TMS 3450NL - LED DUPLEX DIGITAL RADIO CLOCK

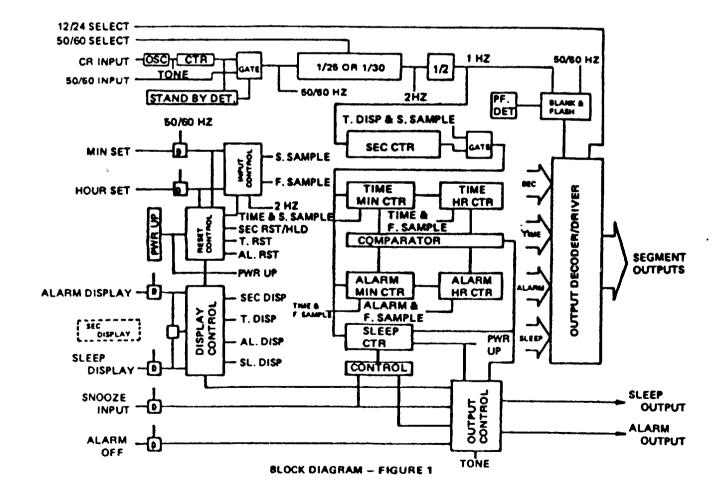
SXAS015

- . Duplex LED DISPLAY DRIVE
- 50/80 Hz operation
- 12/24 hour display mode
- AM/PM outputs (12 hour mode)
 Hour and min auto set controls
- mour and min auto set controls with one touch incrementer
- . 9 minute snooze

- . Power fail indication
- . Leeding zero blanking
- Presettable 59 min, or 1 hour 59 min, sleep timer
- 24 hour elerm setting
- . On-chip CR back-up oscillator
- 900 Hz tone output
- 28 Pins 400 mil packase

Description

The TMS 3450NL is a 4 digit radio clock LSI utilizing the MOS P-channel low threshold, ion-implented depletion load technology. The single 28 pin dual-in line plastic package provides the functions required for the radio clock, the elemitable clock and the other timer applications. The features are as follows:—


Constion

A block diagram of the TMS3450NL digital radio clock circuit is shown Figure 1. The various display modes and the functions of the setting controls are summerized in Table 1 and 2, respectively.

- 50/60 Hz input: An on-chip schmitt trigger circuit allows a simple RC filter at the input to remove possible line voltage transients. Internal pull up resister is provided.
- CR input: When power down is occured, the time counter will be on "HOLD" state and on-chip clock oscillator will
 operate immediately. If there is no input at "50/60 Hz input" during 3 clock periods, this oscillator controls the time
 counter advences instead of "50/60 Hz input".

The values of C & R determine the frequency of on-chip clock oscillator, All segment outputs except colon-out are off during back-up oscillator operation.

Note:- If heck-up OSC is used at power down state, 50/60 Hz in put must be open or V₅₅ level at power down state.

- Alarm operation and output. The coincidence between the alarm counter and the time counter enables the alarm output signal, which continues for 1.59 unless it's reset by the enooze input or by the elarm-off input. This output is provided for the tone-signal of 900 Hz with 50% duty of 2 Hz gated signal, which keeps normally high level during elarm-on. This alarm signal will allow easily to get a DC signal by simple LPF if it's required.
- Snooze input. On alarm on state momentarily connecting to V_{st} inhibits the alarm output for 8 and 9 minutes, after which the alarm signal is enabled again. The encoze alarm feature may be repeatedly used during the 1 hour 59 minutes. This input is pull-down to V_{dd} by an internal resistor. On alarm off-state, this causes the sleep counter to reset to 0:00.
- Alarm-off input. Momentarily connecting elerm off input to V₈₈ resets the elerm output. This input is also returned to V_{dd} by an internal resistor.
- Sleep timer and output: The sleep output can be used to turn-off a radio after a desired time interval of 59 minutes or 1 hour 59 minutes. Selection method (59 minutes or 1 hour 59 minutes) is shown on Table 2. The presetting of time interval results in the sleep output current drive which can be used to turn on a radio. When the sleep counter, which counts downwards, reaches 00 minutes the sleep output current drive is removed and the radio is turned off. This turnoff may also be manually controlled (at any time in the countdown) by the snooze input.

