

USB Interface Module for Applications

PCB Revision 1.1

Firmware Version 0207
Software Version 0.5

Reference Manual

 2

 3

CONTENTS

1 INTRODUCTION .. 4

1.1 OVERVIEW .. 4
1.2 SYSTEM LEVEL FEATURES... 4
1.3 BLOCK DIAGRAM.. 4

2 INSTALLATION AND CONFIGURATION.. 5
2.1 INTRODUCTION ... 5
2.2 SYSTEM REQUIREMENTS.. 5
2.3 BOARD INSTALLATION AND POWER-UP .. 5
2.4 JUMPER DESCRIPTIONS... 6

3 PROGRAMMING .. 6
3.1 INTRODUCTION ... 6
3.2 PROGRAMMING SETUP.. 6
3.3 PROGRAMMING CABLE... 7

4 THEORY OF OPERATION... 7
4.1 INTRODUCTION ... 7
4.2 USB INTERFACE MODULE... 7
4.3 POWER AND CURRENT GAUGE ... 8
4.4 A/D CONVERTER.. 9

5 SOFTWARE... 9
5.1 INTRODUCTION ... 9
5.2 COP8 FIRMWARE ... 9

5.2.1 FLASH MEMORY MAP ... 10
5.2.2 CONTROL CODES.. 11
5.2.3 SERIAL INTERFACES ... 13
I²C Compatible Interface .. 13

5.3 PC APPLICATION SOFTWARE... 15
5.3.1 USING A DYNAMIC LINK LIBRARY ... 16

6 BOARD SPECIFICATIONS.. 22
6.1 INTRODUCTION ... 22
6.2 CONNECTORS... 22

6.2.1 GPIO Connectors X1, X2 ... 22
6.2.2 GPIO Connectors X3, X4 ... 22
6.2.3 GPIO Connector TPB1 ... 23
6.2.4 Programming Connector X5... 23

Appendix A ELECTRICAL SCHEMATICS .. 25

 4

1 INTRODUCTION

1.1 OVERVIEW

The USB Interface Module enables the user to control the application hardware through a PC's
USB port and is a suitable replacement to a parallel (LPT) interface. An onboard microcontroller
with flash memory enables the user to develop application specific functions or stand-alone
systems. In addition, the USB port provides internal power that can be used by the application
hardware.

1.2 SYSTEM LEVEL FEATURES

The USB Interface Module features:

• National’s USBN9604 chip in a 28-pin SOIC package
• National’s COP8-based microcontroller, COP8CBE9
• USB 1.1 / 2.0 compatible, slow mode
• Bus powered
• Hot plug in/out support
• 24 MHz clock
• Two 16-pin I/O connectors (double placed) to connect application board
• Optional 8-pin I/O connector
• Optional 7-pin connector for upgrade
• 16-channels 10-bit A/D converter
• Two 16-bit timers
• Two separated voltage sources for core and application board
• Three user selectable output voltages for application board
• National’s current gauge LM3822 for current measurement

1.3 BLOCK DIAGRAM

Figure 1.1 shows a block diagram of the USB Interface Module and the connections between the
PC and the application.

Figure 1.1 Block Diagram of the USB Interface Module and Environment

 5

2 INSTALLATION AND CONFIGURATION

2.1 INTRODUCTION

This chapter describes the configuration of the USB Interface Module.

2.2 SYSTEM REQUIREMENTS
To use the USB Interface Module, the following is required:

• Host (PC) with USB connection
– 32 MB RAM (minimum)
– 2 MB available disk space
– Windows operating system (Win98/NT/Me/2000/XP)

For developers:

• Host (PC) with LPT+USB connection
• COP8 C-compiler, like CodeCraft or IAR
• COP8 ISP Flash Loader application, to reprogram the COP8CBE9
• Borland C/C++ or Microsoft Visual C++ or other high-level language compiler
• No Microsoft DDK needed

2.3 BOARD INSTALLATION AND POWER-UP

Figure 2.1 Jumper and Connector Locations of the USB Interface Module

 6

2.4 JUMPER DESCRIPTIONS

The table below lists the on-board jumpers.

