TI + Oregano PTP stack features

2024-08-19 LMK5B/5C33xxx(A) LMK5B/5C33xxx(A)-S1

🜵 Texas Instruments

TI Confidential - NDA Restrictions

What makes Oregano PTP stack special?

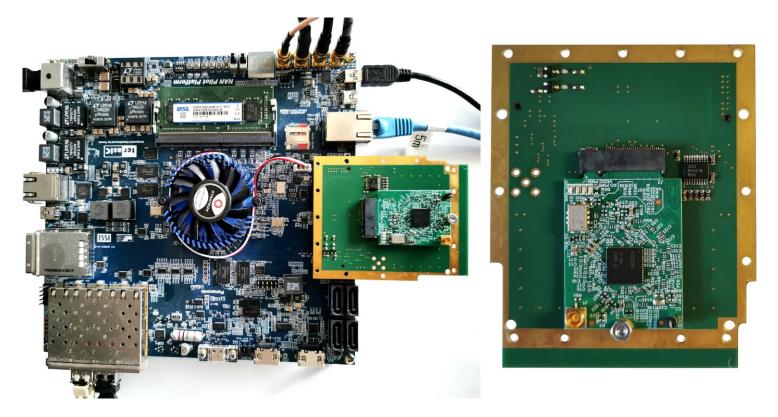
- Accuracy in the ns range
- Meets all telecom specifications for class D end devices
- syn1588® technology
 - Most versatile PTP Stack available (both commercial and open source)
 - Widely deployed in many industries
 - +30 technology licenses
 - +500 customers using syn1588® NIC
 - >> 10.000 Meinberg PTP Grandmasters in the field using syn1588® technology
 - Continuous support and development

Oregano expertise

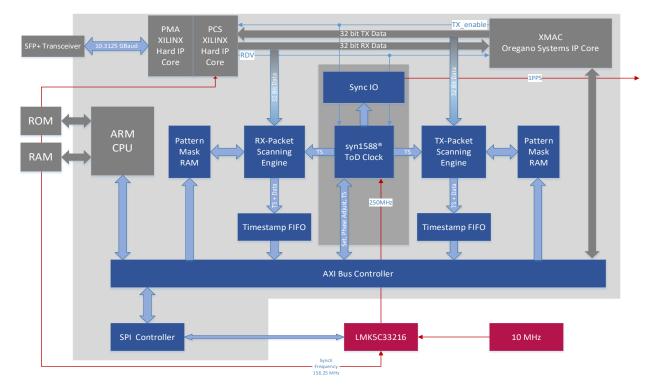
- Active in the clock synchronization industry since more than 20 years
 - Advanced expertise on all aspects of PTP
 - Customers in all application domains
 - Participate in several related standardization committees (SMPTE, IEEE)
- PTP stack deployed to several architectures
 - Intel, ARM, etc.
- IP cores
 - Video clocking (HSYNC, VSYNC)
- Released Networking Products
 - PCIe NIC
 - Gigabit ethernet switch

Oregano Success Stories

- Check Oregano System Website for release notes on PTP Stack
 - <u>https://www.oreganosystems.at/downloads/syn1588r-software-suite-release-notes</u>
- Meinberg PTP Grandmasters synchronized the Superbowl and the Oscars
 - <u>https://www.linkedin.com/posts/game-creek-video_meinberg-ptp-synchronize-activity-7041829775690100736-HTrF/</u>
- Numerous publications in journals and at conferences
 - IEEE Transactions
 - SMPTE Technical Journal
 - NAB BEITC Broadcast Engineering and IT Conference
 - EBU Technical journals
 - Broadcast beat
- Full publication list available upon request

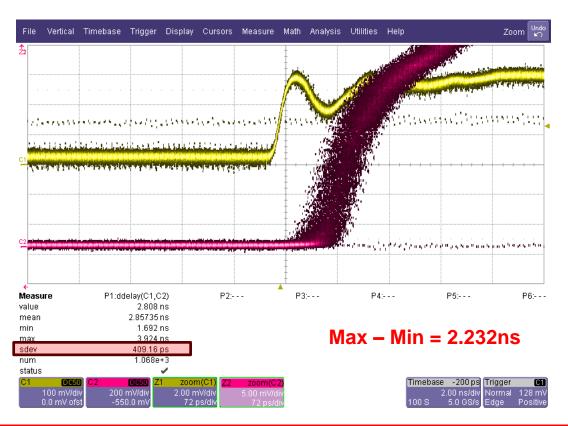


Demos of TI clocking devices with Oregano PTP stack


- LMK family of Network Synchronizer devices provide
 - Extremely high resolution for DCO adjustment
 - SyncE support
 - Hitless switchover
 - Ability to generate frequencies derived from and thus phase locked to absolute time
- Demo systems
 - Intel ARRIA 10
 - syn1588® technology ported to FPGA EVM (INTEL ARRIA10) with LMK daughterboard
 - Calnex measurement reports made with the demo system (add link to app note)
 - Texas Instruments AM64x Sitara
 - Operation on SK-AM64B EVK with modification for connection to LMK5B33216EVM.
 - To become single board TI PTP clocking reference design.

