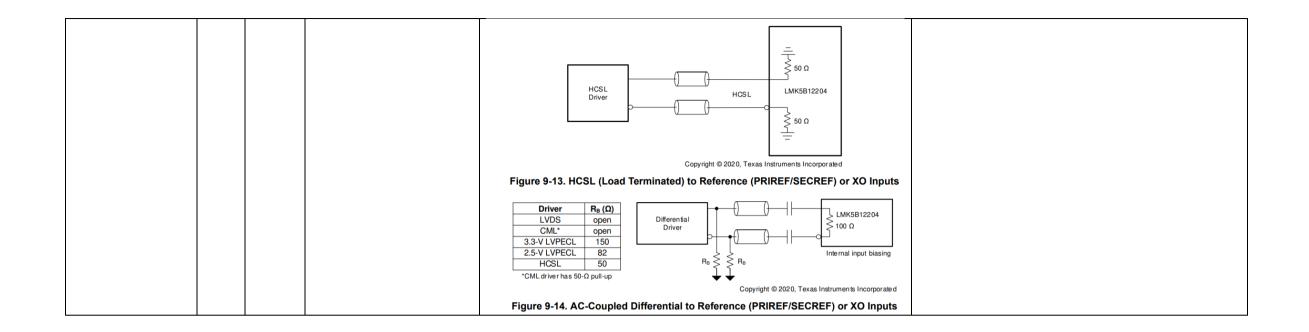
LMK5B12204 Schematic Review

The recommended pin terminations for the LMK5B12204 schematic are as follows.

Notes:

1. P = Power, G = Ground, I = Input, O = Output, I/O = Input or Output, A = Analog, S = Configuration.

PIN			DESCRIPTION	PIN TERMINATION	TI Feedback
NAME	NO.	-			
POWER					
VDDO_0	18	Р	These pins power the outputs.1. Place a 0.1 uF	Step 1-3: 1.8/2.5/3.3V FB5 WDDOx	We recommend placing 6 0.1 uF capacitors
VDDO_1	19	Р	 capacitor close to the supply 2. Place a ferrite bead (recommended 220 ohm) to reduce 	C25 220 ohm C26 0.1µF 10µF	(one 0.1 uF for each VDDO pin) for best power supply filtering and output phase noise performance.
VDDO_2	37	Р	 crosstalk 3. Place a 10 uF decoupling capacitor 4. Place a 0.1 uF decoupling capacitor 	<u>Step 4:</u>	We recommend outputs with different frequencies have their own filtering circuit (steps 1-3). I believe your outputs will all be the same frequency, so it is fine to share steps 1-3 for all the VDDO pins.
VDDO_2	40	Р	close to each power pin. NOTE: Outputs with the same frequencies can	$\frac{VDDOx = 1.8, 2.5, \text{ or } 3.3 \text{ V (DIFF or HCSL)}}{VDDOx = 1.8 \text{ V (} 1.8 \text{-V LVCMOS)}}$	
VDDO_3	43	Р	share steps 1-3 above, but each pin requires its own 0.1 uF (step 4).	VDD0_23 37 VDD04 0.1µF C10 VDD0_5 40 VDD05 0.1µF C12 VDD0_6 43 VDD06 0.1µF C13 VDD0_7 46 VDD07 0.1µF C14	
VDDO_3	46	Р			