ELECTRICAL SPECIFICATION FOR TMS3450NL LED DUPLEX CLOCK

1. Absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Voltage applied at any pin														
Operating temperature	٠.						•	٠	•				•	-20°C to +70°C
Storage temperature				•								•		-65°C to +150°C

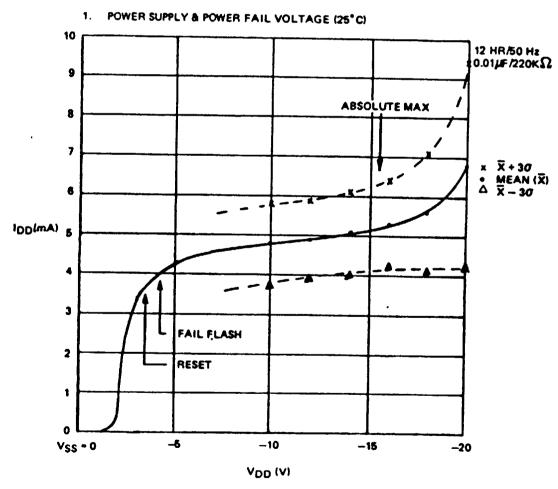
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for external periods may affect device reliability.

II. Recommended Operating Conditions

PARAMETER	MIN TY	P MAX	UNITS
Power Supply Voltage	-7.5	-14	٧
50/80 Hz Input			
Logical High Level	V ₂₅ -1	V _{ss} V _{dd} +2	V
Logical Low Lavel	Vdd	V _{dd} +2	V
CR Input			
Logical High Lavel	V ₂₀ −1	V _{ss} V _{dd} +2	V
Logical Law Level	Vdd	V _{dd} +2	٧
All Other Input Voltage			
Logical High Lavel	V ₂₆ −1.5	V _{ss} V _{dd} +2	v
Logical Low Level	Vdd	Vdd+2	V
Operating Free-eir Temperature	-20	70	*c

III. Electrical Characteristics Over Operating Free-air Temperature Range (Vdd = -12 V)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
— Power Supply Current Idd	No output loads		5.0	7.0	mA
— Power Failure Detect Voltage		į	-5.0	-7.5	v
50/60 Hz Frequency Input Current	V _{IH} = V _{S\$} (Laekage) V _{IL} = V _{DD}	DC	50 or 6 0	10K 10 10	Hz uA uA
All Other Inputs Input Current	VIH = VSS VIL = VDD (Leakage)			20 10	uA uA


- Back-up Oscillator Stability Accuracy Frequency	V _{DD} = -8V±10% V _{DD} = -8V	900	±10 ±10	% % Hz
- Manifolded addat	VOH = VSS - 1.0V VOL = VDD (Leekage)	6	10	mA uA
- All Other Segment Output - Alarm/Sleep output	VOH = VSS - 1.0V VOL = VDO (Laskage)	18	20	mA uA
Output Current 10's HR ag & de at 24 HR mode	VOH = VSS - 1.0V VOL = VDD (Laskage)	36	20	mA uA

LED PANEL SOURCES

4

- . SL-1498T (SANYO)
- . TLR-6242 (TOSHIBA)
- . LT-637 (TAIWAN LITON)

