

EN 300 328 v1.7.1 (2006-10)

TEST REPORT

FOR

BLUETOOTH SERIAL PORT MODULE

MODEL NUMBER: LMX9838SB

REPORT NUMBER: 07U11080-3

ISSUE DATE: AUGUST 31, 2007

Prepared for NATIONAL SEMICONDUCTOR 2900 SEMICONDUCTOR DR. SANTA CLARA, CA 95052, USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	08/31/07	Initial Issue	T. Chan

Page 2 of 19

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS4
2.	ТЕ	ST METHODOLOGY5
3.	FA	CILITIES AND ACCREDITATION5
4.	CA	LIBRATION AND UNCERTAINTY5
4	.1.	MEASURING INSTRUMENT CALIBRATION
4	.2.	MEASUREMENT UNCERTAINTY
5.	EQ	UIPMENT UNDER TEST
5	.1.	DESCRIPTION OF EUT
5	.2.	EUT CHANGE DESCRIPTION
5	.3.	MAXIMUM OUTPUT POWER
5	.4.	DESCRIPTION OF AVAILABLE ANTENNAS
5	.5.	SOFTWARE AND FIRMWARE
5	.6.	WORST-CASE CONFIGURATION AND MODE
5	.7.	DESCRIPTION OF TEST SETUP
6.	ТЕ	ST AND MEASUREMENT EQUIPMENT9
7.	LIN	MITS AND RESULTS10
7	.1.	EN 300 328 FHSS REQUIREMENTS
7	.2.	SPURIOUS EMISSIONS
7	.3.	RECEIVER SPURIOUS EMISSIONS
8.	SE	TUP PHOTOS

Page 3 of 19

1. ATTESTATION OF TEST RESULTS

	APPLICABLE S	STANDARDS				
DATE TESTED: AUGUST 22-23, 2007						
SERIAL NUMBER:	QS0714303					
MODEL:	LMX9838SB					
EUT DESCRIPTION:	BLUETOOTH SER	IAL PORT MODULE				
COMPANY NAME:	NATIONAL SEMICONDUCTOR 2900 SEMICONDUCTOR DR. SANTA CLARA, CA 95052, USA					

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standard. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Maution pulp

THANH NGUYEN EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

All tests were performed in accordance with the procedures documented in EN 300 328 v1.7.1 (2006-10).

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radio frequency	2.0 x 10^(-7)
Total RF power, conducted	0.71 dB
RF power density, conducted	2.9 dB
Spurious emissions, conducted	2.8 dB
All emissions, radiated	5.5 dB
Temperature	0.1 deg C
Humidity	1 % RH
DC and low frequency voltages	2 %

Uncertainty figures are valid to confidence level of 95% and follow ETR 028.

Page 5 of 19

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth Serial Port Module.

5.2. EUT CHANGE DESCRIPTION

The major change field under this application is:

Change 1: Rev C package height increase by .1mm from 1.9mm to 2.00mm (Substrate is .1mm thicker)
Change 2: Re-layout (moving traces, via's around Antenna, and crystal, and EEPROM). Increased pad size's for both antenna and crystal. Moved antenna ground via, and add ground shield trace on top layer. Moved antenna test point (pin 1) via. Removed some ground metal on all layer. Changed several trace widths to allow for better solder joints.

5.3. MAXIMUM OUTPUT POWER

The EUT has the maximum conducted output power same as original project.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an integral antenna, with a maximum gain of -1.48 dBi.

5.5. SOFTWARE AND FIRMWARE

The EUT driver software installed in the host Laptop during testing was Window XP

The test utility software used during testing was Simply Blue Commander, rev. 1.6.0.1

5.6. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2480 MHz.

