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Introduction 

For applications that want to generate a ramping waveform, a common question that comes up is how 

wide the loop bandwidth needs to be to not distort the modulation.  For the purpose of discussion, let’s 

assume that this waveform is as shown in Figure 1.   

time

fr
eq

u
en

cy

Dt

Df

1/fMOD

f D
EV

 

Figure 1  Triangle Ramping Waveform 

 

In Figure 1, we can derive the slope along the linear waveform as: 

𝑚 =  
∆𝑓

∆𝑡
=  

2 ∙ 𝑓𝐷𝐸𝑉

(
1

𝑓𝑀𝑂𝐷
) 2⁄

=  4 ∙ 𝑓𝐷𝐸𝑉∙𝑓𝑀𝑂𝐷 

 

(1) 

 

In general, we want the loop bandwidth wide enough to allow the following: 

1. Rule #1:  Loop Bandwidth needs to be wide enough to allow the PLL to slew fast enough, 

ignoring the discrete sampling effects of the charge pump. 

2. Rule #2:  Loop Bandwidth needs to be wide enough so that the discrete sampling effects of the 

charge pump do not make the slew rate of the loop too slow. 

3. Rule #3:  Loop Bandwidth needs to be wide enough such that near the direction changes, the 

loop can respond fast enough. 



Rule #1:   Determine Bandwidth necessary for sufficient slew rate 

Consider a simple 2nd order loop filter. 
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Now solve for components (formulas from my PLL book).   

𝐴0 =
𝐶1 ∙ 𝑇2

𝑇1
=

𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁 ∙ 𝜔𝑐2
∙ √

1 + 𝜔2 ∙ 𝑇22

1 + 𝜔2 ∙ 𝑇12
 

 

(2) 

𝑍(𝑠) =
1 + 𝑠 ∙ 𝑇2

𝑠 ∙ 𝐴0 ∙ (1 + 𝑠 ∙ 𝑇1)
 

 
(3) 

𝜙 = 180 + 𝑎𝑟𝑐𝑡𝑎𝑛(𝜔𝑐 ∙ 𝑇2) − 𝑎𝑟𝑐𝑡𝑎𝑛(𝜔𝑐 ∙ 𝑇1) 
 

(4) 

𝑇2 =
𝛾

𝜔𝑐2 ∙ 𝑇1
 

 
(5) 

𝑇1 =
√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾 − (1 + 𝛾) ∙ tan 𝜙

2 ∙ 𝜔𝑐
 

 

(6) 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁 ∙ 𝜔𝑐2
∙ √

1 + 𝜔𝑐2 ∙ 𝑇22

1 + 𝜔𝑐2 ∙ 𝑇12
 (7) 

 

From (6), restate this as follows and realize that this is purely a function of gamma and phase margin. 

𝜌 ≡  𝜔𝑐 ∙ 𝑇1 =  
√(1 + 𝛾)2 ∙ 𝑡𝑎𝑛2𝜙 + 4 ∙ 𝛾 − (1 + 𝛾) ∙ tan 𝜙

2
 

 

(8) 

Also introduce another constant: 

𝜅2 ∙ 𝜋2 =
1

𝜌
∙ √

𝛾2 + 𝜌2

1 + 𝜌2
 (9) 

 



Combining (5), (6), and (7) yield the following result: 

𝐴0 =
𝐾𝑃𝐷 ∙ 𝐾𝑉𝐶𝑂

𝑁 ∙ 𝜔𝑐2
∙ 𝜅2 ∙ 𝜋2 (10) 

  
Now A0 is the total capacitance, and from this the slew rate can be calculated: 

𝑑𝑓

𝑑𝑡
=

𝐾𝑉𝐶𝑂 ∙ 𝐾𝑃𝐷

𝐴0
=

𝑁 ∙ 𝜔𝑐2

𝜅2 ∙ 𝜋2
 (11) 

 

Now (11) represents the slew rate that the loop filter is capable of, but this needs to be at least as fast as 

the slew rate as calculated by (1).  Therefore, combining (1) and (11) yields the following: 

 

𝑁 ∙ 𝜔𝑐2

𝜅2 ∙ 𝜋2
>  4 ∙ 𝑓𝐷𝐸𝑉∙𝑓𝑀𝑂𝐷 (12) 

𝐵𝑊 > 𝜅√
𝑓𝐷𝐸𝑉∙𝑓𝑀𝑂𝐷

𝑁
   (13) 

For phase margin of 45 degrees and = 1 (=0.495, but round to 0.5), this can be approximated as 

𝐵𝑊 > √
𝑓𝐷𝐸𝑉∙𝑓𝑀𝑂𝐷

4 ∙ 𝑁
   (13) 

 

Now for the parameter, ,  the following table might be helpful for quick calculations: 

𝝓 𝜸 𝝆 𝜿𝟐 ∙ 𝝅𝟐 𝜿 

30 

0.5 0.396 1.497 0.389 

1 0.577 1.732 0.419 

2 0.792 2.128 0.464 

45 

0.5 0.281 1.966 0.446 

1 0.414 2.414 0.495 

2 0.562 3.226 0.572 

60 

0.5 0.180 2.906 0.543 

1 0.268 3.732 0.615 

2 0.360 5.312 0.734 

75 

0.5 0.088 5.751 0.763 

1 0.132 7.596 0.877 

2 0.176 11.243 1.067 

 

Table 1  Calculation of  from phase margin and gamma 



Rule #2: How Wide to avoid cycle slipping? 

Recall this rule from (29.13) in my PLL book to avoid cycle slipping 

𝑓𝑃𝐷

𝐵𝑊
<  

5

|1 −
𝑓2
𝑓1

|
 

1

𝐵𝑊
<  

𝑁

|𝑓1 − 𝑓2|
 

𝐵𝑊 >  
|𝑓1 − 𝑓2|

5 ∙ 𝑁
 

𝑓2 = 𝑓1 +  
𝑑𝑓

𝑑𝑡
∆𝑡 

𝐵𝑊

∆𝑡
>  

|
𝑑𝑓
𝑑𝑡

|

5
 

𝐵𝑊 >  
𝑓𝐷𝐸𝑉 ∙ 𝑓𝑀𝑂𝐷∙∆𝑡

5 ∙ 𝑁
 

𝐵𝑊 >  
𝑓𝐷𝐸𝑉

5 ∙ 𝑁
 

  



Rule #3: How wide of a bandwidth to not distort corners too much? 

Now what about abruptly changing direction at the peak.  Recall the Fourier series for a triangle wave is: 

𝑓(𝑡) =
8

𝜋2
∙ (𝑠𝑖𝑛(𝜔𝑡) −

1

32
𝑠𝑖𝑛(3𝜔𝑡) + ⋯ ) 

 

Remember Rule #1, let’s think about 2X loop bandwidth to at least allow the fundamental.  In this case, I 

think that we can e 

𝑓𝐷𝐸𝑉∙𝑓𝑀𝑂𝐷 < ~ 6.8 ∙ 𝑁 ∙ (2𝑓𝑀𝑂𝐷)2 

𝑓𝐷𝐸𝑉∙

𝑓𝑀𝑂𝐷
<  1.7 ∙ 𝑁 

So now we compare a sine wave to a square wave.  The slew rate is equal to the derivative.  So let’s 

compare the slew rate at various phases to the max phase at 0.  Note that the phase goes from -45 to 

+45 degrees. 
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