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Description This module determines the Bemf zero crossing points of a 3-ph BLDC 

motor based on motor phase voltage measurements and then generates 
the commutation trigger points for the 3-ph power inverter switches. 

 
 
 
 
 
                            

 
 
 

 
 
Availability   This IQ module is available in one interface format: 
  

1) The C interface version 
 
Module Properties Type: Target Independent, Application Independent 
 
   Target Devices: 28x Fixed Point or Piccolo   
 

C Version File Names: com_trig.h 
         

   IQmath library files for C: IQmathLib.h, IQmath.lib 
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C Interface 
 
C Interface 
 
Object Definition  

The structure of CMTN object is defined by following structure definition 
 

typedef  struct { Uint32 CmtnTrig;             // Output: Commutation trigger output (0 or 00007FFF)        
                         _iq Va;                               // Input: Motor phase a voltages referenced to GND  
                         _iq Vb;                              // Input: Motor phase b voltages referenced to GND   
                         _iq Vc;                              // Input: Motor phase c voltages referenced to GND  
                         _iq Neutral;                      // Variable: 3*Motor netural voltage  
                         Uint32 RevPeriod;            // Variable: revolution time counter (Q0)         
                         Uint32 ZcTrig;                   // Variable: Zero-Crossing trig flag (0 or 00007FFF)    
                         Uint32 CmtnPointer;         // Input: Commutation state pointer input (Q0)  
                         _iq DebugBemf;                // Variable: 3*Back EMF = 3*(vx=vn), x=a,b,c  
                         Uint32 NoiseWindowCounter; // Variable: Noise windows counter (Q0)  
                         Uint32 Delay30DoneFlag;       // Variable: 30 Deg delay flag (0 or 0000000F)   
                         Uint32 NewTimeStamp;     // Variable: Time stamp (Q0)  
                         Uint32 OldTimeStamp;      // History: Previous time stamp (Q0)  
             Uint32 VirtualTimer;           // Input: Virtual timer (Q0)  
                         Uint32 CmtnDelay;             // Variable: Time delay (Q0)      
                         Uint32 DelayTaskPointer;  // Variable: Delay task pointer, see note below (0 or 1)  
                         Uint32 NoiseWindowMax;  // Variable: Maximum noise windows counter (Q0)  
                         Uint32 CmtnDelayCounter;   // Variable: Time delay counter (Q0)  
                         Uint32 NWDelta;                   // Variable: Noise windows delta (Q0)  
                         Uint32 NWDelayThres;         // Variable: Noise windows dynamic threshold (Q0)  
                } CMTN; 
 
typedef CMTN *CMTN_handle;   
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Item Name Description Format* Range(Hex)

Inputs 

CmtnPointer 

Commutation state pointer 
input. This is used for Bemf 
zero crossing point calculation 
for the appropriate motor 
phase. 

Q0 0 - 5 

Va Motor phase-a voltages 
referenced to GND. GLOBAL_Q 00000000-7FFFFFFF 

Vb Motor phase-b voltages 
referenced to GND. GLOBAL_Q 00000000-7FFFFFFF 

Vc Motor phase-c voltages 
referenced to GND. GLOBAL_Q 00000000-7FFFFFFF 

VirtualTimer 
A virtual timer used for 
commutation delay angle 
calculation. 

Q0 80000000-7FFFFFFF 

Output CmtnTrig Commutation trigger output. Q0 0 or 00007FFF 

Internal 

Neutral 3*Motor netural voltage GLOBAL_Q 80000000-7FFFFFFF 
RevPeriod revolution time counter Q0 00000000-7FFFFFFF 
ZcTrig Zero-Crossing trig flag Q0 0 or 00007FFF 
DebugBemf 3*Back EMF GLOBAL_Q 80000000-7FFFFFFF 
NoiseWindowCounter Noise windows counter Q0 80000000-7FFFFFFF 
Delay30DoneFlag 30 Deg delay flag Q0 0 or 0000000F 
NewTimeStamp Time stamp Q0 00000000-7FFFFFFF 
OldTimeStamp Previous time stamp Q0 00000000-7FFFFFFF 

CmtnDelay Time delay in terms of number 
of sampling time periods Q0 00000000-7FFFFFFF 

DelayTaskPointer Delay task pointer Q0 0 or 1 

NoiseWindowMax Maximum noise windows 
counter Q0 80000000-7FFFFFFF 

CmtnDelayCounter Time delay counter Q0 80000000-7FFFFFFF 
NWDelta Noise windows delta Q0 80000000-7FFFFFFF 

NWDelayThres Noise windows dynamic 
threshold Q0 80000000-7FFFFFFF 

                   *GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file. 
 
