
Digital Control Systems (DCS) Group 1
Texas Instruments

Description This module determines the Bemf zero crossing points of a 3-ph BLDC

motor based on motor phase voltage measurements and then generates
the commutation trigger points for the 3-ph power inverter switches.

Availability This IQ module is available in one interface format:

1) The C interface version

Module Properties Type: Target Independent, Application Independent

 Target Devices: 28x Fixed Point or Piccolo

C Version File Names: com_trig.h

 IQmath library files for C: IQmathLib.h, IQmath.lib

Commutation Trigger Generator for BLDC DriveCMTN_TRIG

CMTN_TRIG
MACRO

Vb

Va

CmtnTrig

CmtnPointer

Vc

VirtualTimer

Digital Control Systems (DCS) Group 2
Texas Instruments

C Interface

C Interface

Object Definition

The structure of CMTN object is defined by following structure definition

typedef struct { Uint32 CmtnTrig; // Output: Commutation trigger output (0 or 00007FFF)
 _iq Va; // Input: Motor phase a voltages referenced to GND
 _iq Vb; // Input: Motor phase b voltages referenced to GND
 _iq Vc; // Input: Motor phase c voltages referenced to GND
 _iq Neutral; // Variable: 3*Motor netural voltage
 Uint32 RevPeriod; // Variable: revolution time counter (Q0)
 Uint32 ZcTrig; // Variable: Zero-Crossing trig flag (0 or 00007FFF)
 Uint32 CmtnPointer; // Input: Commutation state pointer input (Q0)
 _iq DebugBemf; // Variable: 3*Back EMF = 3*(vx=vn), x=a,b,c
 Uint32 NoiseWindowCounter; // Variable: Noise windows counter (Q0)
 Uint32 Delay30DoneFlag; // Variable: 30 Deg delay flag (0 or 0000000F)
 Uint32 NewTimeStamp; // Variable: Time stamp (Q0)
 Uint32 OldTimeStamp; // History: Previous time stamp (Q0)
 Uint32 VirtualTimer; // Input: Virtual timer (Q0)
 Uint32 CmtnDelay; // Variable: Time delay (Q0)
 Uint32 DelayTaskPointer; // Variable: Delay task pointer, see note below (0 or 1)
 Uint32 NoiseWindowMax; // Variable: Maximum noise windows counter (Q0)
 Uint32 CmtnDelayCounter; // Variable: Time delay counter (Q0)
 Uint32 NWDelta; // Variable: Noise windows delta (Q0)
 Uint32 NWDelayThres; // Variable: Noise windows dynamic threshold (Q0)
 } CMTN;

typedef CMTN *CMTN_handle;

Digital Control Systems (DCS) Group 3
Texas Instruments

C Interface

Item Name Description Format* Range(Hex)

Inputs

CmtnPointer

Commutation state pointer
input. This is used for Bemf
zero crossing point calculation
for the appropriate motor
phase.

Q0 0 - 5

Va Motor phase-a voltages
referenced to GND. GLOBAL_Q 00000000-7FFFFFFF

Vb Motor phase-b voltages
referenced to GND. GLOBAL_Q 00000000-7FFFFFFF

Vc Motor phase-c voltages
referenced to GND. GLOBAL_Q 00000000-7FFFFFFF

VirtualTimer
A virtual timer used for
commutation delay angle
calculation.

Q0 80000000-7FFFFFFF

Output CmtnTrig Commutation trigger output. Q0 0 or 00007FFF

Internal

Neutral 3*Motor netural voltage GLOBAL_Q 80000000-7FFFFFFF
RevPeriod revolution time counter Q0 00000000-7FFFFFFF
ZcTrig Zero-Crossing trig flag Q0 0 or 00007FFF
DebugBemf 3*Back EMF GLOBAL_Q 80000000-7FFFFFFF
NoiseWindowCounter Noise windows counter Q0 80000000-7FFFFFFF
Delay30DoneFlag 30 Deg delay flag Q0 0 or 0000000F
NewTimeStamp Time stamp Q0 00000000-7FFFFFFF
OldTimeStamp Previous time stamp Q0 00000000-7FFFFFFF