Table 2.1 Jumpers of the USB Interface Module

3 PROGRAMMING

3.1 INTRODUCTION

This chapter describes how to program the flash memory of the COP8 microcontroller.

Note: The USB Interface Module is pre-programmed and can be used “as is” for evaluation
purposes. Use this chapter only if you wish to change/reload the complete program code
(firmware). For information on upgrading a current firmware through the USB port contact
National Semiconductor.

3.2 PROGRAMMING SETUP

The USB Interface Module is programmed by loading the program code (firmware) into the flash
memory of the COP8 controller through the parallel port. To (re)program the flash memory of the
COP8, perform the steps below:

1. Connect programming cable to port X5 and parallel port of the PC.
2. Power the USB Interface Board by connecting a USB cable to board and the USB port of

the PC.
3. Reset the COP8 microcontroller by pressing the RESET button. Note: If a microcontroller

is in running mode, force it to In-System Programming mode (see datasheet of the
COP8CBE9, Chapter: In-System Programming). To protect other circuitry before adding
double voltage, remove resistor R13 temporarily.

4. Download the code using the ISP Flash Loader program and set COP8 into running
mode. Always use the latest loader version available at National’s website.

5. Remove programming cable and press the RESET button.

 7

3.3 PROGRAMMING CABLE

The pin configuration of the COP8 programming cable is shown in the following table:

Table 3.1 Pin Configuration of Programming Cable

4 THEORY OF OPERATION

4.1 INTRODUCTION

This chapter describes the operation of the major components and features that comprise the
USB Interface Module.

4.2 USB INTERFACE MODULE

The major components of the USB Interface Module are shown in Figure 4.1.

Figure 4.1 Major Components of the USB Interface Module

The USB Interface Module contains:
• COP8 microcontroller with built-in 256 byte RAM and 8Kb fFash EPROM
• USBN9604 high-speed USB node controller
• Adjustable regulator
• Current gauge for current measurement
• Microwire connection for COP8 internal flash programming
• 32 general purpose I/O pins

 8

The main core of the USB Interface Module is a COP8 microcontroller. The COP8 interfaces to
the USB controller and all the other devices and is used as the system controller. The COP8
internal flash memory and RAM are used to store the USBN9604 firmware and application
specific code and to run it. System clock speed after startup is 9.6 MHz provided by USB9604
controller. Pre-programmed firmware allows manipulating all GPIO pins thought PC’s USB port.
Also low-level functions like flashing an EPROM through USB are supported.

4.3 POWER AND CURRENT GAUGE

The USB Interface Module needs at least 4V DC to create its internal power. This can be
supplied by one of the following:

• 5V from the USB bus (i.e., bus powered)
• External DC adapter connected to J4 (i.e., self powered)

From the 5V DC source, the USB Interface Module creates two supplies (3.3V and adjustable
voltage) with the help of two regulators as shown in Figure 4.2.

Figure 4.2 Power Management of the USB Interface Module

3.3V is for powering a COP8 and the USBN9604 controllers. There are three choices for
adjustable voltages:) 3V, 3.9V, or 5V DC source (selectable by jumper J1). Adjustable voltages
are defined by using resistors R11, R12, R14, and are user selectable using pin G1 of COP8.
When G1 is programmed to low (ground), resistors R12 and R14 are connected in parallel. If G1
is in the Hi-Z state, only R12 affects the output voltage and R14 is disconnected. The adjustable
voltages can be calculated using the following equation:

1412
)1412(111(216.1

RR
RRRVDD +

+=

The USB Interface Module is generally a bus-powered device. It uses the 4.4V-5.0V max 0.5A
bus-powered lines of the USB and creates the power supplies it needs. Even 5.5V DC source
voltage can be used. The USB connection supports hot plug in/out.