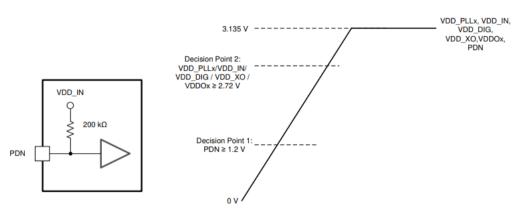

VDD_XO	33	Р	Power supply for XO	<u>Step 1-3:</u>	
			 Place a 0.1 uF capacitor close to the supply Place a ferrite bead (recommended 220 ohm) to reduce crosstalk Place a 10 uF decoupling capacitor Place a 0.1 uF decoupling capacitor close to the pin. 	$\frac{3.3V}{\underbrace{-0.1\mu F}} \xrightarrow{FB3} \underbrace{VDDXO}_{10\mu F}$ Step 4: $\frac{VDDXO}{33} \underbrace{VDD_XO}_{VDD_XO}$	We recommend each VDD pin have its own power supply filtering circuit (steps 1-4 on left) for best supply noise filtering and output clock perfromance. Current termination is sufficient as well.
VDD_PLL1	27	P	 Power supply for APLL1 Place a 0.1 uF capacitor close to the supply Place a ferrite bead (recommended 220 ohm) to reduce crosstalk Place a 10 uF decoupling capacitor Place a 0.1 uF decoupling capacitor close to the pin. 	Step 1-3: 3.3V FB2 VDDPLL1 C6 0.1 μ F C6 0.1 μ F C6 VDDPLL1 0.1 μ F C1 VDDDIG 4 VDD DIG VDD PLL1 VDD PLL2 VDD PLL2 VDD PLL2	We recommend each VDD pin have its own power supply filtering circuit (steps 1-4 on left) for best supply noise filtering and output clock perfromance. Current termination is sufficient as well.

VDD_PLL2	36	Р	Power supply for APLL2	<u>Step 1-3:</u>	
			 Place a 0.1 uF capacitor close to the supply Place a ferrite bead (recommended 220 ohm) to reduce crosstalk Place a 10 uF decoupling capacitor Place a 0.1 uF decoupling capacitor close to the pin. 	$\frac{3.3V}{FB4} + \frac{VDDPLL2}{220 \text{ ohm}} + \frac{C21}{10\mu F}$ $\frac{0.1\mu F}{C} + \frac{C1}{C} + \frac{VDDDKG}{C} + \frac{4}{C} + \frac{VDD}{VDD} + \frac{10\mu F}{VDD} + \frac{10\mu F}{C} + $	We recommend each VDD pin have its own power supply filtering circuit (steps 1-4 on left) for best supply noise filtering and output clock perfromance. Current termination is sufficient as well.
VDD_DIG	4	P	 Power supply for digital 1. Place a 1 uF capacitor close to the supply 2. Place a 0.1 uF decoupling capacitor close to the pin. 	Step 1: 3.3V VDDDIG C24 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	We recommend placing an additional 1 uF on the VDD_DIG pin.
				Step 2: 0.1µF C1 VDDDIG 4 0.1µF C7 VDDIN 5 0.1µF C9 VDDPLL1 27 0.1µF C1 VDDPLL2 36	

VDD_IN	5	Р	 Power supply for inputs Place a 0.1 uF capacitor close to the supply Place a ferrite bead (recommended 220 ohm) to reduce crosstalk Place a 10 uF decoupling capacitor Place a 0.1 uF decoupling capacitor close to the pin. 	$\frac{\text{Step 1-3:}}{3.3V} + \frac{\text{FB1}}{220 \text{ ohm}} + \frac{\text{VDDN}}{C4} + \frac{\text{C4}}{10\mu\text{F}}$ $\frac{\text{Step 4:}}{5} + \frac{0.1\mu\text{F}}{0.1\mu\text{F}} + \frac{\text{C1}}{C7} + \frac{\text{VDDDKG}}{10} + \frac{4}{5} + \frac{\text{VDD}}{10} + \frac{10}{10} + \frac{10}{1$	We recommend each VDD pin have its own power supply filtering circuit (steps 1-4 on left) for best supply noise filtering and output clock perfromance. Current termination is sufficient as well.
DAP	PAD	G	Tie GND (DAP) to GND	PAD 49	Correct termination. No changes needed.

PIN		TYPE	DESCRIPTION	PIN TERMINATION	TI Feedback
NAME	NO.				
CORE BLOCKS		T			
LF1	29	A	 Place a 470 nF capacitor on LF1 NOTE: This is the external loop filter capacitor for APLL1 	0.47uF C22 29 LF1 0.1uF C23 34 LF2	Correct termination. No changes needed.
LF2	34	A	 Place a 100 nF capacitor on LF2 NOTE: This is the external loop filter capacitor for APLL2 		Correct termination. No changes needed.
CAP_DIG	3	A	 Place a 10 uF capacitor on CAP_DIG NOTE: This is the external bypass capacitor for Digital Core Logic 		Correct termination. No changes needed.
CAP_PLL1	28	A	 Place a 10 uF capacitor on CAP_PPL1 NOTE: This is the external bypass capacitor for APLL1 VCO 	10μF C15 3 CAP_DIG 10μF C16 28 CAP_PLL1 10μF C17 35 CAP_PLL2	Correct termination. No changes needed.
CAP_PLL2	35	A	 Place a 10 uF capacitor on CAP_PPL2 NOTE: This is the external bypass capacitor for APLL2 VCO 		Correct termination. No changes needed.