CmtnDelay Time delay in terms of number
of sampling time periods Q0 00000000-7FFFFFFF

DelayTaskPointer Delay task pointer Q0 0 or 1

NoiseWindowMax Maximum noise windows
counter Q0 80000000-7FFFFFFF

CmtnDelayCounter Time delay counter Q0 80000000-7FFFFFFF
NWDelta Noise windows delta Q0 80000000-7FFFFFFF

NWDelayThres Noise windows dynamic
threshold Q0 80000000-7FFFFFFF

 *GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

 CMTN

The module definition is created as a data type. This makes it convenient to instance an
interface to ramp generator. To create multiple instances of the module simply declare
variables of type CMTN.

CMTN_handle
User defined Data type of pointer to CMTN module

 CMTN_DEFAULTS

Structure symbolic constant to initialize CMTN module. This provides the initial values to
the terminal variables as well as method pointers.

Digital Control Systems (DCS) Group 4
Texas Instruments

 C Interface

Methods

 CMTN_TRIG_MACRO (CMTN_handle);

This definition implements one method viz., the commutation trigger generator macro.
The input argument to this macro is the module handle.

Module Usage

Instantiation

 The following example instances two CMTN objects
 CMTN cm_trig1, cm_trig2;

Initialization
To Instance pre-initialized objects
CMTN cm_trig1 = CMTN_DEFAULTS;
CMTN cm_trig2 = CMTN_DEFAULTS;

Invoking the computation macro
CMTN_TRIG_MACRO (cm_trig1);
CMTN_TRIG_MACRO (cm_trig2);

Example
The following pseudo code provides the information about the module usage.

main()
{

}

void interrupt periodic_interrupt_isr()
{

cm_trig1.CmtnPointer = input11; // Pass inputs to cm_trig1
cm_trig1.Va = input12; // Pass inputs to cm_trig1
cm_trig1.Vb = input13; // Pass inputs to cm_trig1
cm_trig1.Vc = input14; // Pass inputs to cm_trig1
cm_trig1.VirtualTimer = input15; // Pass inputs to cm_trig1

cm_trig2.CmtnPointer = input21; // Pass inputs to cm_trig2
cm_trig2.Va = input22; // Pass inputs to cm_trig2
cm_trig2.Vb = input23; // Pass inputs to cm_trig2
cm_trig2.Vc = input24; // Pass inputs to cm_trig2
cm_trig2.VirtualTimer = input25; // Pass inputs to cm_trig2

CMTN_TRIG_MACRO (cm_trig1); // Call compute macro for cm_trig1
CMTN_TRIG_MACRO (cm_trig2); // Call compute macro for cm_trig2

 out1 = cm_trig1.CmtnTrig; // Access the outputs of cm_trig1
 out2 = cm_trig2.CmtnTrig; // Access the outputs of cm_trig2
}

Digital Control Systems (DCS) Group 5
Texas Instruments

Technical Background

Technical Background

Figure 1 shows the 3-phase power inverter topology used to drive a 3-phase BLDC
motor. In this arrangement, the motor and inverter operation is characterized by a two
phase ON operation. This means that two of the three phases are always energized,
while the third phase is turned off.

Shunt
Resistor

BLDC

Q1

Q2

Q3

Q4

Q5

Q6

FULL
COMPARE

UNIT

ADCINy

Figure 1: Three Phase Power Inverter for a BLDC Motor Drive

The bold arrows on the wires indicate the Direct Current flowing through two motor stator
phases. For sensorless control of BLDC drives it is necessary to determine the zero
crossing points of the three Bemf voltages and then generate the commutation trigger
points for the associated 3-ph power inverter switches.

The figure below shows the basic hardware necessary to perform these tasks.

Digital Control Systems (DCS) Group 6
Texas Instruments

Technical Background

ADCINx

ADCINy

Stator Phase #x Cable

Figure 2: Basic Sensorless Additional Hardware

The resistor divider circuit is specified such that the maximum output from this voltage
sensing circuit utilizes the full ADC conversion range. The filtering capacitor should filter
the chopping frequency, so only very small values are necessary (in the range of nF).
The sensorless algorithm is based only on the three motor terminal voltage
measurements and thus requires only four ADC input lines.

Figure 3 shows the motor terminal model for phase A, where L is the phase inductance,
R is the phase resistance, Ea is the back electromotive force, Vn is the star connection
voltage referenced to ground and Va is the phase voltage referenced to ground. Va
voltages are measured by means of the DSP controller ADC Unit and via the voltage
sense circuit shown in Figure 2.

Shunt Resistor

Ea
Ia

VnVa

L R

Figure 3: Stator Terminal Electrical Model

Digital Control Systems (DCS) Group 7
Texas Instruments

Technical Background

Assuming that phase C is the non-fed phase it is possible to write the following equations
for the three terminal voltages:

VnEa
dt
dIaLRIaVa +++= .

VnEb
dt
dIbLRIbVb +++=

VnEcVc +=

As only two currents flow in the stator windings at any one time, two phase currents are
equal and opposite. Therefore,

IbIa −=

Thus, by adding the three terminal voltage equations we have,

Vn3EcEbEaVcVbVa +++=++

The instantaneous Bemf waveforms of the BLDC motor are shown in figure 4. From this
figure it is evident that at the Bemf zero crossing points the sum of the three Bemfs is
equal to zero. Therefore the last equation reduces to,

Vn3VcVbVa =++

This equation is implemented in the code to compute the neutral voltage. In the code, the
quantity 3Vn is represented by the variable called Neutral.

θ

Ea Eb Ec

Figure 4: Instantaneous Bemf Wave-forms

.

Digital Control Systems (DCS) Group 8
Texas Instruments

Technical Background

Bemf Zero Crossing Point Computation

For the non-fed phase (zero current flowing), the stator terminal voltage can be rewritten
as follows:

Vn3Vc33Ec −= .

This equation is used in the code to calculate the Bemf zero crossing point of the non-fed
phase C. Similar equations are used to calculate the Bemf zero crossing points of other
Bemf voltages Ea and Eb. As we are interested in the zero crossing of the Bemf it is
possible to check only for the Bemf sign change; this assumes that the Bemf scanning
loop period is much shorter than the mechanical time constant. This function is computed
after the three terminal voltage samples, e.g., once every 16.7μs (60kHz sampling loop).

Electrical Behaviour at Commutation Points

At the instants of phase commutation, high dV/dt and dI/dt glitches may occur due to the
direct current level or to the parasitic inductance and capacitance of the power board.
This can lead to a misreading of the computed neutral voltage. This is overcomed by
discarding the first few scans of the Bemf once a new phase commutation occurs. In the
code this is implemented by the function named ‘NOISE_WIN’. The duration depends on
the power switches, the power board design, the phase inductance and the driven direct
current. This parameter is system-dependent and is set to a large value in the low speed
range of the motor. As the speed increases, the s/w gradually lowers this duration since
the Bemf zero crossings also get closer at higher speed.

Commutation Instants Computation

In an efficient sensored control the Bemf zero crossing points are displaced 30º from the
instants of phase commutation. So before running the sensorless BLDC motor with help
of the six zero crossing events it is necessary to compute the time delay corresponding to
this 30º delay angle for exact commutation points. This is achieved by implementing a
position interpolation function. In this software it is implemented as follows: let T be the
time that the rotor spent to complete the previous revolution and α be the desired delay
angle. By dividing α by 360º and multiplying the result by T we obtain the time duration to
be spent before commutating the next phase pair. In the code this delay angle is fixed to
30º. The corresponding time delay is represented in terms of the number of sampling
time periods and is stored in the variable CmtnDelay. Therefore,

Time delay = CmtnDelay .Ts = T(α/360) = VirtualTimer.Ts(α/360) = VirtualTimer . Ts/12

Where, Ts is the sampling time period and VirtualTimer is a timer that counts the number
of sampling cycles during the previous revolution of the rotor.

The above equation is further simplified as,

CmtnDelay = VirtualTimer /12

This equation is implemented in the code in order to calculate the time delay
corresponding to the 30º commutation delay angle.