Current consumption of the user application (daughterboard) can be measured using a current
gauge chip. The sense range is between 0...1A. The PWM output of the chip is connected to the
pin G3 of the COP8 microcontroller. The measuring cycle takes about 400ms.

 9

4.4 A/D CONVERTER

The COP8 microcontroller has a built-in 10-bit analog-to-digital converter with 16 channel analog
multiplexer. When the desired measurement voltage range is over VDDIO of COP8, simple
resistor divider (R1, R2) can be added as shown in Figure 4.3. The filter capacitor C can be
added to smooth the signal if necessary.

Figure 4.3 Analog Input Circuitry

The value of measured voltage can be calculated using the following equation:

2*1024
21(*

R
RRADCVDDIOVprobe +

=

5 SOFTWARE

5.1 INTRODUCTION

This chapter provides a short description of the firmware (FW), which runs on the USB Interface
board and describes how to program and control the USB Interface from the PC. Use the
COP8CBE9 datasheet for additional information on this process.

5.2 COP8 FIRMWARE

Most of the USB firmware code is imported from the COP8 USB Code Examples Library which
is available at National’s website. The USB Interface firmware runs on a COP8 core. It runs from
flash memory and uses on-chip RAM for its variables. Current firmware supports the following
functions and features:

USB related:

• Control packet transfer
• Human Interface Device (HID) class (USB joystick)

Application related:

• Internal Flash memory read/write/erase
• Internal RAM read/write
• Configuration/manipulation of I/O pins
• I²C/MICROWIRE/SPI interface transactions
• A/D conversion
• Internal timer programming

 10

Basic structure of the firmware and relations between functions/services are shown in the
following figure.

Figure 5.1 Structure and Relations of the Functions and Services

1. Boot and Initialization

This is the code that initializes the microcontroller and all peripheral circuitry after power-on or
RESET.

2. Wait Loop
This is the code loop that keeps the microcontroller busy when there is nothing more pressing to
do. These are the tasks that must be done regularly, but are not time critical and can be
interrupted. From here it is possible to jump to application service when needed using flag
MyHookEnable.

3. Interrupt Decoding
This is the code that decodes the interrupt and decides what type of services are needed. The
interrupt can initiate from the USB9604 controller, an external pin or an internal timer. These are
the tasks that are time critical, and that must be serviced as soon as conditions warrant. These
also tend to be the tasks that are asynchronous or that occur irregularly.

4. USB I/O Service
This is the code that supports all USB related functions including control packet transfers and
application command decoding. This contains most of the “driver” code is found.

5. Application Functions
This is the code that is application specific. The user can add functions and modify the code.

6. Alternative USB I/O Service
This is the code that should support the flashing process over the entire flash memory. This
memory area can be used for making a copy of the main USB I/O service during an erase of a
main block of the flash memory. That function is not fully implemented yet but is already
supported by other services.

5.2.1 FLASH MEMORY MAP

Table 5.1 Flash Memory Map of the Firmware

 11

5.2.2 CONTROL CODES
The Control Packet transfer is used to communicate between the USB Interface Module and the
PC. The Standard Device Request GET_DESCRIPTOR is extended in current firmware and
used to send application specific commands to the USB Interface Module using extended
commands. The format of the extended packet of the Standard Device Request is shown in
Table 5.2.

Table 5.2 Extended Packet of the Standard Device Request

Format of the 4-byte return packet is shown in following figure:

Figure 5.2 Return Packet

Extended commands of the Standard Device Request are shown in Table 5.3:

Table 5.3 Extended Commands

 12

Note1: There is an available feature option when MICROWIRE/SPI interface mode is selected. These
features can be used by variable Id and are listed in Table 5.4.