PIN		TYPE	DESCRIPTION	PIN TERMINATION	TI Feedback
NAME	NO.				
INPUT BLOCKS					
XO_P	31	Ι	 XO/TCXO/OCXO Input Please select a termination shown 	$\begin{array}{c} VDD \\ \hline \\ LVCMOS \\ Driver \\ (R_{OUT}) \\ \hline \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ \\ R_{S} = 50 - R_{OUT} \\ \hline \\ \\ $	Correct termination. No changes needed.
XO_N	32	Ι	on the right that matches your XO input type.	VDD R1 (Ω) R2 (Ω) 3.3 V 125 375 2.5 V 0 open 1.8 V 0 open Copyright © 2020, Texas Instruments Incorporated	Correct termination. No changes needed.
PRIREF_P	6	T	Clock Inputs	Figure 9-8. Single-Ended LVCMOS to XO Input (XO_P)	
	0		 Please select a termination shown on the right that matches your input format type. 	3.3V LVCMOS Rs Driver LMK5B12204 Copyright © 2020, Texas Instruments Incorporated Figure 9-9. Single-Ended LVCMOS (1.8, 2.5, 3.3 V) to Reference (PRIREF_P/SECREF_P)	Correct termination. No changes needed.
PRIREF_N	7	Ι		LVPECL Driver LVPECL Driver SO Q SO Q	Correct termination. No changes needed.
				LMK5B122.04	
SECREF_P	10	I		LVDS Driver LVDS Driver Copyright © 2020, Texas Instruments Incorporated Figure 9-11. DC-Coupled LVDS to Reference (PRIREF/SECREF) or XO Inputs CML Driver CML CML CML CML CML CML CML CML	Correct termination. No changes needed.
SECREF_N	11	I		Figure 9-12. DC-Coupled CML (Source Terminated) to Reference (PRIREF/SECREF) or XO Inputs	Correct termination. No changes needed.



PIN		TYPE	DESCRIPTION	PIN TERMINATION	TI Feedback
NAME	NO.	-			
OUTPUT BLOC	CKS				
OUT0_P	17	0	 Clock Outputs Please select a termination shown 	LWK5B12204 LVCMOS 1.8 V LVCMOS Figure 9-26. 1.8-V LVCMOS Output to 1.8-V LVCMOS Receiver	
OUT0_N	16	0	on the right that matches your output format type.	LMK5B12204 AC-LVDS 100 Ω LVDS AC-LVDS 100 Ω Receiver Copyright © 2020, Texas Instruments Incorporated	
OUT1_P	20	0		Figure 9-27. AC-LVDS Output to LVDS Receiver With Internal Termination/Biasing	
				LMK5B12204 AC-CML S0 Q CML Receiver	Correct termination. No changes needed.
OUT1_N	21	0			
				Copyright © 2020, Texas Instruments Incorporated Figure 9-28. AC-CML Output to CML Receiver With Internal Termination/Biasing	
OUT2_P	42	0	-	LMK5B12204 AC-LVPECL CLUPECL Receiver	
				50 Ω Š Š 50 Ω	
OUT2_N	41	0	-	VDD_IN - 1.3 V Copyright © 2020, Texas Instruments Incorporated	
_				Figure 9-29. AC-LVPECL Output to LVPECL Receiver With External Termination/Biasing	
				33 Ω (optional) LMK5B12204 HCSL	
OUT3_P	45	0		$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	
OUT3_N	44	0	-	Copyright © 2020, Texas Instruments Incorporated If HCSL Internal Termination (50- Ω to GND) is enabled, short 33- Ω and remove 50- Ω external resistors.	
				Figure 9-30. HCSL Output to HCSL Receiver With External Source Termination	