 

Special Constants and Data types 
   
 CMTN 

The module definition is created as a data type. This makes it convenient to instance an 
interface to ramp generator. To create multiple instances of the module simply declare 
variables of type CMTN. 

  
CMTN_handle 
User defined Data type of pointer to CMTN module 

 
 
 CMTN_DEFAULTS 

Structure symbolic constant to initialize CMTN module. This provides the initial values to 
the terminal variables as well as method pointers.  
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Methods 
 
 CMTN_TRIG_MACRO (CMTN_handle); 

 
This definition implements one method viz., the commutation trigger generator macro. 
The input argument to this macro is the module handle. 

 
Module Usage   

 
Instantiation 

 The following example instances two CMTN objects 
 CMTN cm_trig1, cm_trig2; 
 

Initialization 
To Instance pre-initialized objects 
CMTN cm_trig1 = CMTN_DEFAULTS; 
CMTN cm_trig2 = CMTN_DEFAULTS; 

 
Invoking the computation macro 
CMTN_TRIG_MACRO (cm_trig1); 
CMTN_TRIG_MACRO (cm_trig2); 
 
 

Example 
The following pseudo code provides the information about the module usage.  

 
main() 
{ 
 
}  
 
void interrupt periodic_interrupt_isr() 
{  

cm_trig1.CmtnPointer = input11;              // Pass inputs to cm_trig1  
cm_trig1.Va = input12;               // Pass inputs to cm_trig1  
cm_trig1.Vb = input13;               // Pass inputs to cm_trig1  
cm_trig1.Vc = input14;               // Pass inputs to cm_trig1  
cm_trig1.VirtualTimer = input15;              // Pass inputs to cm_trig1  
 
cm_trig2.CmtnPointer = input21;              // Pass inputs to cm_trig2  
cm_trig2.Va = input22;               // Pass inputs to cm_trig2  
cm_trig2.Vb = input23;               // Pass inputs to cm_trig2  
cm_trig2.Vc = input24;               // Pass inputs to cm_trig2  
cm_trig2.VirtualTimer = input25;              // Pass inputs to cm_trig2  
 
CMTN_TRIG_MACRO (cm_trig1);   // Call compute macro for cm_trig1 
CMTN_TRIG_MACRO (cm_trig2);   // Call compute macro for cm_trig2  
 

             out1 = cm_trig1.CmtnTrig;  // Access the outputs of cm_trig1 
             out2 = cm_trig2.CmtnTrig;  // Access the outputs of cm_trig2   
} 
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Technical Background 
 
 

Figure 1 shows the 3-phase power inverter topology used to drive a 3-phase BLDC 
motor. In this arrangement, the motor and inverter operation is characterized by a two 
phase ON operation. This means that two of the three phases are always energized, 
while the third phase is turned off. 
 

Shunt
Resistor

BLDC

Q1

Q2

Q3

Q4

Q5

Q6

FULL
COMPARE

UNIT

ADCINy

 

Figure 1: Three Phase Power Inverter for a BLDC Motor Drive 

 

The bold arrows on the wires indicate the Direct Current flowing through two motor stator 
phases. For sensorless control of BLDC drives it is necessary to determine the zero 
crossing points of the three Bemf voltages and then generate the commutation trigger 
points for the associated 3-ph power inverter switches.  

 

The figure below shows the basic hardware necessary to perform these tasks. 
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Figure 2: Basic Sensorless Additional Hardware 

The resistor divider circuit is specified such that the maximum output from this voltage 
sensing circuit utilizes the full ADC conversion range. The filtering capacitor should filter 
the chopping frequency, so only very small values are necessary (in the range of nF). 
The sensorless algorithm is based only on the three motor terminal voltage 
measurements and thus requires only four ADC input lines.  

