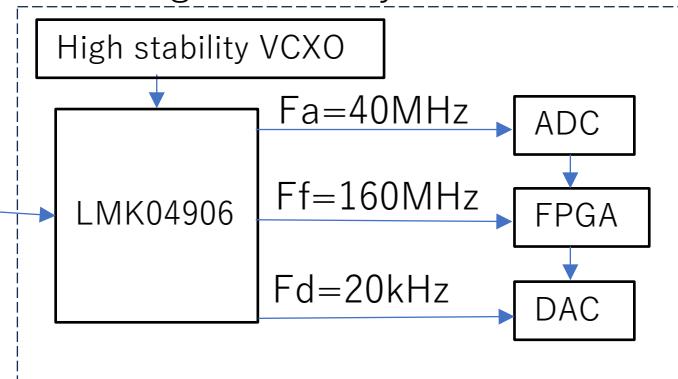
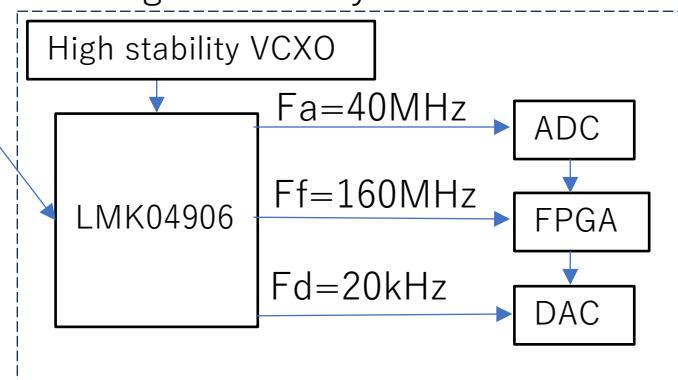


Multiple Synchronous Clock Generation


2025.11.18 Intermind Inc.

Ultra-high-precision
3-axis angular velocity
measurement system


High-precision angular velocity measurement module -1

High-precision angular velocity measurement module-2

High-precision angular velocity measurement module-3

All ADC, FPGA, and DAC clocks must be synchronized. The diagram on the left shows the initial

values. $F_a=40\text{MHz}$, $F_f=160\text{MHz}$ are fixed. F_d is variable \pm in approximately 5Hz steps. The clocks to the ADC, FPGA, and DAC must have low jitter. The above are the conditions.

Use the LMK04906 to vary F_d . To do this, set the LMK04906's PLL. However, do not change $F_a=40\text{MHz}$ and $F_f=160\text{MHz}$. For example, $F_d=20\text{kHz} \times 8000=160\text{MHz}$, $\div 4=40\text{MHz}$. $F_d=20.005\text{kHz} \times 7998=160\text{MHz}$, $\div 4=40\text{MHz}$. $F_d=19.995\text{kHz} \times 8002=160\text{MHz}$, $\div 4=40\text{MHz}$. However, this cannot be achieved with F_m fixed at

10 kHz. Therefore, the F_m frequency must be changed by the same amount as F_d is changed.

For example, when $F_d=20.005\text{ kHz}$, $F_m=10.0025\text{ kHz}$. When $F_d=19.995\text{ kHz}$, $F_m=9.9975\text{ kHz}$.

- (1) A high-stability VCXO is required for each LMK04906?
- (2) Is this type of usage possible with the LMK04906?
- (3) Is the LMK04906 optimal, or are there other recommended PLL devices?

Register settings for the LMK04906 are made using an FPGA or a separate external microcontroller (not shown in this diagram).