output speed
+ SteppingRateUpdate value

(update Timer 1 PWM output)

No

4

Source: “stepper.c” of the DRV84x2_DRV82x2_DRV89x2_EVM CCS project

 // update steps to speed and steps to stop calculations
 // only calculate when the motor is idle and commanded to move
 time = (float) (DesiredTargetSpeed - StartingSpeed) / AccelRate;
 time_squared = time * time;
 // calculate steps to target
 Steps2Target = ((AccelRate >> 1) * (time_squared))
 + (StartingSpeed * time);
 // calculate Steps2Stop if:
 // StepsToStop in GUI is >1 and
 // StoppingSpeed is not equal Starting Speed
 //
 if ((StepsToStop == 2 && use_one_edge == 1) || StepsToStop == 1)
 {
 if (StartingSpeed != StoppingSpeed)
 { // recalculate time if necessary
 time = (float) (DesiredTargetSpeed - StoppingSpeed) / AccelRate;
 time_squared = time * time;
 }
 // calculate steps required to stop
 Steps2Stop = ((AccelRate >> 1) * (time_squared))
 + (StartingSpeed * time);
 }
 else // defined number of steps to stop
 {
 Steps2Stop = StepsToStop;
 }
 // calculate stepping rate update (integer value divide by 32)
 if (AccelRate > 31 || AccelRate == 0) // if >=32 or 0
 {
 SteppingRateUpdate = AccelRate >> 5; // divide by 32 by right
 // shifting 5 positions
 }
 else
 {
 SteppingRateUpdate = 1; // set it to 1 to get correct value
 }

 if (StartingSpeed >= DesiredTargetSpeed)
 // Special case -- override prior settings
 // allow motor to attempt to run only at starting speed
 {
 SteppingRateUpdate = 0;
 Steps2Target = 0;
 Steps2Stop = 0;
 }
 // transition from ACCEL to DECEL when count equals(StepsToMove -
 Steps2Stop) <=0
 if ((Steps2Stop > (StepsToMove >> 1))
 && (StartingSpeed == StoppingSpeed))
 Steps2Decel = StepsToMove >> 1; // decel at midpoint
 else
 Steps2Decel = StepsToMove - Steps2Stop;

Pseudo code, double click to openRamp up profile generation

Note: For ramp down the same flow is used. Output
STEP rate is decremented every 32 ms until output
speed is <= stopping speed.

TI Information – Selective Disclosure

Thank you.

5