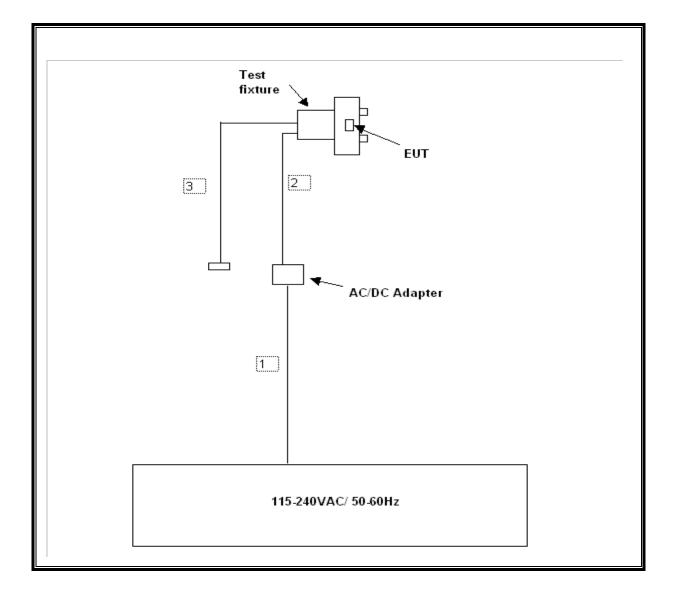
Page 6 of 19

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Model	Serial Number					
AC/DC Adapter	CUI Inc.	EPA-121DPA-05	DTS050250SUDC-				
Test Fixture	National Semi-	Arizona Lite	QS0513156				

I/O CABLES


	I/O CABLE LIST								
Cable	Port	# of	Connector	Cable	Cable	Remarks			
No.		Identical	Туре	Туре	Length				
		Ports							
1	AC	1	US 115V	Un-shielded	2m	NA			
2	DC	1	DC Plug	Un-shielded	2m	NA			
3	Serial	1	DB9	Shielded	1m	Use for activate command.			

TEST SETUP

The EUT is connected to a laptop computer through serial port to execute software command, remove laptop during testing.

Page 7 of 19

SETUP DIAGRAM FOR TESTS

Page 8 of 19

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	Cal Due			
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	6/12/2008			
RF Filter Section	HP	85420E	3705A00256	6/12/2008			
Antenna, Bilog 30MHz ~ 2Ghz	Sunol Sciences	JB1	A121003	12/18/2007			
438A Power meter	HP	438A	3513U04320	9/4/2007			
Power Sensor	HP	8481A	2784	4/22/2008			
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	4/15/2008			
Preamplifier 1-26.5 GHz	HP	8449B	3008A00931	6/18/2008			
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent	E4446A	US42070220	10/18/2007			
Preamplifier, 1300 MHz	Agilent / HP	8447D	1937A02062	1/23/2008			

Page 9 of 19

7. LIMITS AND RESULTS

7.1. EN 300 328 FHSS REQUIREMENTS

FHSS modulation shall:

either:

a) make use of at least 15 well defined, non-overlapping channels or hopping positions separated by the channel bandwidth as measured at 20 dB below peak power.

Or if capable of adaptive frequency hopping:

b) at least be capable of operating over a minimum of 90 % of the band specified in table 1, from which at any given time a minimum of 20 channels or hopping positions shall be used.

For both cases, the minimum channel separation shall be 1 MHz, while the dwell time per channel shall not exceed 0,4 s.

While the equipment is operating (transmitting and/or receiving) each channel of the hopping sequence shall be occupied at least once during a period not exceeding four times the product of the dwell time per hop and the number of channels. Systems that meet the above constraints shall be tested according to the requirements for FHSS modulation.

RESULTS

The EUT is a Bluetooth system. The Bluetooth Protocol specifications are in accordance with the ETSI EN 300 328 FHSS requirements under criteria a) as stated above.

Page 10 of 19

7.2. SPURIOUS EMISSIONS

<u>LIMIT</u>

EN 300 328 Clause 4.3.4

Table 2: Transmitter Limits for Narrowband Spurious Emissions

Frequency Range	Limit when operating	Limit when in standby
30 MHz to 1.0 GHz	-36 dBm	-57 dBm
1.0 GHz to 12.75 GHz	-30 dBm	-47 dBm
1.8 GHz to 1.9 GHz 5.15 GHz to 5.3 GHz	-47 dBm	-47 dBm

Table 3: Transmitter Limits for Wideband Spurious Emissions

Frequency Range	Limit when operating	Limit when in standby		
30 MHz to 1.0 GHz	-86 dBm/Hz	-107 dBm/Hz		
1.0 GHz to 12.75 GHz	-80 dBm/Hz	-97 dBm/Hz		
1.8 GHz to 1.9 GHz 5.15 GHz to 5.3 GHz	-97 dBm/Hz	-97 dBm/Hz		

TEST PROCEDURE

EN 300 328 Clause 5.7.5

OPERATING MODE TEST PROTOCOL

EN 300 328 Clause 5.7.5

The level of spurious emissions are measured as their power in a specified load (conducted spurious emissions); and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation).