Table 5.4 Features of the MICROWIRE/SPI Interface

The error codes that firmware returns are listed in Table 5.5:

Table 5.5 Error Codes and Descriptions

 13

5.2.3 SERIAL INTERFACES

The firmware of the USB Interface Module supports three interface modes:

• I²C compatible interface (2 wire, serial)
• MICROWIRE interfaces (4 wire, serial)
• SPI interfaces (4 wire, serial)

The following table shows the pin configuration of the COP8 controller for all interface modes.
Note that current firmware behaves as a MASTER of the serial interfaces.

Table 5.6 COP8 Pin Configurations

I²C Compatible Interface

I²C Signals
In I²C-compatible mode, the SCL pin is used for the I²C clock and the SDA pin is used for the I²C
data. Both these signals need a pull-up resistor according to I²C specification. The values of the
pull-up resistors are determined by the capacitance of the bus (typ. ~1.8k). See I²C
specifications from Philips for further details. The period of the one clock pulse (SCL) is
approximately 60µs.

I²C START and STOP Conditions
START and STOP bits classify the beginning and the end of the I²C session. START condition is
defined as SDA signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition
is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The I²C master
always generates START and STOP bits. The I²C bus is considered to be busy after START
condition and free after STOP condition. During data transmission, the I²C master can generate
repeated START conditions. The first START and the repeated START conditions are
equivalent, function-wise.

 14

START and STOP Conditions

Transferring Data

Every byte put on the SDA line is eight bits long, with the most significant bit (MSB) being
transferred first. Each byte of data has to be followed by an acknowledge bit. The transmitter
(master) releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver/slave
must pull down the SDA line during the 9th clock pulse, signifying an acknowledge. A receiver
which has been addressed must generate an acknowledge after each byte has been received.
After the START condition, the I²C master sends a given chip address. This address is seven
bits long followed by an eighth bit which is a data direction bit (R/W). Note that firmware skips to
send a chip address in 2-cycle mode (selectable by user application). The second byte selects
the register to which the data will be written. The third byte contains data to write to the selected
register. When the MSB bit of the chip address is set to high, the firmware checks the level of
the SCL line at 1st clock pulse of every cycle and waits a maximum 500ms until the
receiver/slave releases an SCL line.

w = write (SDA = “0”)
r = read (SDA = “1”)
ack = acknowledge (SDA pulled down by either master or slave)
rs = repeated start
id= chip/device address
When a READ function is to be accomplished, a WRITE function must precede the READ
function, as shown in the Read Cycle waveform.

 15

MICROWIRE / SPI Interface

The transmission consists of 16-bit Write and Read Cycles. One cycle consists of 7 Address
bits, 1 Read/Write (R/W) bit and 8 Data bits. R/W bit high state defines a Write Cycle and low
defines a Read Cycle. SO output is normally in the high-impedance state and it is active only
when Data is sent out during a Read Cycle. A pull-up or pull-down resistor may be needed in the
SO line if a floating logic signal can cause unintended current consumption in the input where
SO is connected.
The Address and Data are transmitted MSB first. Data is clocked in on the rising edge of the
SCK clock signal, while data is clocked out on the falling edge of SCK. Current firmware offers
several features that can be used in MICROWIRE/SPI mode (see Table 5.4). the period of one
clock pulse (SCK) is approximately 50µs.

5.3 PC APPLICATION SOFTWARE

The Windows operating system (OS) interprets USB Interface Module as a Human
Interface Device (HID) and uses Microsoft’s standard HID-driver (included in OS). The
application code developer can access the USB Interface through the Dynamic Link Library
(DLL) provided by National Semiconductor or by using standard Windows API functions. No
special Windows DDK Development Kit is needed.

 16

5.3.1 USING A DYNAMIC LINK LIBRARY

The precompiled DLL offers several functions, which can be used by application software. The
most important functions and their usage are listed below. All used constants are defined in file
sw_fw.h.

DllUSBDeviceDetect

The DllUSBDeviceDetect function detects, opens, and configures the USB Interface
Module, if available. This is to be used once when the application starts.

