
LMK5Cxxxxx/LMK5Bxxxxx
Programming

July 15 2024

Clocks and Timing Solutions

1

Revision History

Date Description

2022-09-23 Initial release

2022-11-29 Updated to poll or delay before setting NVMUNLK = 0 after starting programming.

Added notes on ROM page selection and outputs

2023-01-03 Generalized title for LMK5Cxxxxx and LMK5Bxxxxx

2023-05-17 Added Memory Overview

2023-08-11 Updated SRAM/EEPROM address: 0x00 to 0x7F (128 bytes)

Updated register address in Dec and Hex

Updated RAMDAT register

Updated direct write method steps

Added LMK5C ROM page

2023-11-03 Added in-system programming section, changed title

2024-01-24 Added start-up details and clarified memory overview

2024-02-14 Clarified start-up sequence and added DPLLx_SWRST details.

2024-07-15 Added Read EEPROM and NVMDAT information

2

Memory Overview

3

Memory Overview

• ROM

– Contains all register settings (DPLL,

APLL, output, SYSREF, GPIO).

– One-time programming by TI.

• EEPROM

– Contains partial register settings

(APLL and output).

– Up to 100 programming cycles by user

• SRAM

– Intended use is for EEPROM

programming only.

– Matches the EEPROM address & data

mapping.

• Registers

– Current/active settings used by device.

4

• The EEPROM contains partial register settings and does not store the DPLL settings.

– With only the EEPROM settings loaded, the outputs can be present but will not be synchronized

(locked) to INx inputs and instead will lock to XO input.

– If desired DPLL settings are not available in an existing ROM page, in-system programming

(I2C/SPI) must occur after boot-up to configure the remaining registers.

• The registers needed after an EEPROM boot-up can be determined in TICSPRO.

– Navigate to the LMK5B33216 profile.

– Load the desired .tcs file.

– Go to the “Programming” page.

– Select ROM only registers in the drop-down menu.

– Click Generate Register Programming Sequence.

About Registers Not Stored in EEPROM

5

Start-Up Flow

6

Device Start-Up Flow Options to Get Desired
Registers Configured
• Opt. #1: ROM

– Use when both DPLL & APLL settings match a ROM page.

• Opt. #2: ROM → EEPROM

– Use when desired DPLL settings match a ROM page but APLL settings do not.

– Also, use for free-run mode (APLL only) configurations.

• Opt. #3: ROM → EEPROM → in-system programming

– Use when desired DPLL and APLL settings do not match a ROM page.

• Opt. #4: ROM → in-system programming

– Use when EEPROM is not used and all registers are configured in-system.

7

SWRST and DPLLx_SWRST

• SWRST, R23[6]

– Global software reset

– Recommended to toggle (0→1→0) when APLL settings are modified in-system.

– Recalibrates the APLLs.

– Causes a momentary glitch on the outputs.

• DPLLx_SWRST, R23[5:3]

– DPLL software reset

– Recommended to toggle (0→1→0) when DPLL settings are modified in-system.

– Restarts the DPLL state machine.

– Does not cause glitch on the outputs.

8

Option #1: ROM Only

9

Bypass

1

2

Device configuration

complete.

Option #2: ROM → EEPROM

10

1

ROM_PLUS_EE = 1

EEPROM overwrites

the ROM’s APLL &

output settings.
2

3

Device configuration

complete.

Option #3: ROM → EEPROM → In-System

11

1

2

6

4

Write remaining

registers through I2C

Issue DPLLx_SWRST

5

Device configuration

complete.

DPLLx_SWRST = 1
DPLLx_SWRST = 0

Option #4: ROM → In-System

12

1

4

2

Write remaining

registers through I2C

Issue SWRST
3

Device configuration

complete.

Bypass

Additional Start-Up Details

13

Part Identification

Prototype

(never released to ti.com)
Released to ti.com

Date Jan 2022 July 2022

Top Marking PK5B33216 K5B33216

PRODID, R2 65 (0x41) 65 (0x41)

REVID, R3 0 1

PARTID, R4-R9 Unique to every part

NVMCNT, R16 1 + number of EEPROM programming cycles made by user

EEREV Set by user when programming EEPROM using SRAM direct write method

14

I2C and APLL Lock Times

• I2C communication to device can begin about 30ms after power-up.