Intel ARRIA 10 demo setup

Block Diagram Arria 10 FPGA with syn1588 IP Core and MAC

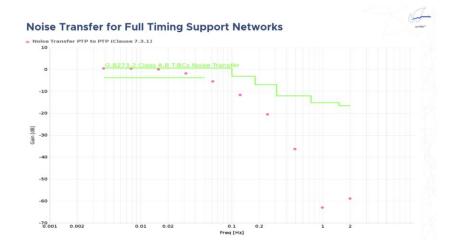

G.8275 G.8262 Compliance Test Results Summary

- The G8275.1 implementation using the LMK5B/C33xxx(A) network synchronizer to adjust the frequency of the PTP hardware Time-of-Day clock complies with telecom accuracy Class A (100 ns), Class B (70 ns), Class C (30 ns), and even Class D.
 - For full timing support 1PPS signal did not deviate more than ±5 ns
- For G.8271.2 networks with partial timing support, the configuration of the PTP stack was optimized to handle PDVs in excess of 230 μ s while staying within the requested boundaries of ±1.5 μ s with a headroom of 500 ns.
- For G.8262.1 SyncE networks the short term phase transients fall well within the allowable limits

TI Confidential – NDA Restrictions

DSO Results Comparing 1 PPS Signals

8273.2 Noise Generation Specification summary

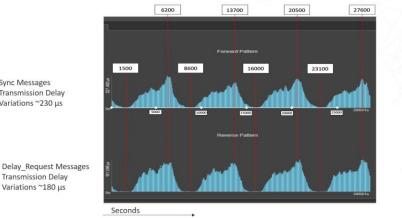

T-BC/T-TSC Class	max TE (ns)	max TE _L (ns)	cTE (ns)	dTE _L MTIE < 1000 s T = ±1 °C (ns)	dTE _L TDEV < 1000 s T = ±1 °C (ns)	dTE _H (ns)	
А	100	-	±50	40	4	70	
В	70	-	±20	40	4	70	
С	30	-	±10	10	2	FFS	
D	FFS	5	FFS	FFS	FFS	FFS	

- TE = Maximum absolute time error
- TE_L = Maximum absolute time error low-pass filtered
- cTE = Permissible range of constant time error
- FFS = For further study

Oregano Data for: G.8273.2 Class A, B T-BCs Noise Transfer Noise transfer result with T1 Input T1 Time Error for plot \rightarrow

Input Signals for Noise Transfer for Full Timing Support Networks T1 Time Error 420 400 380 Time Erro 360 340 320 2 300 280 260 240 220 200 180 160 140 500 1 000 2 000 2 500 3 000 3 500 4 000 Elapsed Time [s]

time error modulated



11

TI Confidential - NDA Restrictions

Oregano Data for: G.8275.2 Class A, B T-BCs Noise Transfer

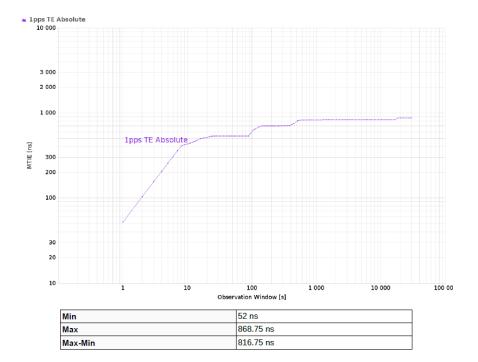
G.8275.2 PTP-Networks with Partial Timing Support Packet Delay Variations

🔺 1pps TE Absolute 2 000 1 500 1 000 500 1pps TE Absolute [US] Error | -500 -34,494 ns Mean -554.702 ns Min -1 000 Max 314.048 ns Max-Min 868.75 ns -1 500 -2 000 5 000 10 000 15 000 20 000 25 000 30 000 Elapsed Time [s]

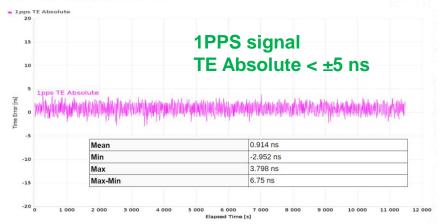
G.8275.2 PTP-Networks with Partial Timing Support