		TYPE	DESCRIPTION	N	PIN TERMINATION	TI Feedback
NAME	NO.	-				
LOGIC CONTRO	L/STAT	US				
HW_SW_CTRL	9	I	table below to de 6.1 Device Start-U The HW_SW_CTRL or ROM) used to ini initial register setting registers can be acc will function as defini INPUT LEVEL ⁽¹⁾ O	Up Mode Up Mode L input pir hitialize the logs determinicessed thro	n selects the device start-up mode that determines the memory page (EEPROM e registers, the serial interface, and the logic pin functions at power-on reset. The ine the frequency configuration of the device on start-up. After start-up, the device bugh the serial interface for device monitoring and programming, and the logic pins selected mode. Table 6-2. Device Start-Up Modes MODE DESCRIPTION Registers are initialized from EEPROM, and I ² C interface is enabled. Logic pins: • SDA/SDI, SCL/SCK: I ² C Data, I ² C Clock (open-drain)	Tied low for EEPROM + I2C. Correct termination. No changes needed.
			(V _{IM}) (Sof	PROM + SPI fft pin mode) ROM + I ² C rd pin mode)	Registers are initialized from EEPROM, and SPI interface is enabled. Logic pins: • SDA/SDI, SCL/SCK: SPI Data In (SDI), SPI Clock (SCK) • GPI00/SYNCN: Output SYNC Input (active low). Pull up externally if not used. • GPI01/SCS: SPI Chip Select (SCS) • GPI02/SDO/FINC: SPI Data Out (SDO) Registers are initialized from the ROM page selected by GPIO pins, and I ² C interface is enabled. Logic pins: • SDA/SDI, SCL/SCK: I ² C Data, I ² C Clock (open-drain) • GPI02:0] (1): ROM Page Select Inputs (000b to 111b) during POR.	
PDN	13	I		ins are only a	After POR, GPIO2/SDO/FINC and STATUS1/FDEC pins can function the same as for HW_SW_CTRL = 0. Ire sampled only during POR. Ivailable when DCO mode and GPIO pin control are enabled by registers. Stive low).	
	15	1	There are two mo 1. If all the	ethods f VDD ai	for terminating the PDN pin. nd VDDO pins are being supplied by the same 3.3 V supply rail, in floating.	

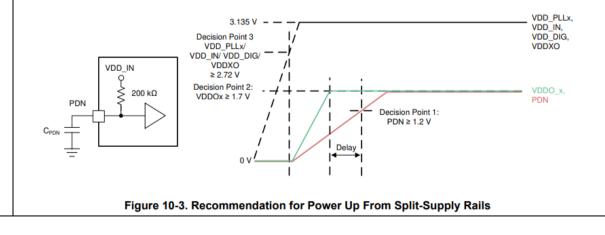
10.1.3.3 Powering Up From a Single-Supply Rail

As long as all VDD core supplies are driven by the same 3.3-V supply rail that ramp in a monotonic manner from 0 V to 3.135 V, irrespective of the ramp time, then there is no requirement to add a capacitor on the PDN pin to externally delay the device power-up sequence. As shown in Figure 10-2, the PDN pin can be left floating or otherwise driven by a system host to meet the clock sequencing requirements in the system.

The PDN pin has an internal pull up, so external pull up is not required. Remove the 10 kohm to VCC.

Since you are powering up the VDD and VDDO with separate supplies, please place a 0.01 uF to GND on the PDN pin. This is the only termination required.

Figure 10-2. Recommendation for Power Up From a Single-Supply Rail


2. If the VDD and VDDO pins are driven from different supply sources, place a 0.01 uF capacitor on the PDN pin.

10.1.3.4 Power Up From Split-Supply Rails

If some VDD core supplies are driven from different supply rails, TI recommends to start the PLL calibration after all of the core supplies have ramped above 3.135 V. This can be realized by delaying the PDN low-to-high transition. The PDN input incorporates a 200-k Ω resistor to VDD_IN and as shown in Figure 10-3, a capacitor from the PDN pin to GND can be used to form an R-C time constant with the internal pullup resistor. This R-C

time constant can be designed to delay the low-to-high transition of PDN until all the core supplies have ramped above 3.135 V.

Alternatively, the PDN pin can be driven high by a system host or power management device to delay the device power-up sequence until all VDD supplies have ramped.