• After power-up, issuing a SWRST, or toggling the PD pin, the APLL lock time is

listed (from datasheet):

15

Start-up Sequence Recommendations from
TICSPRO

1. Open TICSPRO and load your desired

.tcs settings.

2. Navigate to the “Programming” page.

3. Check the “Generate for Startup

Programming” box.

4. (Optional) Check the “Remove registers

for unused features” box.

1. This will not list registers for unused

settings. For example, if DPLL2 is unused,

then DPLL2 disable register will be listed but

DPLL2 loop filter registers will not be listed.

5. Hit “Generate Register Programming

Sequence” button.

6. To get the instructions as a .txt, click

“Save Contents to Text File”.

16

3

4
2 5 6

Start-up CRC ERROR Debugging

• If NVMCRCERR is set (R171[5] = 1), then there was an error loading EEPROM

contents onto the registers.

• At power-up, it is expected for NVMSCRC (R170) to equal NVMLCRC (R172).

• Debugging tips

– Power cycle the board. Does the NVMCRCERR clear?

– Reprogram the EEPROM ensuring the proper programming sequence is followed.

Does the NVMCRCERR clear?

17

About NVMCNT, R16

• NVMCNT is the number of successful EEPROM programming cycles.

• All LMK5Bxxxxx parts from ti.com start with NVMCNT = 1 because they are

preprogrammed with the default EEPROM configuration.

– Default EEPROM contains the APLL and output driver settings from ROM0.

• If NVMCNT > 1, then the user has modified the EEPROM beyond factory

setting.

18

https://www.ti.com/

EEPROM Programming

19

EEPROM Programming Methods

• Two methods available:

– REGCOMMIT (recommended)

• Stores current configuration (all active registers) to EEPROM.

• TICS Pro uses this method to program when you press Program EEPROM button.

• Recommended method when modifying the I2C_ADDR or EEREV is not required.

– SRAM Direct Write

• Programs EEPROM one register/address at a time.

• Use if you want to do an in-system update without disrupting clocks. On next restart new

config takes effect.

• Use to change the 5 MSBs of the I2C MSB address (TARGET_ADR_MSB) by writing to

SRAM address 12.

• Use to change the EEPROM Revision Number (EEREV) by writing to SRAM address 13.

• Does require you to utilize the saved ".EPR" file.

20

1. Power cycle (toggle PD#)

2. Program active registers and confirm the current configuration outputs as desired

3. Enable EEPROM overlay

• Set ROM_PLUS_EE (R20[7]) = 1 → R20 = 0x80

4. Commit active registers to SRAM

• Set REGCOMMIT (R171[6]) = 1 → R171 = 0x40
Note: REGCOMMIT is auto-cleared to 0 when transfer is completed

5. Unlock EEPROM

• Set NVMUNLK = 234 → R180[7:0] = 0xEA

6. Erase EEPROM and initiate EEPROM programming

• Set NVMERASE (R171[1]) = 1

• Set NVMPROG (R171[0]) = 1
Note: Step 5 & 6 must be atomic writes without any other

register transactions in-between

7. Wait for EEPROM programming to finish

• Poll NVMBUSY, R171[2], until cleared or wait ~ 500 ms

8. Lock EEPROM

• Set NVMUNLK = 0 → R180[7:0] = 0x00

9. Power cycle and check outputs to confirm EEPROM programming was successful

EEPROM Programming: REGCOMMIT Method
(recommended)

21
Export the register programming

sequence

→ R171 = 0x03

1. Enable EEPROM overlay

2. Commit active registers to SRAM, set REGCOMMIT (R171[6]) = 1

Note: REGCOMMIT is auto-cleared to 0 when transfer is completed

3. Write the most significant five bits of the SRAM address to

R173[4:0] (MEMADR_12:8).

4. Write the least significant eight bits of SRAM address to R174

(MEMADR).