CHARACTERIZATION DATA OF TMS3450NL LED DUPLEX CLOCK

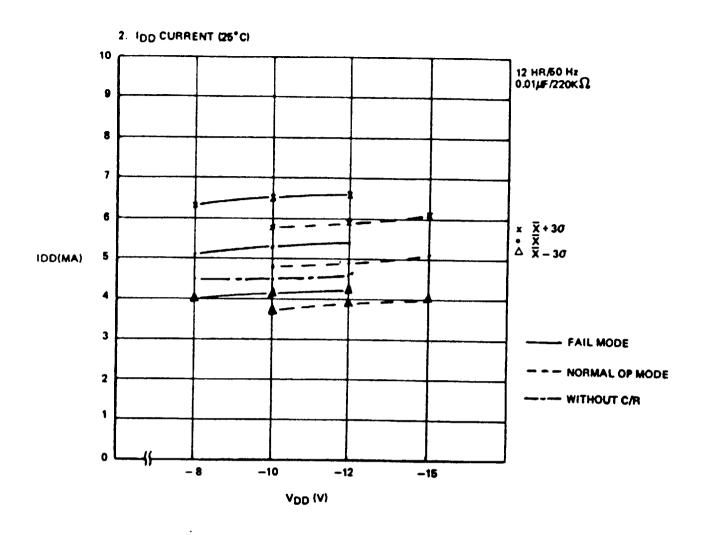
	RESET VOLTAGE VDD	FAIL FLASH VDD
X + 3σ	-3.8V	4.6V
X	-3.4V	-42V
x – 3σ	-3.1V	-3.7V

- 50/60 select input. Connecting 50/60 Hz select to V₈₈ enables 50 Hz operation. For 60 Hz operation the input is left unconnected. Pull-down to Vdd is provided by an internal resistor.
- Display mode select inputs. Internal pull-down resistor allows use of simple SPST switch to select four display modes.

DISPLAY MODES - TABLE 1

SELECT ALARM		DISPLAY MODE	DIGIT NO. 1	DIGIT NO. 2	DIGIT NO. 3	DIGIT NO. 4
N.C	N.C	TIME DISPLAY	10'S HOURS	HOURS	10°S MINUTES	MINUTES
VSS	N.C	ALARM DISPLAY	10'S HOURS	HOURS	10°S MINUTES	MINUTES
N.C	٧ss	SLEEP DISPLAY	BLANKED	HOUR	10'S MINUTES	MINUTES
٧ss	VSS	SECOND DISPLAY	BLANKED	MINUTES	10°S SECONDS	SECONDS

- 4. At the selection of second display, it selects the both inputs of elarm and sleep with same time.
- Time setting inputs: Both hour and min inputs are provided and the application of V₈₅ affects the control functions listed in Table 2, Internal pull-down resistors are provided again.

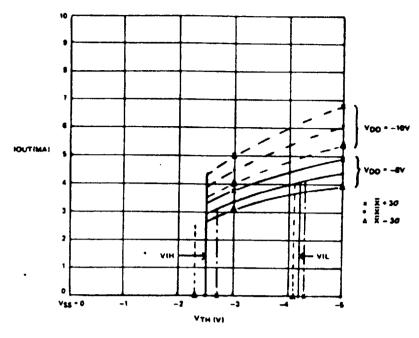

SETTING CONTROL TABLE 2

DISPLAY MODE	SET INPUT	FUNCTION
TIME	HOUR	HOUR COUNTER +1 IMMEDIATELY, AND AFTER 1/4-3/4 SEC HOUR ADVANCE AT 2 Hz RATE.
	MIN	MINUTE COUNTER +1 IMMEDIATELY, AND AFTER 1/4-3/4 SEC MINUTES ADVANCE AT 2 Hz RATE. RESET SEC COUNTER.
	вотн	(HAS BOTH ABOVE FUNCTION)
SEC	HOUR	SECONDS AND 10'S SECONDS RESET TO ZERO
ALARM	MIN	HOLD STATE
SLEEP	BOTH*	RESET TIME COUNTER TO 0:00 (24 HR MODE) OR 12:00 AM (12 HR MODE)
ALARM	HOUR	ALARM HOUR COUNTER +1 IMMEDIATELY, AND AFTER 1/4-3/4 SEC ALARM HOURS ADVANCE AT 2 Hz RATE
	MIN	ALARM MINUTE COUNTER +1 IMMEDIATELY, AND AFTER 1/4-3/4 SEC ALARM MINUTES ADVANCE AT 2 Hz RATE
	вотн•	RESET ALARM COUNTER TO 0:00 (24 HR MODE) OR 12:00 AM (12 HR MODE)
SLEEP	-	POSITIVE EDGE SETS SLEEP COUNTER TO 0:59
	HOUR	POSITIVE EDGE SETS SLEEP COUNTER TO 1:59
	MIN	SUBTRACT SLEEP COUNTER AT 2 Hz RATE
	вотн	SUBTRACT SLEEP COUNTER AT 2 Hz RATE

 Once RESET/HLD functions are occured, another function input is locked until both HOUR and MIN inputs are released.