UCHAR DllUSBDeviceDetect(UCHAR Config);

Parameters
Config

Specifies the predefined configuration to the COP8 pins. The predefined
configurations are shown in Table 5.6.

Return Value
If the function succeeds, the return value is ERROR_OK.
If the function fails, the return value is ERROR_USBIO.

DllUSBCloseDevice

The DllUSBCloseDevice closes the USB Interface connection. This is to be used once
when the application exits.
VOID DllUSBCloseDevice(VOID);

DllReadFromDevice

The DllReadFromDevice function reads data byte from application hardware using
I²C/MICROWIRE/SPI interface through the PC’s USB/LPT Interface Module.

UCHAR DllReadFromDevice(WORD wPort, UCHAR uAddr, UCHAR* uData, UCHAR
Interface, UCHAR Id);

Parameters
wPort

Specifies a PC I/O port address, where the USB/LPT Interface module is
connected.
The following values can be used:
Value Port
0x2F8 USB port
0x278, 0x378, 0x3CB Parallel ports (LPT)

uAddr
Specifies an address field of the I²C/MICROWIRE/SPI interface.

uData
Pointer to a variable that receives the data byte.

 17

Interface
Specifies a serial interface for data transfer. Timing diagrams can be found in
Section 5.2.3. The following values are defined:
Value Interface
IF_I2C I²C
IF_MICROWIRE MICROWIRE
IF_SPI SPI
IF_I2C2 I²C (2-cycle mode)

Id
Specifies an ID field of the I²C interface. When MICROWIRE/SPI interface is selected,
that value specifies a feature option. See more about the available features in Table 5.4.

Return Value
If the function succeeds, the return value is dependent on the selected serial interface:
ERROR_OK or ERROR_NA.
If the function fails, the return value can be ERROR_USBIO, ERROR_NOACK0,
ERROR_NOACK1, or ERROR_NOACK2

See more about error codes in Table 5.5.

Remarks
This function performs initialization of the USB Interface Module when it is not initialized. If the
module isn’t initialized using the DllUSBDeviceDetect function, internal initialization procedure
uses the default configuration (see Table 5.6).

DllWriteToDevice

The DllWriteToDevice function writes the data byte to application hardware using
I²C/MICROWIRE/SPI interface through the PC’s USB/LPT Interface Module.

UCHAR DllWriteToDevice(WORD wPort, UCHAR uAddr, UCHAR uData, UCHAR Interface,
UCHAR Id);

Parameters
wPort

Specifies a PC I/O port address, where the USB/LPT Interface Module is connected.
The following values can be used:
Value Port
0x2F8 USB port
0x278, 0x378, 0x3CB Parallel ports (LPT)

uAddr
Specifies the address field of the I²C/MICROWIRE/SPI interface.

uData
Specifies the data field of the I²C/MICROWIRE/SPI interface.

Interface
Specifies a serial interface for data transfer. Timing diagrams can be found in
Section 5.2.3. The following values are defined:
Value Interface
0 I²C
1 MICROWIRE
2 SPI
3 I²C (2-cycle mode)

 18

Id
Specifies the ID field of the I²C interface. When MICROWIRE/SPI interface is selected,
that value specifies a feature option. See more about the available features in Table 5.4.

Return Value
If the function succeeds, the return value is dependent on the selected serial interface:
ERROR_OK or ERROR_NA.
If the function fails, the return value can be ERROR_USBIO, ERROR_NOACK0,
ERROR_NOACK1, or ERROR_NOACK2.

See more about error codes in from Table 5.5.

Remarks
This function performs initialization of the USB Interface Module when it is not initialized. If the
module is not initialized using DllUSBDeviceDetect function, internal initialization procedure
uses the default configuration (see Table 5.6).

DllUSBSendCmd_ReadFromPortAconfig (equivalent to ports B and L, change only letter)

The DllUSBSendCmd_ReadFromPortAconfig function reads the byte from the COP8
configuration register of port A.