SDA/SDI	25	I/O	SPI or I ² C Data (SDA)	SPI Interface:	
			 For the SPI interface: 1. Place a 100-ohm series resistor 2. Place a 33-pF capacitor to GND For the I2C interface: 1. Place a 4.7 kohm 	SDIO_MCU_R12 SDIO (SDA) 100 C15 33pF GND SCK (SCL) 100 SCK MCU_R13 SCK (SCL) 100 C16 33pF C16 SCK MCU_R13 C16 SCK MCU_R13 SCK (SCL) SCK MCU_R13 SCK (SCL) C16 SCK (SCL) SCK (SCL) SCK MCU_R13 SCK (SCL) SCK (Pull up placed. No changes needed.
SCL/SCK	26	Ι	resistor tied to V _{cc} SPI or I ² C Clock		
			 (SCL) For the SPI interface: Place a 100-ohm series resistor Place a 33-pF capacitor to GND For the I2C interface: Place a 4.7 kohm resistor tied to V_{cc} 	GND I2C Interface: to +3.3 V R7 4.70k SDIO (SDA) SCK (SCL)	Pull up placed. No changes needed.

GPIO0/SYNCN	12	Ι	Please observ	ve the table	below to determine what setting is selected for each termination.	
			6.1 Device St	art-Up Mode	S	
			or ROM) used initial register s	to initialize the ettings determ e accessed thr		If you do not plan to use the SYNCN feature for output clock synchronization, please place a pull up.
			HW_SW_CTRL	START-UP	Table 6-2. Device Start-Up Modes	
			INPUT LEVEL ⁽¹⁾	MODE	MODE DESCRIPTION	
GPIO1/SCS	24	I	0	EEPROM + I ² C (Soft pin mode)	Registers are initialized from EEPROM, and I ² C interface is enabled. Logic pins: • SDA/SDI, SCL/SCK: I ² C Data, I ² C Clock (open-drain) • GPIO0/SYNCN: Output SYNC Input (active low). Pull up externally if not used. • GPIO1/SCS ⁽¹⁾ : I ² C Address LSB Select (Low = 00b, Float = 01b, High = 10b) • GPIO2/SDO/FINC ⁽²⁾ : DPLL DCO Frequency Increment (active high) • STATUS1/FDEC ⁽²⁾ : DPLL DCO Frequency Decrement (active high), or Status output	
					Float (V _{IM}) EEPROM + SPI (Soft pin mode) Registers are initialized from EEPROM, and SPI interface is enabled. Logic pins: • SDA/SDI, SCL/SCK: SPI Data In (SDI), SPI Clock (SCK) • GPI00/SYNCN: Output SYNC Input (active low). Pull up externally if not used. • GPI01/SCS: SPI Chip Select (SCS) • GPI02/SD0/FINC: SPI Data Out (SDO)	GPIO1 is used to select the I2C address LSBs. Please tie to GND, leave floating, or tie to VCC.
				1	1 Registers are initialized from the ROM page selected by GPIO pins, and I ² C interface is enabled. Logic pins: 1 ROM + I ² C (Hard pin mode) • SDA/SDI, SCL/SCK: I ² C Data, I ² C Clock (open-drain) • GPI0[2:0] ⁽¹⁾ : ROM Page Select Inputs (000b to 111b) during POR.	
GPIO2/SDO/FINC	30	I/O		After POR, GPIO2/SDO/FINC and STATUS1/FDEC pins can function the same as for HW_SW_CTRL = 0.		
					are sampled only during POR. available when DCO mode and GPIO pin control are enabled by registers.	If GPIO2 is not used, please leave floating.
STATUS0	1	I/O	Each output h	nas prograr	nmable status signal selection, driver type (3.3-V LVCMOS or	Correct termination. No changes needed.
			1 / /		polarity. Open-drain requires an external pullup resistor. Leave pin	
STATUS1/FDEC	2	I/O	0		C mode, the STATUS1/FDEC pin can function as a DCO mode able 6-2 above for more details.	Correct termination. No changes needed.
REFSEL	8	Ι	1. REFS 2. REFS	EL = 0 (see $EL = 1$ (see	GND, tied to VCC, or left floating. lect PRIREF as input) lect SECREF as input) t or VIM (Auto Select input)	REFSEL left floating for auto select input. No changes needed.
			This control p unused.	pin must be	e enabled by register default or programming. Leave pin floating if	