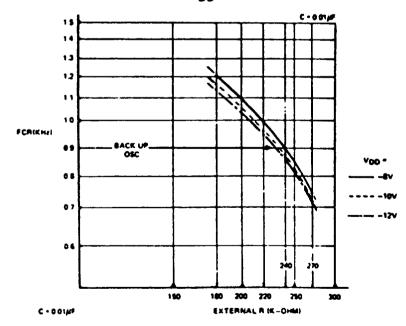
Note: SECONDS and 10'S SECONDS are reset to zero and carry to MINUTES during SECONDS counter is 30 to 59.

- 12/24 hour select input: By leaving this pin unconnected the outputs are programmed for a 12 hour display format, and connecting to V_{ss} programs the 24 hour display format. An internal resistor is again provided.
- Power fail indication: If the power supply voltage drops, a power fail indication is provided by the flashing of the all on-segments. The power fail indication is reset by a hour or min set input.


100	WITHOUT C/R			F	AIL MOI	DE	NORMAL OF MODE			
VDD -	-8	-10	-12	-8	-10	-12	-10	-12	-14	٧
X + 3σ	5.5	5.6	5.7	6.3	6.5	6.6	5.8	5.9	6.1	mA
_ X	4.5	4.5	4.6	5.1	5.3	5.4	48	4.9	5.1	mA
X – 3σ	3.5	3.5	3.6	4.0	4.1	4.2	3.7	3.9	4.0	mA

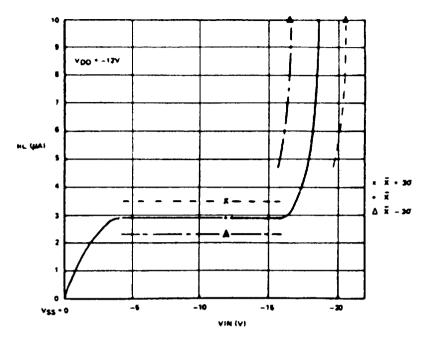
3. INPUTS CURRENT (IIH) & LEVEL (VIH, VIL) (25°C)

V_{DD} = -12V 0.01*μ*F/22KΩ


	18 AL OFF	19 ALARM	21 MIN	22 HR	23 SLEEP	24 SNOOZE	25 50/60IN	26 50/60SEL	28 12/24SEL
IIH X <u>+</u> 3σ	15.6	15.7	16.1	15.9	15.9	15.6		15.1	15.5 JA
_ x	12.5	12.5	12.7	12.7	12.7	12.5	0	12.4	12.8 JA
X −30	9.3	9.3	9.3	9.6	9.4	9.4	_	9.7	10.1 JA
VIH X <u>+</u> 3σ	-2.93	-2.94	-3.00	-2.97	-3.01	-3.12	-2.26	-3.04	-2.89 V
_ X	2.68	-2.69	-2.74	-2.71	-2.68	-2.84	-2.08	-2.79	-2.64 V
x – 3σ	-2.42	-2.43	-2.48	-2.44	-2.36	-2.56	-1.59	-2.54	-2.39 V
VIL X ± 3σ		-3.13	-3.08	-3.13			-2.92		-2.97 ∨
_x̄		-2.86	-2.80	-2.82	-2.79	_	-2.70	_	-2.71 V
x – 3σ		-2.58	-2.53	-2.52	-2.55		-2.48		-2.46 V