UCHAR DllUSBSendCmd_ReadFromPortAconfig(UCHAR *uConfig);

Parameters
uConfig

Pointer to a variable that receives the configuration byte of port A.

Return Value
If the function succeeds, the return value is ERROR_OK.
If the function fails, the return value is ERROR_USBIO.
Remarks
This function performs initialization of the USB Interface Module when it is not initialized. If the
module is not initialized using DllUSBDeviceDetect function, internal initialization procedure
uses the default configuration (see Table 5.6).

DllUSBSendCmd_WriteToPortAconfig (equivalent to ports B and L, change only letter)

The DllUSBSendCmd_WriteToPortAconfig function writes the byte to the COP8 configuration
register of port A.

UCHAR DllUSBSendCmd_WriteToPortAconfig(UCHAR *uConfig);

Parameters
uConfig

Specifies the configuration byte of port A.

Return Value
If the function succeeds, the return value is ERROR_OK.
If the function fails, the return value is ERROR_USBIO.

 19

Remarks
This function performs initialization of the USB Interface Module when it is not initialized. If the
module is not initialized using DllUSBDeviceDetect function, internal initialization procedure
uses the default configuration (see Table 5.6).

DllUSBSendCmd_ReadFromPortA (equivalent to ports B and L, change only letter)

The DllUSBSendCmd_ReadFromPortA function reads the byte from the COP8 data register of
port A.

UCHAR DllUSBSendCmd_ReadFromPortA (UCHAR *uData);

Parameters
uData

Pointer to a variable that receives the data byte of port A.

Return Value
If the function succeeds, the return value is ERROR_OK.
If the function fails, the return value is ERROR_USBIO.
Remarks
This function performs initialization of the USB Interface Module when it is not initialized. If the
module is not initialized using DllUSBDeviceDetect function, internal initialization procedure
uses the default configuration (see Table 5.6).

DllUSBSendCmd_WriteToPortA (equivalent to ports B and L, change only letter)

The DllUSBSendCmd_WriteToPortA function writes the byte to the COP8 data register of port A.

UCHAR DllUSBSendCmd_WriteToPortA (UCHAR *uData);

Parameters
uData

Specifies the data byte of port A.

Return Value
If the function succeeds, the return value is ERROR_OK.
If the function fails, the return value is ERROR_USBIO.
Remarks
This function performs initialization of the USB Interface Module when it is not initialized. If the
module is not initialized using DllUSBDeviceDetect function, internal initialization procedure
uses the default configuration (see Table 5.6).

DllUSBSendCmd_Measure

The DllUSBSendCmd_Measure function measures voltage from one of the selected analog
channel (ports B or L of COP8).

UCHAR DllUSBSendCmd_Measure (UCHAR Channel, WORD *Result);

Parameters
Channel

Specifies a channel of the analog input. More information about analog channels can be
found in the COP8CBE9 datasheet.

 20

Result
Pointer to a variable that receives the measured value. Interpretation of the value is
described in Section 4.4.

Return Value
If the function succeeds, the return value is ERROR_OK.
If the function fails, the return value is ERROR_USBIO.
Remarks
This function performs initialization of the USB Interface Module when it is not initialized. If the
module is not initialized using DllUSBDeviceDetect function, internal initialization procedure
uses the default configuration (see Table 5.6).

DllUSBSendCmd_MeasureCurrent

The DllUSBSendCmd_MeasureCurrent function measures the current of the application
hardware (daughterboard), which flows through the current gauge chip.

UCHAR DllUSBSendCmd_MeasureCurrent(WORD *Result);

Parameters
Result

Pointer to a variable that receives the measured value in milliamps.
Return Value
If the function succeeds, the return value is ERROR_OK.
If the communication fails, the return value is ERROR_USBIO. If the function fails (missing PWM
signal generated by current gauge chip), the return value is ERROR_UNDEF.

DllUSBSendCmd_GetRegVoltage

The DllUSBSendCmd_GetRegVoltage function gets the state of the adjustable voltage
regulator.