<u>RESULTS</u>

No non-compliance noted:

Page 11 of 19

RADIATED SPURIOUS EMISSIONS BELOW 1 GHz

08/22/07 30 - 1000MHz Substitution Measurement										
Compliance Certification Services, Fremont 5m Chamber										
	Thanh Nguye	en								
Project #: (07U11080									
Company: National Semiconductor Corp.										
EUT Desci	ip.: Bluetootl	h Serial Por	t Module							
	LMX98388B									
	et: ETSI 300 3									
		20								
wrote Ope	r: Transmit.									
Test Equip	ment:									
cor Equip	<u>inene:</u>									
	Bilog Antenn	ıa	c	able	1	Pre-amplifer 8	447D		Limit	
5 m	Chamber Suno	l Bilos 🔻	5m Cham	ber Cable 🖕	ÌΓ		-	Γ	ETSI 300 328 T	x 🗸
			1	_				L		
f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
Low Channe	y									
108.57	31.3	H	-49.9	1.4	-1.7	-3.8	-55.1	-36.0	-19.1	
135.73	29.5	H	-50.6	15	-1.3	-3.5	-55.6	-36.0	-19.6	
322.94	30.9	H	-47.9	2.2	0.0	3.9	-46.2	-36.0	-10.2	
339.43	29.2	H	-49.2	2.2	6.0	39	-47.5	-36.0	-11.5	
439.34	26.7	H	-49.8	25	6.1	39	-48.3	-36.0	-12.3	
AC 80		**					(2.2			
36.79	31.3	H	-45.5	1.0	-14.6	-16.7	-63.2	-36.0	-27.2	
71.71	39.3	H V	-48.0 -40.1	1.2	-1.5	-3.7	-52.9	-36.0	-16.9 -9.2	
107.60	41.2	v	·····	1.4	-1.6	-3.8	-45.2	-36.0		
135.73 581.93	30.0 21.9	v	-50.1	1.5 2.9	-1.3	-3.5 4.6	-55.1 -50.6	-36.0 -36.0	-19.1 -14.6	
281.93	21.9	Υ	-92.3	29	0.8	4.0	-90.0	-30.0	-14.0	
High Channe										
72.68	32.2	H	-55.1	1.2	-1.4	-3.6	-59.9	-36.0	-23.9	
107.60	31.8	H	-49.6	1.4	-1.6	-3.8	-54.7	-36.0	-18.7	
135.73	29.5	H	-50.6	15	-1.3	-35	-55.6	-36.0	-19.6	
305.48	34.1	H	-45.2	2.1	6.0	39	-43.4	-36.0	-7.4	
339.43	29.2	H	-49.2	2.2	6.0	39	-47.5	-36.0	-11.5	
446.13	27.9	Н	-48.4	25	6.1	4,0	-47.0	-36.0	-11.0	
38.73	32.9	v	-48.2	1.0	-12.9	-15.1	-64.2	-36.0	-28.2	
70.74	44.1	Y	-40.5	1.2	-1.7	-3.8	-45.5	-36.0	-9.5	
106.63	42.6	Y	-38.9	1.4	-1.5	-3.7	-43.9	-36.0	-79	
305.48	27.0	v	-53.2	2.1	6.0	39	-51.4	-36.0	-15.4	
581.93	21.9	v	-52.3	29	6.8	4.6	-50.6	-36.0	-14.6	
741.01	18.8	v	-53.4	3.2	6.7	4.6	-52.0	-36.0	-16.0	
							<u> </u>	ļ		

Page 12 of 19

RADIATED SPURIOUS EMISSIONS ABOVE 1 GHz

Company Project# Date: Au Test Eng	nce Certificati 7: National Ser 5: 07U11080 gust 22, 2007 jineer: Thanh ation: EUT, A ransmit	on Services, niconductor Nguyen	ution Measurer Fremont 5m A Corp. er,Test Fixture	-Chamber						
	EMCO Horn 1-1	18GHz		Horn >	18GHz			Limit		
Te	50; S/N: 2238 @	3m 🗸				•	ETSI	300 328 Tz	s 🔽	🔲 High Pass Filter
Hi Frequency Cables Pre-amplifer 1-26 GHz Pre-amplifer 26-40 GHz (2 ft) (2 ~ 3 ft) (4 ~ 6 ft) (12 ft) 4 Miteq 3008A00931							26-40GHz ▼			
f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
Spurious E	missions									
1.067	53.44	v	-56.4	3.1	5.0	29	-56.6	-30.0	-26.6	
1.256	51.35	v	-57.9	33	5.7	35	-57.7	-30.0	-27.7	
1.400	52.67	v	-56.2	35	6.2	4.0	-55.6	-30.0	-25.6	
1.203	54.56	H	-54.2	3.3	5.5	3.4	-54.1	-30.0	-24.1	
Harmonics Low CH	Spurious									
4.804	42.45	v	-55.1	6.9	10.8	8.7	-53.3	-30.0	-23.3	
7.206	40.44	v	-51.7	8.2	12.0	9.8	-50.0	-30.0	-20.0	
4.804	41.33	H	-55.9	6.9	10.8	8.7	-54.1	-30.0	-24.1	
7.206	38.76	H	-52.6	8.2	12.0	9.8	-50.9	-30.0	-20.9	
High CH										
4.960	45.87	v	-51.5	7.0	11.0	8.9	-49.6	-30.0	-19.6	
7.440	44.67	v	-46.9	8.3	12.0	9.8	-45.4	-30.0	-15.4	
4.960 7.440	42.60 40.45	<u>н</u> н	-54.4 -50.4	7.0 8.3	11.0 12.0	8.9 9.8	-52.6 -48.8	-30.0 -30.0	-22.6 -18.8	
/.440	40.45	Н	-50,4	60	12.0	9.8	-40.0	-30.0	-18.8	
Rev. 4.12.7										

Page 13 of 19

STANDBY MODE TEST PROTOCOL

The standby mode is identical to the receive mode. See Receiver Spurious Emissions results.

ETSI EN 300 328 Clause 5.7.5

The level of spurious emissions are measured as their power in a specified load (conducted spurious emissions); and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation).

RESULTS

No non-compliance noted:

Page 14 of 19

7.3. RECEIVER SPURIOUS EMISSIONS

<u>LIMIT</u>

EN 300 328 Clause 4.3.5

Table 4: Narrowband Spurious Emissions Limits for Receivers

Frequency Range	Limit
30 MHz to 1.0 GHz	-57 dBm
1.0 GHz to 12.75 GHz	-47 dBm

Table 5: Wideband Spurious Emissions Limits for Receivers

Frequency Range	Limit				
30 MHz to 1.0 GHz	-107 dBm/Hz				
1.0 GHz to 12.75 GHz	-97 dBm/Hz				

TEST PROCEDURE

EN 300 328 Clause 5.7.6

TEST PROTOCOL

EN 300 328 Clause 5.7.6

The level of spurious emissions are measured as their power in a specified load (conducted spurious emissions); and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation).

RESULTS

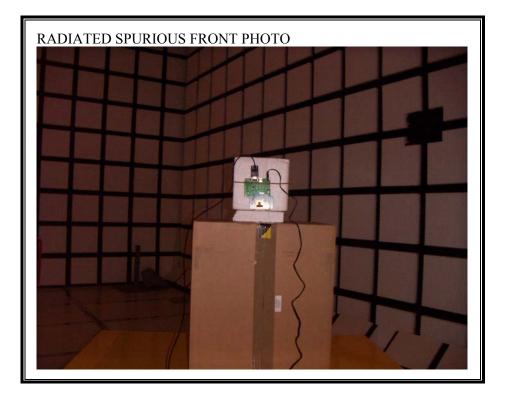
No non-compliance noted:

Page 15 of 19

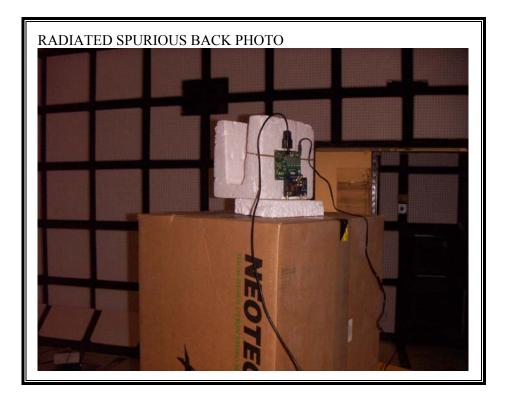
RADIATED SPURIOUS EMISSIONS BELOW 1 GHz

18/21/07	$30 - 1000 \mathrm{M}$	Hz Substitut	tion Measurem	ent						
Compliand	ce Certification	n Services, I	Fremont 5m Ch	amber						
Test Engr	: Thanh Nguye	n								
	07U11080									
	National Semi	conductor C	'orn							
	rip.: Bluetooth		-							
	: LMX98388C		wioume							
<u> </u>	et: ETSI 300 3									
Mode Ope	er: Receive mo	ode.								
Test Equip	pment:									
	Bilog Antenn	Cable			Pre-amplifer 8447D			Limit		
			5m Cham	Les Cable		T5 8447D			ETSI 300 328 R	-
5 m	Chamber Sunol	l Bilog 🔻	5m Cham	ner Canle 🔻		17 044/D	•		E151500 328 R	x 🗸
f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
Low Channe	el									
167.74	45.2	H	-63.9	1.6	2.0	-0.2	-65.7	-57.0	-8.7	
191.99	45.0	н	-64.5	1.7	3.8	1.7	-64.6	-57.0	-7.6	
449.04	36.9	н	-67.1	2.5	6.1	4.0	-65.7	-57.0	-8.7	
685.72	33.4	H	-68.0	3.1	6.8	4.6	-66.4	-57.0	-9.4	
67.83	48.0	v	-67.1	1.2	-1.9	-4.0	-72.2	-57.0	-15.2	
86.26	54.5	v	-56.6	1.2	-0.3	-2.5	-60.3	-57.0	-3.3	
189.08	44.2	v	-65.2	1.7	3.6	1.5	-65.5	-57.0	-8.5	
685.72	35.0	v	-65.7	3.1	6.8	4.6	-64.2	-57.0	-7.2	
High Chann										
36.79	42.4	H	-62.1	1.0	-14.6	-16.7	-79.8	-57.0	-22.8	
90.14	46.6	Н	-66.7	13	-0.2	-2.4	-70.4	-57.0	-13.4	
449.04	38.4	H	-65.6	2.5	6.1	4.0	-64.2	-57.0	-7.2	
659.53	33.4	H	-68.4	3.0	6.8	4.7	-66.8	-57.0	-9.8	
683.78	34.8	H	-66.5	3.1	6.8	4.6	-65.0	-57.0	-8.0	
	50.6	H	-64.2	1.2	-1.9	-4.0	-69.4	-57.0	-12.4	
67.83		v	-69.8	2.2	0.0	3.9	-68.1	-57.0	-11.1	
67.83 352.04	36.4			3.0	6.8	4.7	-66.4	-57.0	-9.4	
67.83 352.04 659.53	33.2	v	-68.0							
67.83 352.04	···	v v v	-68.0 -65.8 -69.0	3.1 3.2	6.8 6.7	4.6 4.6	-64.3 -67.6	-57.0 -57.0	-7.3 -10.6	

Page 16 of 19


RADIATED SPURIOUS EMISSIONS ABOVE 1 GHz

Company Project # Date: Au Test Eng Configura	nce Certificati 7: National Ser 5 07U11080 gust 22, 2007 jneer: Thanh ation: EUT, To eceive mode	on Services, niconductor Nguyen	ution Measuren Fremont 5m A Corp. AC/DC Adapte:	Chamber							
		In CH		1007			Limit				
	EMC O Horn 1-18GHz Horn > T60; S/N: 2238 @3m -				18 GHz ETSI 300 328 Rx			x 🗸			
f	SA reading	Ant. Pol.	(4~6ft) ⊽ (12 SG reading	CL	Gain	Pre-amplifer 1 4 Miteq 3008 Gain	400931 - ERP	Limit	Pre-amplifer Margin	v Notes	
GHz Low Chann	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)		
1.068 1.128 1.863 2.127 1.203 1.348	58.50 51.29 46.73 44.44 50.51 47.33	V V V V H H	-51.3 -58.4 -60.7 -62.0 -58.2 -60.9	3.1 3.2 4.1 4.5 3.3 3.5	5.0 5.2 7.8 8.6 5.5 6.0	29 3.1 5.7 6.5 3.4 3.9	-51.5 -58.4 -59.2 -60.0 -58.1 -60.5	-47.0 -47.0 -47.0 -47.0 -47.0 -47.0 -47.0	-45 -114 -122 -13.0 -11.1 -135		
High Chan 1.120		v	-50.3	3.2	5.2	3.1	-50.4	-47.0	-3.4		
1.120 1.133 1.923	593 52.1 50.3	v v v	-50.3 -57.6 -56.9	3.2 3.2 4.2	5.2 5.3 8.0	3.1 3.1 59	-50.4 -57.7 -55.2	-47.0 -47.0 -47.0	-3.4 -10.7 -8.2		
2.237 1.256 1.425	46.8 53.4 49.7	V H H	-59.4 -55.2 -58.4	4.6 3.3 3.6	89 5.7 6.3	6.7 3.5 4.1	-57.2 -55.0 -57.8	-47.0 -47.0 -47.0	-10.2 -8.0 -10.8		
Rev. 4.12.7											


Page 17 of 19

8. SETUP PHOTOS

RADIATED SPURIOUS EMISSIONS

Page 18 of 19

END OF REPORT

Page 19 of 19