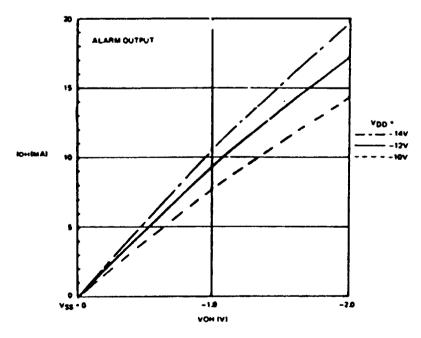
4. CR INPUT CURRENT, VIH & VIL (25°C)

	VI	Н	•	/IL
V _{DD} =	8	-10	8	-10 V
x̄ + 3σ	-2.7	-2.7	-4.3	-6.2 V
_ X	-2.5	-2.5	-4.2	-5.0 V
x̄ - 3σ	-2.3	-2.3	-4.1	-4.9 V


5. BACK-UP OSC C/R VS FREQUENCY VS VDD (25°C)

A ·		180K Ω		3	220KΩ			24	Ωхо		270κΩ	
_ VDD =		-10		-8							-10	-12 V
x̄ + 3σ	1228	1176	1150	1004	970	954	916	890	877	761	744	736 Hz
			1138	986	957	943	899	876	864	744	731	725 Hz
⊼ −3σ	1180	1145	1125	968	945	931	882	862	852	727	718	714 Hz

6


6. 50/80Hz INPUT CURRENT & BREAK-DOWN VOLTAGE (25°C)

10UT - 10MA

	liL (VIL = -12V)	BREAK DOWN VOLTAGE
x + 3σ	3.5 µA	20.6 ∨
x	Au 2.9	18.5 V
χ X – 3σ	2.3 سر	16.5 V

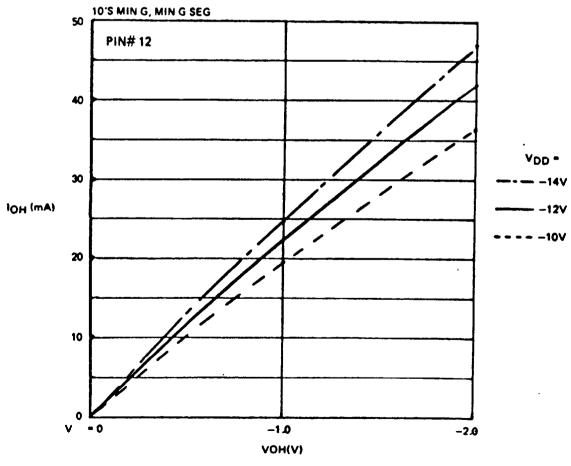
7. ALARM & SLEEP OUTPUTS CURRENT VS VOH VS VDD (25°C)

V_{OH} = -IV V_{DD} = -10 -12 -14 -10 -12 -14 V X + 3σ 8.8 10.0 11.8 10.3 12.3 13.7 mA X 7.8 9.3 10.5 9.3 11.1 12.4 mA X - 3σ 6.8 8.4 9.1 8.2 9.9 11.1 mA

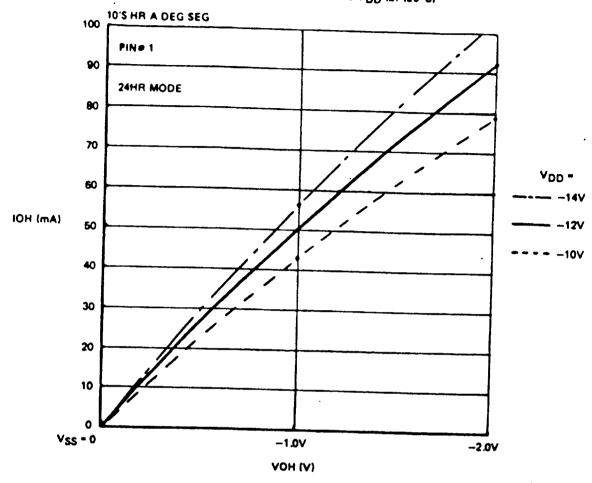
8. ALL SEGMENT OUTPUTS CURRENT (IOH) & BREAK-DOWN VOLTAGE (25°C)