UCHAR DllUSBSendCmd_GetRegVoltage(UCHAR *State);

Parameters
State

Pointer to a variable that receives the state value. When state the is 0, the regulator is
adjusted to 3.9V; when the state is 1, the regulator is adjusted to 3.0V.

Return Value
If the function succeeds, the return value is ERROR_OK.
If the function fails, the return value is ERROR_USBIO.

DllUSBSendCmd_SetRegVoltage

The DllUSBSendCmd_SetRegVoltage function sets the state of the adjustable voltage
regulator.

 21

UCHAR DllUSBSendCmd_SetRegVoltage (UCHAR *State);

Parameters
State

Specifies a state value. When the state is 0, the regulator is adjusted to 3.9V; when the
state is 1, the regulator is adjusted to 3.0V.

Return Value
If the function succeeds, the return value is ERROR_OK.
If the function fails, the return value is ERROR_USBIO.

DllUSBSendCmd_GetFlashVersion

The DllUSBSendCmd_GetFlashVersion function gets a firmware version from the USB
Interface Module, which is stored into the flash memory of COP8.

UCHAR DllUSBSendCmd_GetFlashVersion (UCHAR *Version1, UCHAR *Version2);

Parameters
Version1

Pointer to a variable that receives the version number. The variable Version1 shows the
version number of the USB I/O service code.

Version2
Pointer to a variable that receives the version number. The variable Version2 shows the
version number of the application code.

Return Value
If the function succeeds, the return value is ERROR_OK.
If the function fails, the return value is ERROR_USBIO.

There are less important functions available, but they are not covered in this document.

 22

6 BOARD SPECIFICATIONS

6.1 INTRODUCTION

This chapter presents the specification of the on-board connectors.

6.2 CONNECTORS

Table 6.1 lists all on-board connectors. The remainder of this section provides the related pin
assignments for each connector.

Table 6.1 USB Interface Module Connectors

6.2.1 GPIO Connectors X1, X2

Type: 16-pin, dual row (both connectors are equal)

6.2.2 GPIO Connectors X3, X4

Type: 16-pin, dual row (both connectors are equal)

 23

6.2.3 GPIO Connector TPB1

Type: 8-pin, single row

6.2.4 Programming Connector X5

Type: 7-pin, single row

 24

 25

Appendix A ELECTRICAL SCHEMATIC

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

	1.1 OVERVIEW
	1.2 SYSTEM LEVEL FEATURES
	1.3 BLOCK DIAGRAM
	2 INSTALLATION AND CONFIGURATION
	2.1 INTRODUCTION
	2.2 SYSTEM REQUIREMENTS
	2.3 BOARD INSTALLATION AND POWER-UP
	2.4 JUMPER DESCRIPTIONS

	3 PROGRAMMING
	3.1 INTRODUCTION
	3.2 PROGRAMMING SETUP
	3.3 PROGRAMMING CABLE

	4 THEORY OF OPERATION
	4.1 INTRODUCTION
	4.2 USB INTERFACE MODULE
	4.3 POWER AND CURRENT GAUGE
	4.4 A/D CONVERTER

	5 SOFTWARE
	5.1 INTRODUCTION
	5.2 COP8 FIRMWARE
	5.2.1 FLASH MEMORY MAP
	5.2.2 CONTROL CODES
	5.2.3 SERIAL INTERFACES
	I²C Compatible Interface

	5.3 PC APPLICATION SOFTWARE
	5.3.1 USING A DYNAMIC LINK LIBRARY

	6 BOARD SPECIFICATIONS
	6.1 INTRODUCTION
	6.2 CONNECTORS
	6.2.1 GPIO Connectors X1, X2
	6.2.2 GPIO Connectors X3, X4
	6.2.3 GPIO Connector TPB1
	6.2.4 Programming Connector X5

	Appendix A ELECTRICAL SCHEMATIC