Figure 3 shows the motor terminal model for phase A, where L is the phase inductance, 
R is the phase resistance, Ea is the back electromotive force, Vn is the star connection 
voltage referenced to ground and Va is the phase voltage referenced to ground. Va 
voltages are measured by means of the DSP controller ADC Unit and via the voltage 
sense circuit shown in Figure 2. 
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Figure 3: Stator Terminal Electrical Model 
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Assuming that phase C is the non-fed phase it is possible to write the following equations 
for the three terminal voltages:  

VnEa
dt
dIaLRIaVa +++= . 

VnEb
dt
dIbLRIbVb +++=  

VnEcVc +=  
 

As only two currents flow in the stator windings at any one time, two phase currents are 
equal and opposite. Therefore, 

IbIa −=  

Thus, by adding the three terminal voltage equations we have, 

Vn3EcEbEaVcVbVa +++=++  

The instantaneous Bemf waveforms of the BLDC motor are shown in figure 4. From this 
figure it is evident that at the Bemf zero crossing points the sum of the three Bemfs is 
equal to zero. Therefore the last equation reduces to, 

Vn3VcVbVa =++  

This equation is implemented in the code to compute the neutral voltage. In the code, the 
quantity 3Vn is represented by the variable called Neutral.  

θ

Ea Eb Ec

 

Figure 4: Instantaneous Bemf Wave-forms  

. 
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Bemf Zero Crossing Point Computation 
 

For the non-fed phase (zero current flowing), the stator terminal voltage can be rewritten 
as follows: 

Vn3Vc33Ec −= . 
 

This equation is used in the code to calculate the Bemf zero crossing point of the non-fed 
phase C. Similar equations are used to calculate the Bemf zero crossing points of other 
Bemf voltages Ea and Eb. As we are interested in the zero crossing of the Bemf it is 
possible to check only for the Bemf sign change; this assumes that the Bemf scanning 
loop period is much shorter than the mechanical time constant. This function is computed 
after the three terminal voltage samples, e.g., once every 16.7μs (60kHz sampling loop). 

 
Electrical Behaviour at Commutation Points 

At the instants of phase commutation, high dV/dt and dI/dt glitches may occur due to the 
direct current level or to the parasitic inductance and capacitance of the power board. 
This can lead to a misreading of the computed neutral voltage. This is overcomed by 
discarding the first few scans of the Bemf once a new phase commutation occurs. In the 
code this is implemented by the function named ‘NOISE_WIN’. The duration depends on 
the power switches, the power board design, the phase inductance and the driven direct 
current. This parameter is system-dependent and is set to a large value in the low speed 
range of the motor. As the speed increases, the s/w gradually lowers this duration since 
the Bemf zero crossings also get closer at higher speed.  

 
Commutation Instants Computation 

In an efficient sensored control the Bemf zero crossing points are displaced 30º from the 
instants of phase commutation. So before running the sensorless BLDC motor with help 
of the six zero crossing events it is necessary to compute the time delay corresponding to 
this 30º delay angle for exact commutation points. This is achieved by implementing a 
position interpolation function. In this software it is implemented as follows: let T be the 
time that the rotor spent to complete the previous revolution and α be the desired delay 
angle. By dividing α by 360º and multiplying the result by T we obtain the time duration to 
be spent before commutating the next phase pair. In the code this delay angle is fixed to 
30º. The corresponding time delay is represented in terms of the number of sampling 
time periods and is stored in the variable CmtnDelay. Therefore, 

Time delay = CmtnDelay .Ts = T(α/360) = VirtualTimer.Ts(α/360) = VirtualTimer . Ts/12 

Where, Ts is the sampling time period and VirtualTimer is a timer that counts the number 
of sampling cycles during the previous revolution of the rotor. 

 

The above equation is further simplified as, 

CmtnDelay = VirtualTimer /12 

This equation is implemented in the code in order to calculate the time delay 
corresponding to the 30º commutation delay angle. 

 
 