5. Write the SRAM data byte to R176 (RAMDAT).

6. Repeat steps 3-5 for all desired SRAM values

7. Unlock EEPROM

8. Erase EEPROM and initiate EEPROM programming

– Set NVMERASE (R171[1]) = 1

– Set NVMPROG (R171[0]) = 1
Note: Step 7 & 8 must be atomic writes without any other

register transactions in-between

9. Wait for EEPROM programming to finish

– Poll NVMBUSY, R171[2], until cleared or wait ~ 500 ms

10. Lock EEPROM

– Set NVMUNLK = 0

EEPROM Programming: SRAM Direct Write Method

22

Example for updating the EEREV (R19) to value of 2:

1. R20 (0x14) = 0x80 # ROM_PLUS_EE = 1

2. R171 (0xAB) = 0x40 # REGCOMMIT = 1

3. R173 (0xAD) = 0x00 # EEREV addrH is 0x00

4. R174 (0xAE) = 0x0D # EEREV addrL is 0x0D

5. R176 (0xB0) = 0x02 # EEPROM Rev ID to 2

6. h

7. R180 (0xB4) = 0xEA # NVMUNLK = 234

8. R171 (0xAB) = 0x03 # NVMERASE = 1 &

NVMPROG = 1

9. Poll NVMBUSY, R171[2], until cleared or wait ~ 500 ms

10. R180 (0xB4) = 0x00 # NVMUNLK = 0

Write to

SRAM

Program

EEPROM

11. Power cycle and check outputs to confirm EEPROM programming was successful.

Important Notes on EEPROM

• The I2C bus should not be interrupted (such as writing to another I2C address)

in between NVMUNLK and NVMERASE/NVMPROG transactions.

– If interrupted, EEPROM write will fail.

• NVMERASE and NVMPROG are atomic writes.

– Ensure both are written in one register transaction.

23

Read from EEPROM

1. Write the most significant five bit of the EEPROM

address to R173[4:0] (MEMADR byte 1).

2. Write the least significant eight bits of the EEPROM

address to R174 (MEMADR byte 0).

3. Read R175 (NVMDAT byte) to get the EEPROM data

at the specified address.

• Any additional read transfer that is part of the same

transaction will cause the EEPROM address pointer

to be auto-incremented and a subsequent read will

take place of the next address.

• Byte or Block read transfers from R161 can be used to

read the entire EEPROM map sequentially from Byte 0 to

252.

• Access to EEPROM will terminate at the end of current

register transaction.

24

Example for reading the EEREV (R19) to value of 2:

1. Write(0xAD, 0x00) # EEREV addrH is 0x00

2. Write(0xAE, 0x0D) # EEREV addrL is 0x0D

3. Read(0xAF) → 0x02 # Readback EEPROM REVID as 2

R20 ROM_PLUS_EE and EE_ROM_PAGE_SEL

25

ROM_PLUS_EE = 1

EE_ROM_PAGE_SEL = 0
Note: Turn off EEPROM overlay by programming again using ROM_PLUS_EE = 0

Note: GPIO0, GPIO1, and EE_ROM_PAGE_SEL will select starting ROM page.

ROM page will impact some clock output configuration pertaining to which clocks

are SYSREF. ROM8 allows any clock to startup as a non-SYSREF output and is

a good general startup ROM.

R171 REGCOMMIT

26

REGCOMMIT = 1

R173 MEMADR_12:8

27

R174 MEMADR

28

R176 RAMDAT

29

R175 NVMDAT

30

• EEPROM Read Data.

• The first time an I2C/SMBus read transaction accesses the NVMDAT register

address, either because it was explicitly targeted or because the address was

auto-incremented, the read transaction will return the EEPROM data located at

the address specified by the MEMADR register. Any additional read's which are

part of the same transaction will cause the EEPROM address to be incremented

and the next EEPROM data byte will be returned. The I2C/SMBus address will

no longer be auto-incremented, i.e the I2C/SMBus address will be locked to the

NVMDAT register after the first access. Access to the NVMDAT register will

terminate at the end of the currentI2C/SMBus transaction.

R180 NVMUNLK

31

NVMUNLK = 0xEA

R171 NVMERASE and NVMPROG

32

REGCOMMIT = 1

NVMERASE = 1

NVMPROG = 1

R180 NVMUNLK

33

NVMUNLK = 0

LMK5C ROM page

34

LMK5B ROM page

35