Sync Messages

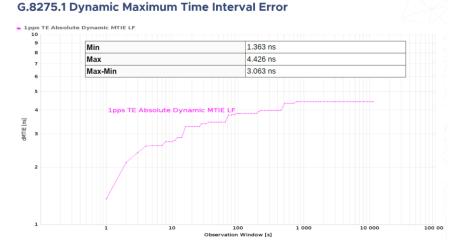
Transmission Delay


Variations ~230 us

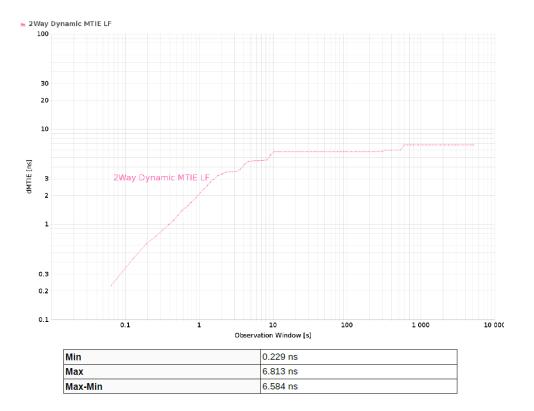
Transmission Delay


Variations ~180 µs

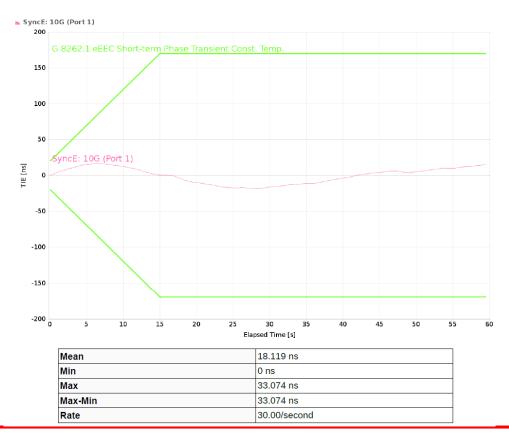
G.8275.2 Partial Timing Support MTIE


MTIE Analysis

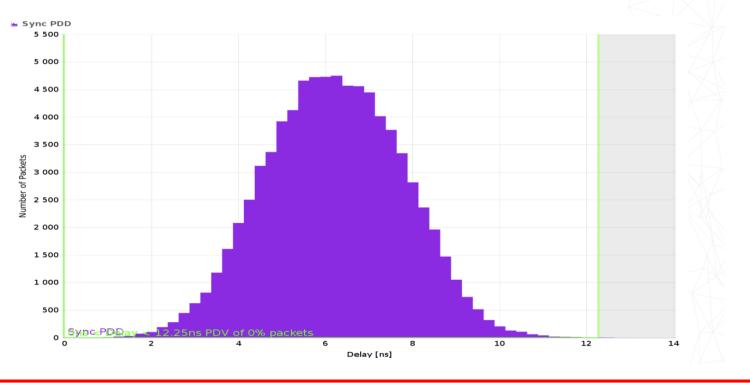
Oregano Data for: G.8275.1 T-BC Time Error Absolute (no filter)



G.8275.1 Absolute Time Error



G.8275.1 T-BC Two-Way Dynamic MTIE



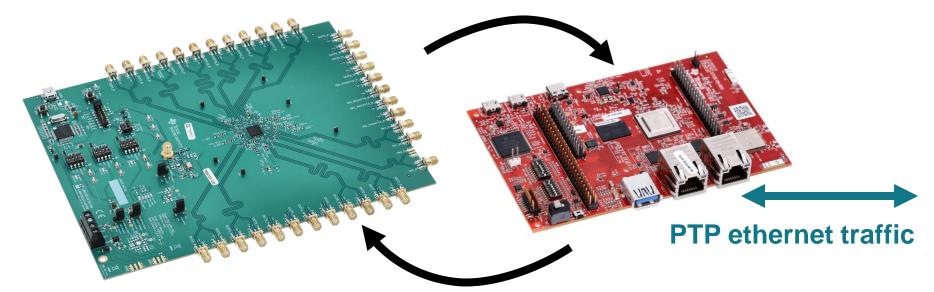
G.8262.1 SyncE Short Term Transient

Packet Delay Variations of a PTP Master Port of a BC for Full Timing Support

Packet Delay Variations of a PTP Master Port of a BC for Full Timing Support

Test Results

- The combined PTP solution fulfils all ITU telecom test specifications
 - -Ordinary Clock & Boundary Clock
 - -Full & partial timing support
 - -50% headroom to most stringent boundaries
- Class D performance reached
- Test were made with industry standard equipment (Calnex Neo)


Firmware resource utilization example

- FPGA design with 2 Ethernet ports and full PTP
 - Family: Arria 10 Device: 10AS066K3F40E2SG
 - Final Logic utilization (in ALMs): 33,223 / 251,680 (13 %)
 - Total registers: 55308 Total pins: 464 / 864 (54 %)
 - Total block memory bits: 5,402,112 / 43,642,880 (12 %)
 - Total RAM Blocks: 364 / 2,131 (17 %)
 - Total DSP Blocks: 0 / 1,687 (0 %)
 - Total HSSI RX channels: 2 / 36 (6 %)
 - Total HSSI TX channels: 2 / 36 (6 %)
 - Total PLLs: 10 / 80 (13 %)

TI AM64 demo setup

LMK5B33216 provides clock for AM64 and ethernet PHYs

AM64 sends DCO commands to servo LMK5B frequency to align AM64 hardware ToD clock

Purchasing the -S1 option LMK devices includes

- Execution of the "Standard Path"
- 40 hours of support for you as customer from Oregano Systems which includes
 - Consulting to optimize system architecture
 - Basic training on PTP
 - Design-in support
 - Network topology aspects with respect to PTP

Do you want to know more?

- Let us know...
 - Your application market
 - Your system requirements
 - Your hardware environment
- And we can discuss how the TI clocking + Oregano PTP stack solution can work for you.