IOH V_{DD} = -12V V_{OH} = -1 0V

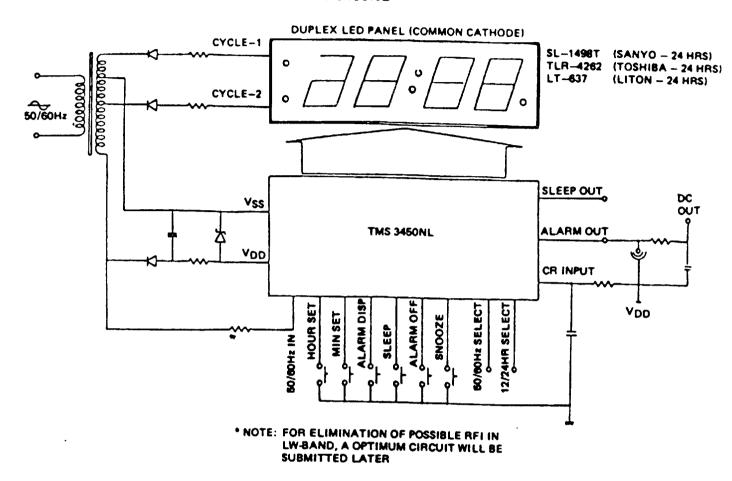
PIN#	1	2	3	<u>4</u>	5	6	7
	AM	PM	HR E	ਸ ਸ ਭ ਫ	HR CD	HR AF	10'S M AF
x + 3σ	29.5	25.7	25.6	26.3	26.4	26.4	26.5 mA
x	27.1	23.7	23.6	24.3	24.2	26.2	24.1 mA
x - 3σ	24.7	21.7	21.5	22.2	22.1	22.0	21.6 mA
_	8 10'S M BG	9 10'S M CD	ME	11 M BG	12 M CD	13 M AF	14 COLON
x + 3σ	26.6	26.6	26.6	26.6	24.8	27.4	26.9 mA
x	24.2	24.2	24.2	24.3	22.4	24.2	24.2 mA
x - 3σ	21.8	21.8	21.8	21.9	20.1	20.9	21.4 mA

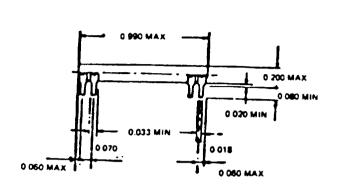

BREAK-DOWN VOLTAGE

V_{DD} = -12V

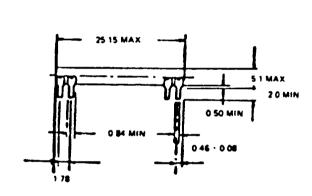

VOUT = 10μΑ

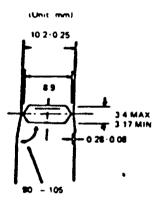
PIN#	1	<u>8</u>	12	16 (AL)	17 (SL)
x <u>+</u> 3σ	21.4	26.9	26 .7	27.8	27.3 V
_X	19.2	26.1	26.0	26.4	26.3 V
X – 3σ	16.9	25.2	25.3	24.9	25.3 V


9. SEGMENT OUTPUT CURRENT VS VOH VS VDD (1) (25°C)



APPLICATION CIRCUIT FOR TMS 3450NL


PIN ASSIGNMENTS DUPLEX LED DISPLAY PANEL 10'S HR ag & de 28 12/24HR SELECT PM & 10'S HR b 27 CR INPUT 10'S HR c & HR e 26 50/60 Hz SELECT HRb&s 25 50/60 Hz INPUT HR c & d 24 **SNOOZE INPUT** HRa&f SLEEP INPUT 10'S MIN . & f . 7 22 HOUR SET 10'S MIN b & 8 21 MIN SET 10'S MIN c & d -20 Vdd 10'S MIN . & MIN . 10 19 ALARM-DISP MIN b & g ALARM-OFF MINCAd 17 SLEEP-OUT MIN . & f - 13 16 ALARM-OUT **COLON OUT** 15 ٧ss * AM and PM of output signal will appear in 12HR-MODE.


28PIN 400MIL PACKAGE

28PIN 400MIL PACKAGE

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated