

TEST REPORT

Report Number : 11910253-E1V2

Applicant	:	Texas Instrument			
		2900 Semiconductor Drive			
		Santa Clara, CA 95051			

- Model : LMX9838
- **EUT Description** : Bluetooth 2.0 module
- Test Standard(s) : EN 300 328 v2.1.1 (Radiated Emissions)

Date of Issue:

Friday, August 25, 2017

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	08/17/17	Initial Issue	
V2	08/25/17	Added RX blocking report and original report to appendix A and B	F. Ibrahim

Page 2 of 75

TABLE OF CONTENTS

RE	POR	T REVISION HISTORY2
ТА	BLE	OF CONTENTS
1.	ΑΤΊ	TESTATION OF TEST RESULTS4
2.	TES	ST METHODOLOGY
3.	FAC	CILITIES AND ACCREDITATION5
4.	CAI	LIBRATION AND UNCERTAINTY6
4	4.1.	MEASURING INSTRUMENT CALIBRATION
4	4.2.	MEASUREMENT UNCERTAINTY
5.	EQI	UIPMENT UNDER TEST
5	5.1.	DESCRIPTION OF EUT7
5	5.2.	MAXIMUM OUTPUT POWER7
5	5.3.	MODE(S) OF OPERATION7
5	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS
5	5.5.	SOFTWARE AND FIRMWARE
5	5.6.	WORST-CASE CONFIGURATION AND MODE7
5	5.7.	DESCRIPTION OF TEST SETUP8
6.	TES	ST AND MEASUREMENT EQUIPMENT10
7.	TES	ST RESULTS11
7	7.1.	TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN
7	7.2.	RECEIVER SPURIOUS EMISSIONS
8.	SET	TUP PHOTOS
9.	APF	PENDIX A (RX Blocking Report)21
10.	APF	PENDIX B (ORIGINAL REPORT)40

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Texas Instrument 2900 Semiconductor Drive Santa Clara, CA 95051		
EUT DESCRIPTION:	Bluetooth 2.0 Module		
MODEL:	LMX9838		
DATE TESTED:	June 17 – July 19, 2017		

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
EN 300 328 v2.1.1 (Radiated Emissions)	Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

FRANK IBRAHIM CONSUMER TECHNOLOGY DIVISION Program Manager UL Verification Services Inc.

Prepared By:

fm

Jason Qian CONSUMER TECHNOLOGY DIVISION Lab Engineer UL Verification Services Inc.

Page 4 of 75

2. TEST METHODOLOGY

All tests were performed in accordance with the procedures documented in EN 300 328 v2.1.1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street		
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)		
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)		
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)		
	Chamber G(IC: 2324B-7)		
	Chamber H(IC: 2324B-8)		

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

Page 5 of 75

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
RF frequency	±3 x 10^(-7)
RF power conducted	±0.35 dB
RF power radiated	±5.5 dB
Spurious emissions, conducted	±2.9 dB
Spurious emissions, radiated	±5.6 dB
Humidity	±4.5 % RH
Temperature	±0.9 deg C
Time	±0.02 %

Uncertainty figures are valid to a confidence level of 95%.

Page 6 of 75

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth 2.0 Module, transmit only Basic data rate 1Mb/s GFSK mode.

The radio module is manufactured by Texas Instruments.

5.2. MAXIMUM OUTPUT POWER

Please refer to report "11364308-E1V1 EN 300 328 v1.9.1 BT Report Final", section 3.2. See appendix B for convenience.

5.3. MODE(S) OF OPERATION

Mode	Description
Receive Mode	EUT powered on
Transmit Mode	EUT powered and transmitting

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

Please refer to report "11364308-E1V1 EN 300 328 v1.9.1 BT Report Final", section 3.3. See appendix B for convenience.

5.5. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was v.02.12 (Patch 2).

The test utility software used during testing was Simply Blue Commander v1.6.0.1

5.6. WORST-CASE CONFIGURATION AND MODE

The fundamental of the EUT was investigated in three orthogonal orientations X,Y, Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Worst-case data rates as provided by the client were:

GFSK mode: 1-DH5

Page 7 of 75

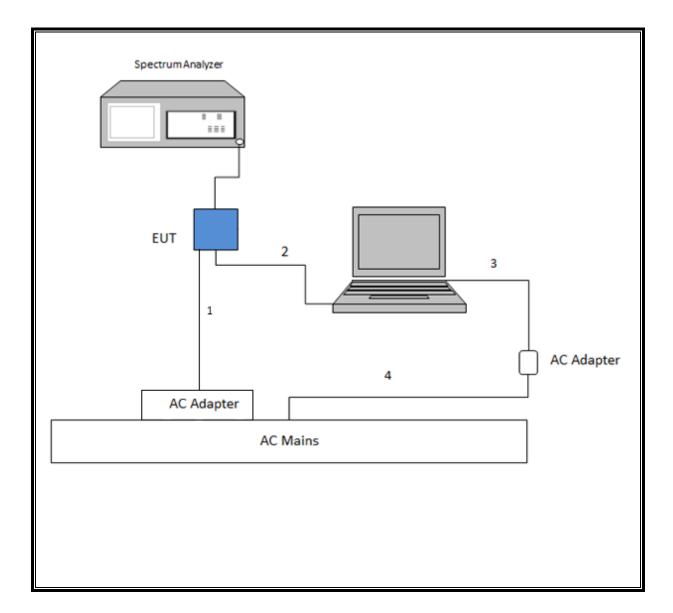
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List					
Description Manufacturer Model Serial Number					
EUT's Adapter	Verifone	SC1402	1.7082E+12		
Laptop	Dell	D620	C01089		
Laptop AC Adapter	Dell	LA65NS-00	CN-00F263-71615-6AC-38D4		

I/O CABLES

	I/O Cable List						
Cable	Cable Port # of identical Connector Cable Type Cable F		Remarks				
No		ports	Туре		Length (m)		
1	DC	1	3.5mm	unshielded	0.9	USB to 3.5mm connector	
2	Serial	1	DB9	shielded	2	USB to Serial cable	
3	DC	1	barrel	unshielded	1.7		
4	AC	1	2 prong	unshielded	0.9		


TEST SETUP

The EUT was connected to a host laptop computer via a USB to Serial cable adapter during the tests. Test software exercised the radio card.

Note: after all the setting such as channel, output power, the host laptop and all support equipment were removed out of the chamber. Only EUT stayed on the turn table.

Page 8 of 75

SETUP DIAGRAM FOR RADIATED TESTS

Page 9 of 75

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	T No.	Cal Date	Cal Due		
Amplifier, 1 - 18GHz	Miteq	AFS42	1165	08/01/17	08/01/18		
Amplifier, 10KHz to 1GHz, 32dB	Keysight	8447D	10	02/01/17	02/01/18		
Antenna, Broadband Hybrid 30MHz to 2000MHz	Sunol Science	JB1	130	09/01/16	09/01/17		
Antenna, Horn 1-18GHz	ETS-Lindgren	3117	711	01/30/17	01/30/18		
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent	N9030A	907	01/23/17	01/23/18		

Test Software List				
Description	Manufacturer	Model	Version	
Antenna Port Software	UL	UL RF	Ver 6.8, June 08, 2017	

NOTE: Testing was completed before equipment calibration expiration date.

Page 10 of 75

7. TEST RESULTS

7.1. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

LIMITS

ETSI EN 300 328 V2.1.1 (2016-11) Clause 4.3.1.10.3

Table 1: Transmitter limits for spurious emissions

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

TEST PROCEDURE

ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.9.2.1

TEST CONDITIONS

ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.9.1

The level of spurious emissions shall be measured as, either:

a) their power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation); or

b) their effective radiated power when radiated by cabinet and antenna in case of integral antenna equipment with no temporary antenna connectors

Protocol (a) was used for emissions testing as covered by this report.

Page 11 of 75

RESULTS

RADIATED SPURIOUS EMISSIONS BELOW 1 GHz

Company:		Texas Instrum	ents							
Project #:		11760935	ento							
Date:		6/17/2017								
Test Engine	or:	50818 JQ								
Configuratio		EUT w/ Laptop	`							
Mode:		BT_TXBelow 1								
	Chambe	r	P	re-amplifer		Atter	nuator			Limit
3m C	hamber B	-	3m-B	T10	-			-	ETSI 3	300 328 Tx 🚽
1							-			
_				ERP @ TX	_					
Frequency	-		Distance	Ant's End	Preamp	Attenuator	ERP	Limit	Delta	Notes
(MHz)	(dBm)	(H/V)	(m)	(dB)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
Low Channel	2402MH7		1	1		1 1		1 1		
105.66	-48.1	н	3.0	16.3	28.8		-60.5	-54.0	-6.5	
105.66 192.96	-48.1 -53.6	н	3.0	19.6	28.5		-62.5	-54.0	-8.5	
105.66 192.96 329.73	-48.1 -53.6 -54.2	H H	3.0 3.0	19.6 23.0	28.5 28.1		-62.5 -59.3	-54.0 -36.0	-8.5 -23.3	
105.66 192.96	-48.1 -53.6	н	3.0	19.6	28.5		-62.5	-54.0 -36.0 -36.0	-8.5	
105.66 192.96 329.73 46.69	-48.1 -53.6 -54.2 -46.5	H H V	3.0 3.0 3.0	19.6 23.0 18.0	28.5 28.1 28.9		-62.5 -59.3 -57.5	-54.0 -36.0	-8.5 -23.3 -21.5	
105.66 192.96 329.73 46.69 88.20 288.99	-48.1 -53.6 -54.2 -46.5 -50.9 -57.0	H H V V	3.0 3.0 3.0 3.0	19.6 23.0 18.0 20.6	28.5 28.1 28.9 28.8		-62.5 -59.3 -57.5 -59.0	-54.0 -36.0 -36.0 -54.0	-8.5 -23.3 -21.5 -5.0	
105.66 192.96 329.73 46.69 88.20 288.99 High Channel	-48.1 -53.6 -54.2 -46.5 -50.9 -57.0 2480MHz	H H V V V	3.0 3.0 3.0 3.0 3.0 3.0	19.6 23.0 18.0 20.6 22.9	28.5 28.1 28.9 28.8 28.0		-62.5 -59.3 -57.5 -59.0 -62.2	-54.0 -36.0 -36.0 -54.0 -36.0	-8.5 -23.3 -21.5 -5.0 -26.2	
105.66 192.96 329.73 46.69 88.20 288.99 High Channel 33.88	-48.1 -53.6 -54.2 -46.5 -50.9 -57.0 2480MHz -66.1	H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	19.6 23.0 18.0 20.6 22.9 30.7	28.5 28.1 28.9 28.8 28.0 28.9		-62.5 -59.3 -57.5 -59.0 -62.2 -64.3	-54.0 -36.0 -54.0 -36.0 -36.0	-8.5 -23.3 -21.5 -5.0 -26.2 -28.3	
105.66 192.96 329.73 46.69 88.20 288.99 High Channel 33.88 418.97	-48.1 -53.6 -54.2 -46.5 -50.9 -57.0 2480MHz -66.1 -72.8	H H V V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	19.6 23.0 18.0 20.6 22.9 	28.5 28.1 28.9 28.8 28.0 28.9 28.9 28.7		-62.5 -59.3 -57.5 -59.0 -62.2 -64.3 -76.9	-54.0 -36.0 -36.0 -36.0 -36.0 -36.0 -36.0	-8.5 -23.3 -21.5 -5.0 -26.2 -28.3 -40.9	
105.66 192.96 329.73 46.69 88.20 288.99 High Channel 33.88 418.97 773.99	-48.1 -53.6 -54.2 -46.5 -50.9 -57.0 2480MHz -66.1 -72.8 -72.6	H H V V H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	19.6 23.0 18.0 20.6 22.9 30.7 24.5 29.7	28.5 28.1 28.9 28.8 28.0 28.9 28.9 28.9 28.7 28.5		-62.5 -59.3 -57.5 -59.0 -62.2 -64.3 -76.9 -71.4	-54.0 -36.0 -36.0 -54.0 -36.0 -36.0 -36.0 -54.0	-8.5 -23.3 -21.5 -5.0 -26.2 -28.3 -40.9 -17.4	
105.66 192.96 329.73 46.69 88.20 288.99 High Channel 33.88 418.97	-48.1 -53.6 -54.2 -46.5 -50.9 -57.0 2480MHz -66.1 -72.8	H H V V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	19.6 23.0 18.0 20.6 22.9 	28.5 28.1 28.9 28.8 28.0 28.9 28.9 28.7		-62.5 -59.3 -57.5 -59.0 -62.2 -64.3 -76.9	-54.0 -36.0 -36.0 -36.0 -36.0 -36.0 -36.0	-8.5 -23.3 -21.5 -5.0 -26.2 -28.3 -40.9	

Page 12 of 75

RADIATED SPURIOUS EMISSIONS ABOVE 1 GHz

Company:		Texas Instrume	ents							
Project #:		11760935								
Date:		6/17/2016								
est Engine		50818 JQ								
Configurati			ed Sample) w/ L	_aptop						
lode:		BT_TX_Above	16							
	Chamber			Pre-amplifer		Filte	er	1		Limit
3m C	hamber B	•	3n	n Chamber B	•	Filter	•	1	ETSI 3	300 328 Tx 🚽
				EIRP @ TX						
Frequency	SA reading	Ant. Pol.	Distance	Ant's End	Preamp	Attenuator	EIRP	Limit	Delta	Notes
(GHz)	(dBm)	(H/V)	(m)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
		(H/V)	(m)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)	
(GHz) ow Channe 1.58	2402MHz -78.2	H	3.0	-33.6	38.7	1.0	-71.3	-30.0	-41.3	
(GHz) ow Channe 1.58 4.81	2402MHz -78.2 -48.8	H	3.0 3.0	-33.6 5.1	38.7 38.6	1.0	-71.3 -32.5	-30.0 -30.0	-41.3 -2.5	
(GHz) ow Channe 1.58 4.81 7.09	2402MHz -78.2 -48.8 -79.4	H H H	3.0 3.0 3.0	-33.6 5.1 -21.4	38.7 38.6 38.6	1.0 1.0 1.0	-71.3 -32.5 -59.0	-30.0 -30.0 -30.0	-41.3 -2.5 -29.0	
(GHz) ow Channe 1.58 4.81 7.09 1.58	2402MHz -78.2 -48.8 -79.4 -76.0	H H H V	3.0 3.0 3.0 3.0 3.0	-33.6 5.1 -21.4 -31.4	38.7 38.6 38.6 38.7	1.0 1.0 1.0 1.0 1.0	-71.3 -32.5 -59.0 -69.1	-30.0 -30.0 -30.0 -30.0	-41.3 -2.5 -29.0 -39.1	
(GHz) ow Channe 1.58 4.81 7.09 1.58 4.81	2402MHz -78.2 -48.8 -79.4 -76.0 -51.1	H H H V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	-33.6 5.1 -21.4 -31.4 2.9	38.7 38.6 38.6 38.7 38.7 38.6	1.0 1.0 1.0 1.0 1.0 1.0	-71.3 -32.5 -59.0 -69.1 -34.7	-30.0 -30.0 -30.0 -30.0 -30.0	-41.3 -2.5 -29.0 -39.1 -4.7	
(GHz) ow Channe 1.58 4.81 7.09 1.58	2402MHz -78.2 -48.8 -79.4 -76.0	H H H V	3.0 3.0 3.0 3.0 3.0	-33.6 5.1 -21.4 -31.4	38.7 38.6 38.6 38.7	1.0 1.0 1.0 1.0 1.0	-71.3 -32.5 -59.0 -69.1	-30.0 -30.0 -30.0 -30.0	-41.3 -2.5 -29.0 -39.1	
(GHz) ow Channe 1.58 4.81 7.09 1.58 4.81	2402MHz -78.2 -48.8 -79.4 -76.0 -51.1 -78.1	H H H V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	-33.6 5.1 -21.4 -31.4 2.9	38.7 38.6 38.6 38.7 38.7 38.6	1.0 1.0 1.0 1.0 1.0 1.0	-71.3 -32.5 -59.0 -69.1 -34.7	-30.0 -30.0 -30.0 -30.0 -30.0	-41.3 -2.5 -29.0 -39.1 -4.7	
(GHz) ow Channe 1.58 4.81 7.09 1.58 4.81 7.09	2402MHz -78.2 -48.8 -79.4 -76.0 -51.1 -78.1	H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	-33.6 5.1 -21.4 -31.4 2.9	38.7 38.6 38.6 38.7 38.7 38.6	1.0 1.0 1.0 1.0 1.0 1.0	-71.3 -32.5 -59.0 -69.1 -34.7 -57.9 -65.4	-30.0 -30.0 -30.0 -30.0 -30.0	-41.3 -2.5 -29.0 -39.1 -4.7	
(GHz) ow Channe 1.58 4.81 7.09 1.58 4.81 7.09 ligh Channe 1.99 4.96	2402MHz -78.2 -48.8 -79.4 -76.0 -51.1 -78.1 1 2480MHz -76.4 -49.5	H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	-33.6 5.1 -21.4 -31.4 2.9 -20.4 -28.4 4.7	38.7 38.6 38.6 38.7 38.6 38.6 38.6	1.0 1.0 1.0 1.0 1.0 1.0 1.0	-71.3 -32.5 -59.0 -69.1 -34.7 -57.9 -65.4 -33.0	-30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	-41.3 -2.5 -29.0 -39.1 -4.7 -27.9 -35.4 -3.0	
(GHz) ow Channe 1.58 4.81 7.09 1.58 4.81 7.09 4.91 4.90 7.09	2402MHz -78.2 -48.8 -79.4 -76.0 -51.1 -78.1 12480MHz -76.4 -49.5 -78.8	H H V V V H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-33.6 5.1 -21.4 -31.4 2.9 -20.4 -28.4 4.7 -20.8	38.7 38.6 38.6 38.7 38.6 38.6 38.6 38.6 38.0 38.7 38.6	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-71.3 -32.5 -59.0 -69.1 -34.7 -57.9 -65.4 -33.0 -58.4	-30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	-41.3 -2.5 -29.0 -39.1 -4.7 -27.9 -35.4 -3.0 -28.4	
(GHz) ow Channe 1.58 4.81 7.09 1.58 4.81 7.09 1.58 4.81 7.09 4.90 7.09 1.94	2402MHz -78.2 -48.8 -79.4 -76.0 -51.1 -78.1 -78.1 -76.4 -76.4 -49.5 -78.8 -77.5	H H V V V H H H V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-33.6 5.1 -21.4 -31.4 2.9 -20.4 -28.4 4.7 -28.8 -29.6	38.7 38.6 38.6 38.7 38.6 38.6 38.6 38.7 38.7 38.6 38.7 38.6 38.1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-71.3 -32.5 -59.0 -69.1 -34.7 -57.9 -65.4 -33.0 -58.4 -66.6	-30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	-41.3 -2.5 -29.0 -39.1 -4.7 -27.9 -35.4 -35.4 -36.6	
(GHz) ow Channe 1.58 4.81 7.09 1.58 4.81 7.09 4.91 4.90 7.09	2402MHz -78.2 -48.8 -79.4 -76.0 -51.1 -78.1 12480MHz -76.4 -49.5 -78.8	H H V V V H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	-33.6 5.1 -21.4 -31.4 2.9 -20.4 -28.4 4.7 -20.8	38.7 38.6 38.6 38.7 38.6 38.6 38.6 38.6 38.0 38.7 38.6	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	-71.3 -32.5 -59.0 -69.1 -34.7 -57.9 -65.4 -33.0 -58.4	-30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	-41.3 -2.5 -29.0 -39.1 -4.7 -27.9 -35.4 -3.0 -28.4	

Page 13 of 75

7.2. RECEIVER SPURIOUS EMISSIONS

LIMITS

ETSI EN 300 328 V2.1.1 (2016-11) Clause 4.3.1.11.3

TEST PROCEDURE

EN 300 328 V2.1.1 Clause 5.4.10.2. Table 2: Spurious emission limits for receivers

Frequency range	Maximum power	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

TEST CONDITIONS

ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.10.1

The level of spurious emissions shall be measured as, either:

a) their power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation); or

b) their effective radiated power when radiated by cabinet and antenna in case of integral antenna equipment with no temporary antenna connectors

Protocol (a) was used for emissions testing as covered by this report.

Page 14 of 75

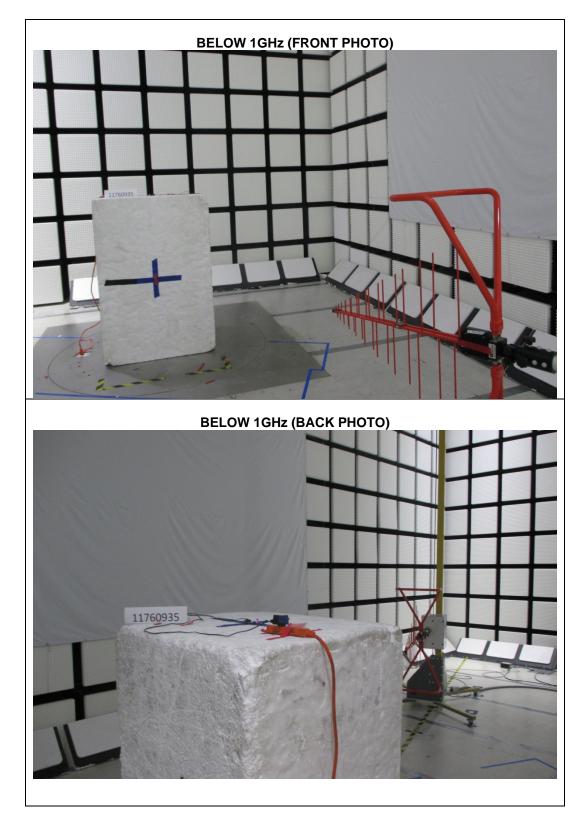
RESULTS

RADIATED SPURIOUS EMISSIONS BELOW 1 GHz

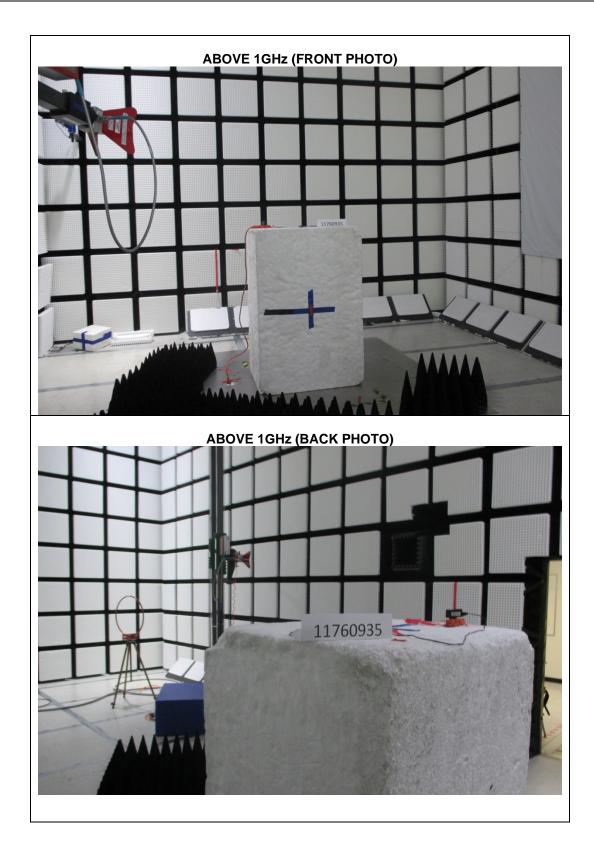
			30 - 1000N	/Hz Substitu	tion Measu	irement				
Company:		Texas Instrume	ents							
Project #:		11760935								
Date:		7/2/2017								
Test Engine	eer:	45256 JB								
Configuration	on:	EUT w/ Laptop								
Mode:		RX								
	Chambe	r	Р	re-amplifer		Atte	nuator			Limit
		-							FTO	000 000 D.:
3m (Chamber B	5 <u>-</u>	3m-B	110	•			-	EISI	300 328 Rx
	1		1							1
F ra e 1 a e e e e e		Ant Dal	Distance	ERP @ TX Ant's End	Dreamn	Attenuator	ERP	1 : :4	Delta	Notes
	SA reading		Distance		Preamp			Limit	(dB)	Notes
(MHz)	(dBm)	(H/V)	(m)	(dB)	(dB)	(dR)	(dBm)		(dR)	
· /		()	(,	(45)	(00)	(dB)	(ubiii)	(dBm)	(00)	
Low Channel	I 2402MHz					(0.0)		È É		
Low Channel 95.96	2402MHz -55.2	Н	3.0	13.8	28.7	(00)	-70.1	-57.0	-13.1	
Low Channe 95.96 120.21	2402MHz -55.2 -54.4	H H	3.0 3.0	13.8 20.6	28.7 28.7	(42)	-70.1 -62.5	-57.0 -57.0	-13.1 -5.5	
Low Channel 95.96	2402MHz -55.2	Н	3.0	13.8	28.7		-70.1	-57.0	-13.1	
Low Channel 95.96 120.21 333.61	2402MHz -55.2 -54.4 -55.7	H H H	3.0 3.0 3.0	13.8 20.6 23.1	28.7 28.7 28.1		-70.1 -62.5 -60.7	-57.0 -57.0 -57.0	-13.1 -5.5 -3.7	
Low Channel 95.96 120.21 333.61 71.71	2402MHz -55.2 -54.4 -55.7 -59.8	H H H V	3.0 3.0 3.0 3.0 3.0	13.8 20.6 23.1 17.0	28.7 28.7 28.1 28.7		-70.1 -62.5 -60.7 -71.5	-57.0 -57.0 -57.0 -57.0	-13.1 -5.5 -3.7 -14.5	
Low Channel 95.96 120.21 333.61 71.71 328.76 557.68	I 2402MHz -55.2 -54.4 -55.7 -59.8 -59.6 -62.6	H H H V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.8 20.6 23.1 17.0 24.4	28.7 28.7 28.1 28.7 28.1		-70.1 -62.5 -60.7 -71.5 -63.3	-57.0 -57.0 -57.0 -57.0 -57.0	-13.1 -5.5 -3.7 -14.5 -6.3	
Low Channe 95.96 120.21 333.61 71.71 328.76 557.68 High Channe	I 2402MHz -55.2 -54.4 -55.7 -59.8 -59.6 -62.6 I 2480MHz	H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.8 20.6 23.1 17.0 24.4 29.1	28.7 28.7 28.1 28.7 28.1 28.1 29.1		-70.1 -62.5 -60.7 -71.5 -63.3 -62.7	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0	-13.1 -5.5 -3.7 -14.5 -6.3 -5.7	
Low Channe 95.96 120.21 333.61 71.71 328.76 557.68 High Channe 95.96	I 2402MHz -55.2 -54.4 -55.7 -59.8 -59.6 -62.6 - 1 2480MHz -55.2	H H H V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.8 20.6 23.1 17.0 24.4 29.1 	28.7 28.7 28.1 28.7 28.1		-70.1 -62.5 -60.7 -71.5 -63.3 -62.7 -70.1	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	-13.1 -5.5 -3.7 -14.5 -6.3	
Low Channe 95.96 120.21 333.61 71.71 328.76 557.68 High Channe	I 2402MHz -55.2 -54.4 -55.7 -59.8 -59.6 -62.6 I 2480MHz	H H V V V	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.8 20.6 23.1 17.0 24.4 29.1	28.7 28.7 28.1 28.7 28.1 28.1 29.1 29.1		-70.1 -62.5 -60.7 -71.5 -63.3 -62.7	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0	-13.1 -5.5 -3.7 -14.5 -6.3 -5.7 -13.1	
Low Channe 95.96 120.21 333.61 71.71 328.76 557.68 High Channe 95.96 120.21	2402MHz -55.2 -54.4 -55.7 -59.8 -59.6 -62.6 -1 2480MHz -55.2 -54.4	H H V V V H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.8 20.6 23.1 17.0 24.4 29.1 13.8 20.6	28.7 28.7 28.1 28.1 29.1 29.1 28.7 28.7		-70.1 -62.5 -60.7 -71.5 -63.3 -62.7 -70.1 -62.5	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	-13.1 -5.5 -3.7 -14.5 -6.3 -5.7 -13.1 -5.5	
Low Channei 95.96 120.21 333.61 71.71 328.76 557.68 High Channe 95.96 120.21 333.61	2402MHz -55.2 -54.4 -55.7 -59.8 -59.6 -62.6 1 2480MHz -55.2 -55.2 -54.4 -55.7	H H V V V H H H	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.8 20.6 23.1 17.0 24.4 29.1 13.8 20.6 23.1	28.7 28.7 28.1 28.7 28.1 29.1 28.7 28.7 28.7 28.7 28.1		-70.1 -62.5 -60.7 -71.5 -63.3 -62.7 -70.1 -62.5 -60.7	-57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0	-13.1 -5.5 -3.7 -14.5 -6.3 -5.7 -13.1 -5.5 -3.7	

Page 15 of 75

RADIATED SPURIOUS EMISSIONS ABOVE 1 GHz

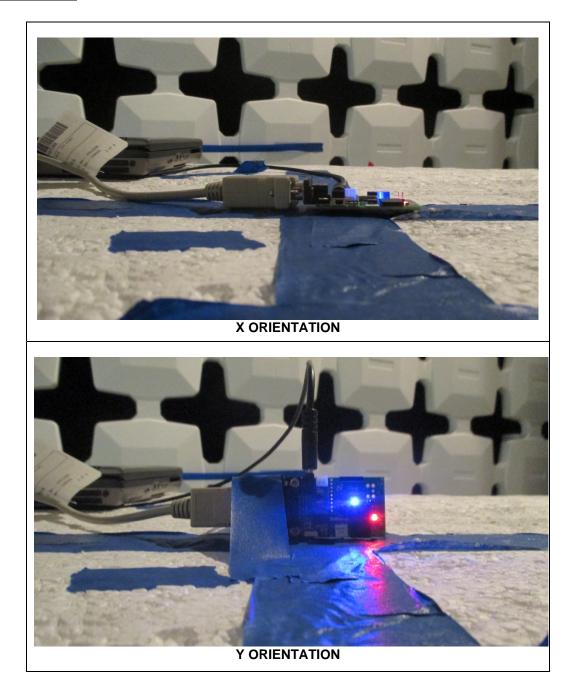

ompany: roject #: ate: est Engine onfiguratio ode:	er: on:	Texas Instrum 11760935 7/19/2017 37290 EUT W/CHAR Rx								
	Chamber			Pre-amplifer		Filte	r		1	Limit
3m C	hamber B	•	3r	n Chamber B	•	Filter	-	·]	ETSI 30	0 328 Rx 🚽
Frequency (GHz)	SA reading (dBm)	Ant. Pol. (H/V)	Distance (m)	EIRP @ TX Ant's End (dBm)	Preamp (dB)	Attenuator (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
.ow Channel	2402MHz						<i>`</i>			
1.54	-69.1	н	3.0	-24.8	38.8	1.0	-62.6	-47.0	-15.6	
3.88	-70.0	н	3.0	-17.9	38.4	1.0	-55.2	-47.0	-8.2	
4.88	-71.4	н	3.0	-17.3	38.6	1.0	-55.0	-47.0	-8.0	
	-69.5	V V	3.0 3.0	-25.3	38.8	1.0	-63.1 -55.1	-47.0 -47.0	-16.1	
1.54	70.0			-1/./	38.4	1.0		-47.0	-8.1 -7.5	
3.84	-70.2			16.0	20 6	1 1 0			-7.5	
	-70.2 -70.9	v	3.0	-16.9	38.6	1.0	-54.5	-47.0		
3.84 4.85	-70.9			-16.9	38.6	1.0	-54.5	-47.0		
3.84 4.85 High Channe 1.54	-70.9 2480MHz -69.0	V H		-24.7	38.8	1.0	-62.5	-47.0	-15.5	
3.84 4.85 High Channe 1.54 3.88	-70.9 2480MHz -69.0 -69.6	V H H	3.0 3.0 3.0	-24.7 -17.4	38.8 38.4	1.0 1.0	-62.5 -54.8	-47.0 -47.0	-15.5 -7.8	
3.84 4.85 High Channe 1.54 3.88 4.88	-70.9 2480MHz -69.0 -69.6 -69.3	V H H H	3.0 3.0 3.0 3.0 3.0	-24.7 -17.4 -15.3	38.8 38.4 38.6	1.0 1.0 1.0	-62.5 -54.8 -52.9	-47.0 -47.0 -47.0	-15.5 -7.8 -5.9	
3.84 4.85 High Channe 1.54 3.88	-70.9 2480MHz -69.0 -69.6	V H H	3.0 3.0 3.0	-24.7 -17.4	38.8 38.4	1.0 1.0	-62.5 -54.8	-47.0 -47.0	-15.5 -7.8	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

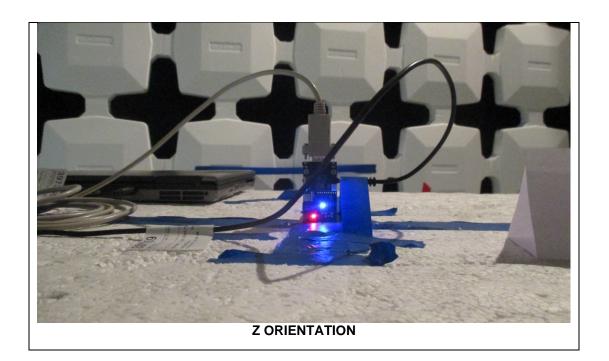

Page 16 of 75

8. SETUP PHOTOS

RADIATED SPURIOUS EMISSIONS



Page 17 of 75



Page 18 of 75

ORIENTATIONS

Page 19 of 75

END OF REPORT

Page 20 of 75

9. APPENDIX A (RX Blocking Report) RECEIVER BLOCKING PORTION OF EN 300 328 v2.1.1

TEST REPORT

FOR

Bluetooth 2.0 Serial Port Module

MODEL NUMBER: LMX9838

REPORT NUMBER: 11760935 – E2V1

ISSUE DATE: June 07, 2017

Prepared for Texas Instrument 2900 Semiconductor Drive Santa Clara CA 95051, USA

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Page 21 of 75

Revision History

Rev.	lssue Date	Revisions	Revised By
V1	06/07/17	Initial Issue	Conan Cheung

Page 22 of 75

TABLE OF CONTENTS

<u>1.</u>	TTESTATION OF TEST RESULTS	24
<u>2.</u> <u>T</u>	EST METHODOLOGY	25
<u>3.</u> F	ACILITIES AND ACCREDITATION	25
<u>4.</u> C	ALIBRATION AND UNCERTAINTY	25
<u>4.1</u>	<u>MEASURING INSTRUMENT CALIBRATION</u>	25
<u>4.2</u>		
<u>5.</u> E	QUIPMENT UNDER TEST	26
<u>5.1</u>	<u>DESCRIPTION OF EUT</u>	26
<u>5.2</u>		
	EIRP for Adaptive Devices .2.2. MU for Non-Adaptive Devices	
<u>5.3</u>		
<u>5.4</u>		
5.5		
5.6		
<u>o. L</u> <u>6.1</u>	DESCRIPTION OF TEST SETUP 	
<u>6.2</u>		
<u>6.3</u>		
<u>6.4</u>		
<u>6.1</u>		
	<u>CONDUCTED METHOD EUT TEST SETUP</u>	
<u>7.2</u>		
<u>8.</u> R	RECEIVER BLOCKING	
<u>8.1</u>		
<u>8.2</u>	. <u>BLUETOOTH FHSS RECEIVER BLOCKING TEST RESULTS</u> 2.1. LOW CHANNEL, 1 MHz BANDWIDTH	
	2.2.2. HIGH CHANNEL, 1 MHz BANDWIDTH	
<u>9.</u>	ETUP PHOTOS	
<u>9.1</u>	<u>. RECEIVER BLOCKING TESTING</u>	

Page 23 of 75

10. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Texas Instrument 2900 Semiconductor Drive Santa Clara, CA 95051, USA
EUT DESCRIPTION:	Bluetooth 2.0 Serial Port Module
MODEL:	LMX 9838
SERIAL NUMBER:	QS1021160
DATE TESTED:	June 07, 2017

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
RECEIVER BLOCKING PORTION OF EN 300 328 v2.1.1	Pass			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Tested By:

CONAN CHEUNG PROJECT LEAD UL Verification Services Inc.

RayLi

RAY LI EMC ENGINEER UL Verification Services Inc.

Page 24 of 75

11. TEST METHODOLOGY

All tests were performed in accordance with the Receiver Blocking portion of EN 300 328 v2.1.1.

12. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services, Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

13. CALIBRATION AND UNCERTAINTY

13.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

13.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
RF frequency	3.5 x 10^(-8)
RF power conducted	0.47 dB
RF power radiated	5.5 dB
Spurious emissions, conducted	2.94 dB
Spurious emissions, radiated	5.64 dB
Humidity	4.5 % RH
Temperature	0.9 deg C
Time	0.028 %

Uncertainty figures are valid to a confidence level of 95%.

Page 25 of 75

14. EQUIPMENT UNDER TEST

14.1. DESCRIPTION OF EUT

The EUT is a Bluetooth 2.0 Module, transmit only Basic data rate 1Mb/s GFSK mode.

14.2. MAXIMUM EIRP AND MEDIUM UTILIZATION (MU) FACTOR

For purposes of determining the EUT classification:

The manufacturer has declared that the EUT is an Adaptive device.

14.2.1. EIRP for Adaptive Devices

The maximum Bluetooth FHSS EIRP in the 2.4 GHz band is -0.51 dBm.

The maximum EIRP is used for determining and setting Receiver Blocking test parameters of Adaptive devices and is not applicable to Receiver Blocking testing for a Non-Adaptive device.

14.2.2. MU for Non-Adaptive Devices

The maximum Medium Utilization (MU) factor is used for determining and setting Receiver Blocking test parameters of Non-Adaptive devices and is not applicable to Receiver Blocking testing for an Adaptive device.

14.3. DESCRIPTION OF AVAILABLE ANTENNAS

The highest gain antenna assembly has a peak gain of -4.9 dBi in the 2.4 GHz band.

14.4. BLUETOOTH FHSS CHANNEL AND CHANNEL BANDWIDTH

The lowest supported channel in the 2.4 GHz band is 2402 MHz. The highest supported channel in the 2.4 GHz band is 2480 MHz.

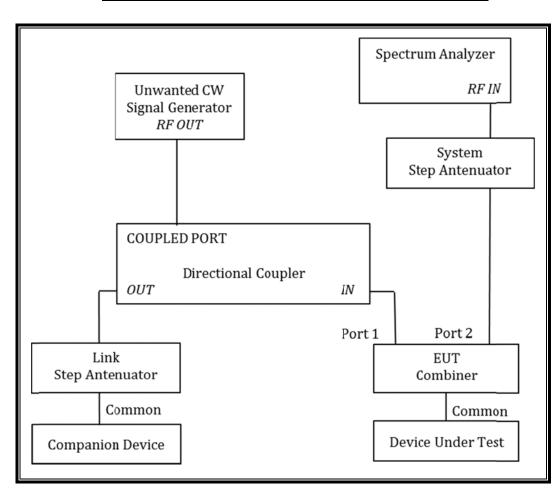
The minimum supported nominal channel bandwidth in the 2.4 GHz band is 1 MHz.

14.5. DATA RATE

The minimum supported Bluetooth FHSS data rate in the 2.4 GHz band is 1 Mbps.

14.6. SOFTWARE AND FIRMWARE

The software used in the controller/console laptop during testing was Simply Blue Commander, Version 1.6.0.1.


Page 26 of 75

15. DESCRIPTION OF TEST SETUP

15.1. SYSTEM OVERVIEW

These tests were performed using a Conducted instrument configuration.

15.2. TEST AND MEASUREMENT SYSTEM

RECEIVER BLOCKING CONDUCTED TEST CONFIGURATION

Page 27 of 75

15.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Serial Number	Cal Due				
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight	N9030A	MY49430179	02/27/18				
Signal Generator, MXG X-Series RF Vector	Agilent	N5182B	MY53050404	04/21/18				
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	1201.0002K50135387-nG	02/05/20				

TEST SETUP

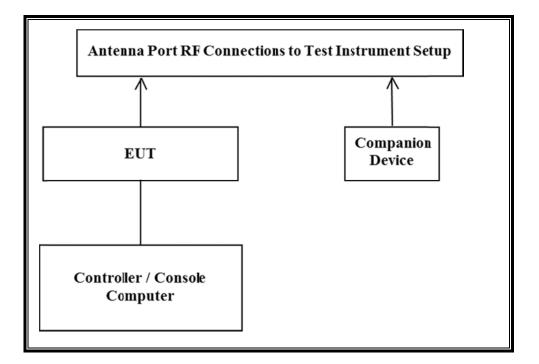
The EUT is linked to a companion 802.11 wideband radio communications or Bluetooth tester. Traffic is sent from the companion radio testing device to the EUT and the EUT responds to successfully transmitted packets. The PER is calculated by dividing the quantity of successfully received packets by the quantity of packets sent and multiplying the quotient by 100.

15.4. TEST ROOM ENVIRONMENT

The test room temperature and humidity shall be maintained within normal temperature of 15~35 °C and normal humidity 20~75% (relative humidity).

ENVIRONMENT CONDITION

Parameter Value	
Temperature	26.3 °C
Humidity	27 %


15.5. TEST AND MEASUREMENT SOFTWARE

The test and measurement software utilized for the tests documented in this report is internal to the radio tester.

Page 28 of 75

16. SETUP OF EUT

16.1. CONDUCTED METHOD EUT TEST SETUP

16.2. SUPPORT EQUIPMENT AND PERIPHERALS

The following support equipment was utilized for the tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description	Serial Number			
Laptop	Dell	PP18L	(01)07898349890528	
AC Adaptor(Laptop)	Dell	LA65NS0-00	CN-0DF263-71615 -6AC-	
			38D4	

17. RECEIVER BLOCKING

17.1. EN 300 328 v2.1.1 REQUIREMENTS

APPLICABILITY

ETSI EN 300 328 V2.1.1, Clause 4.3.1.12.1

This requirement applies to all of the following receiver categories as defined in clause 4.2.3.

Receiver Category 1 Equipment:

Adaptive equipment with a maximum RF output power greater than 10 dBm e.i.r.p.

Receiver Category 2 Equipment:

Non-adaptive equipment with a Medium Utilization (MU) factor greater than 1 % and less than or equal to 10 % or adaptive equipment with a maximum RF output power of 10 dBm e.i.r.p.

Receiver Category 3 Equipment:

Non-adaptive equipment with a maximum Medium Utilization (MU) factor of 1 % or adaptive equipment with a maximum RF output power of 0 dBm e.i.r.p.

DEFINITION

ETSI EN 300 328 V2.1.1, Clause 4.3.1.12.2

Receiver blocking is a measure of the ability of the equipment to receive a wanted signal on its operating channel without exceeding a given degradation in the presence of an unwanted signal (blocking signal) on frequencies other than those of the operating band provided in table 1:

Table 1: Service frequency bands

	Service frequency bands		
Transmit	2 400 MHz to 2 483,5 MHz		
Receive	2 400 MHz to 2 483,5 MHz		

TEST CONDITIONS

ETSI EN 300 328 v2.1.1 Clause 5.4.11.1

These measurements shall only be performed at normal test conditions.

TEST CHANNELS

ETSI EN 300 328 v2.1.1 Clause 5.4.11.1

For non-frequency hopping equipment, having more than one operating channel, the equipment shall be tested operating at both the lowest and highest operating channels. Equipment which can change their operating channel automatically (adaptive channel allocation), and where this function cannot be disabled, shall be tested as a frequency hopping equipment.

If the equipment can operate with different Nominal Channel Bandwidths (e.g. 20 MHz and 40 MHz) and different data rates, then the smallest channel bandwidth shall be used together with the lowest data rate for this channel bandwidth. This mode of operation shall be aligned with the performance criteria defined in clause 4.3.1.12.3 or clause 4.3.2.11.3 as declared by the manufacturer (see clause 5.4.1 t)) and shall be described in the test report.

It shall be verified that this performance criteria as declared by the manufacturer is achieved.

TEST PROCEDURE

ETSI EN 300 328 v2.1.1 Clause 5.4.11.2.1

Note: For systems using multiple receive chains only one chain (antenna port) needs to be tested. All other receiver inputs shall be terminated.

Step 1:

For non-frequency hopping equipment, the EUT shall be set to the lowest operating channel.

Step 2:

The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

Step 3:

With the blocking signal generator switched off, a communication link is established between the EUT and the associated companion device using the test setup shown in figure 6. The variable attenuator is set to a value that achieves the minimum specified performance criteria with a resolution of at least 1 dB. The resulting level for the wanted signal at the input of the EUT is Pmin. This value shall be measured and recorded in the test report.

The signal level is increased by the value provided in the table corresponding to the receiver category and type of equipment.

Step 4:

The blocking signal at the EUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the required specified performance criteria is met.

Page 31 of 75

Step 5:

Repeat step 4 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.

Step 6:

For non-frequency hopping equipment, repeat step 2 to step 5 with the EUT operating at the highest operating channel.

LIMITS

General:

ETSI EN 300 328 V2.1.1, Clause 4.3.1.12.4.1 & Clause 4.3.2.11.4.1

For Frequency Hopping Equipment

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

For other types of Wide Band modulation

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

Receiver Category 1 Equipment:

ETSI EN 300 328 V2.1.1, Clause 4.3.1.12.4.2 & Clause 4.3.2.11.4.2

Table 6 & 14: Receiver Blocking parameters for Receiver Category 1 equipment

power fr	d signal mean om companion rice [dBm]	Blocking signal frequency [MHz]	Blocking signal power [dBm]	Type of blocking signal
Pr	_{nin} + 6 dB	2380 2503,5	-53	CW
Pr	_{nin} + 6 dB	2300 2330 2360	-47	CW
	_{nin} + 6 dB	2523,5 2553,5 2583,5 2613,5 2643,5 2673,5	-47	CW
	minimum perform the absence of an The levels specifi	ed are levels in front of t rements, the levels have	in clause 4.3.1.12 he UUT antenna.	2.3 or 4.3.2.11.3 in In case of

Page 32 of 75

Receiver Category 2 Equipment:

ETSI EN 300 328 V2.1.1, Clause 4.3.1.12.4.3 & Clause 4.3.2.11.4.3

Wanted signal mean power from companion device [dBm]	Blocking signal frequency [MHz]	Blocking signal power [dBm]	Type of blocking signal
P _{min} + 6 dB	2380 2503,5	-57	CW
P _{min} + 6 dB	2300 2583,5	-47	CW
 NOTE 1: Pmin is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 or 4.3.2.11.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. 			

Table 7 & 15: Receiver Blocking parameters receiver category 2 equipment

Receiver Category 3 Equipment:

ETSI EN 300 328 V2.1.1, Clause 4.3.1.12.4.4 & Clause 4.3.2.11.4.4

Wanted signal mean power from companion device [dBm]	Blocking signal frequency [MHz]	Blocking signal power [dBm]	Type of blocking signal
P _{min} + 12 dB	2380 2503,5	-57	CW
P _{min} + 12 dB	2300 2583,5	-47 CW	
 NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 or 4.3.2.11.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. 			

PERFOMANCE CRITERIA

ETSI EN 300 328 V2.1.1, Clause 4.3.1.12.3 & Clause 4.3.2.11.3

The minimum performance criterion shall be a PER (*Packet Error Rate*) less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment.

Page 33 of 75

17.2. BLUETOOTH FHSS RECEIVER BLOCKING TEST RESULTS

<u>LIMIT</u>

ETSI EN 300 328 V2.1.1, Clauses 4.3.1.12.4.1 - 4.3.1.12.4

The EUT is an adaptive device.

For Adaptive devices the maximum EIRP in the 2.4 GHz band is -0.51 dBm.

RECEIVER CATEGORY:

Parameter	
Adaptive Equipment (Yes/No) ?	Yes
E.I.R.P. (dBm)	-0.51
Medium Utilization Factor (%)	N/A

Receiver Category 1	No
Receiver Category 2	No
Receiver Category 3	Yes

Per manufacturer declaration the EUT is a Receiver Category 3 device.

Page 34 of 75

BLOCKER SIGNAL POWER PARAMETERS:

For an EUT with a non-zero dBi antenna gain, the final minimum Blocker Signal power level, B_L , at the port of the radio module in a conducted test setup shall be adjusted by the gain of the bypassed antenna and is calculated using the formula:

B_L = Blocker Signal Power + EUT Antenna Gain (dBi)

Receiver Category 3 Equipment:

Frequency (MHz)	Blocking Signal Power (dBm)	Antenna Gain (dBi)	B _L (dBm)
2300	-47	-4.9	-51.9
2380	-57	-4.9	-61.9
2503.5	-57	-4.9	-61.9
2583.5	-47	-4.9	-51.9

Page 35 of 75

17.2.1. LOW CHANNEL, 1 MHz BANDWIDTH

All tests were performed at a channel center frequency of 2402 MHz.

TABULATED RESULTS

Receiver Category 3 Equipment:

Parameter	Units	
Link		
Data Rate Setting	Mbps	1
Modulation		GFSK
P _{min}	dBm	-67.6
P _{min} Attenuator Setting	dB	0
P _{min} +12	dBm	-55.6
P _{min} +12 Attenuator Setting	dB	0

Pmin PER without Blocker Present (Reference Only)		
At Channel Center Frequency	%	10.00

Pmin+12 PER without Blocker Present (Reference Only)		
At Channel Center Frequency	%	0

Packet Error Rate (PER) with Blocker Present		
At Channel Center Frequency / Blocker Set to 2300 MHz	%	0
At Channel Center Frequency / Blocker Set to 2380 MHz	%	0
At Channel Center Frequency / Blocker Set to 2503.5 MHz	%	0
At Channel Center Frequency / Blocker Set to 2583.5 MHz	%	0

Test Result		
Blocker Set to 2300 MHz	Pass/Fail	PASS
Blocker Set to 2380 MHz	Pass/Fail	PASS
Blocker Set to 2503.5 MHz	Pass/Fail	PASS
Blocker Set to 2583.5 MHz	Pass/Fail	PASS

17.2.2. HIGH CHANNEL, 1 MHz BANDWIDTH

All tests were performed at a channel center frequency of 2480 MHz.

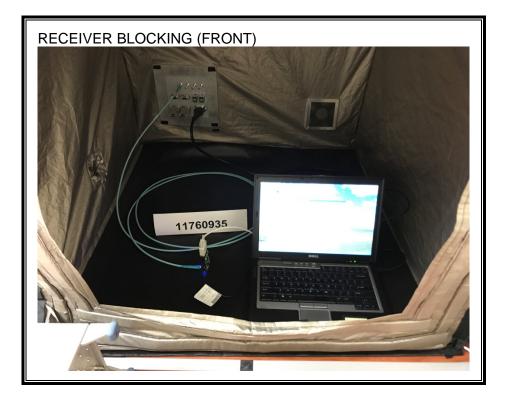
TABULATED RESULTS

Receiver Category 3 Equipment:

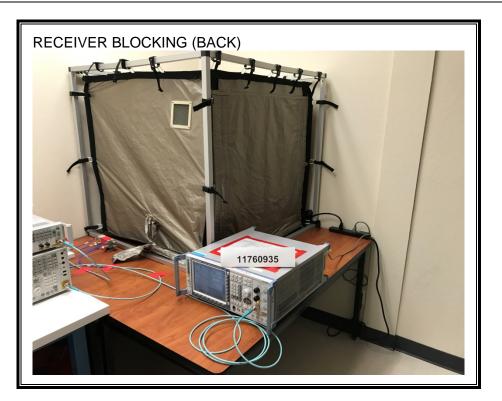
Parameter	Units	
Link		
Data Rate Setting	Mbps	1
Modulation		GFSK
P _{min}	dBm	-68
P _{min} Attenuator Setting	dB	0
P _{min} +12	dBm	-56
P _{min} +12 Attenuator Setting	dB	0

Pmin PER without Blocker Present (Reference Only)		
At Channel Center Frequency	%	10.1

Pmin+12 PER without Blocker Present (Reference Only)		
At Channel Center Frequency	%	0


Packet Error Rate (PER) with Blocker Present		
At Channel Center Frequency / Blocker Set to 2300 MHz	%	0
At Channel Center Frequency / Blocker Set to 2380 MHz	%	0
At Channel Center Frequency / Blocker Set to 2503.5 MHz	%	0
At Channel Center Frequency / Blocker Set to 2583.5 MHz	%	0

Test Result		
Blocker Set to 2300 MHz	Pass/Fail	PASS
Blocker Set to 2380 MHz	Pass/Fail	PASS
Blocker Set to 2503.5 MHz	Pass/Fail	PASS
Blocker Set to 2583.5 MHz	Pass/Fail	PASS


Page 37 of 75

18. SETUP PHOTOS

18.1. RECEIVER BLOCKING TESTING

Page 38 of 75

END OF REPORT

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 39 of 75

10. APPENDIX B (ORIGINAL REPORT) TEST REPORT

Report Number : 11364308-E1V1

- Applicant : Texas Instrument 2900 Semiconductor Drive Santa Clara, CA 95051
 - Model : LMX9838
- EUT Description : Bluetooth 2.0 module
- Test Standard(s) : EN 300 328 v1.9.1

Date of Issue:

Wednesday, August 03, 2016

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Page 40 of 75

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	8/3/2016	Initial Issue	

Page 41 of 75

TABLE OF CONTENTS

REPOR	REPORT REVISION HISTORY41			
TABLE	OF CONTENTS	42		
1. AT	TESTATION OF TEST RESULTS	43		
2. SL	JMMARY OF TESTING	44		
2.1.	FACILITIES AND ACCREDITATION	44		
2.2.	TEST METHODOLOGY	44		
2.3.	CALIBRATION AND UNCERTAINTY	45		
2.4.	TEST AND MEASUREMENT EQUIPMENT	46		
3. EC	QUIPMENT UNDER TEST	47		
3.1.	DESCRIPTION OF EUT	47		
3.2.	MAXIMUM OUTPUT POWER	47		
3.3.	DESCRIPTION OF AVAILABLE ANTENNAS	47		
3.4.	WORST-CASE CONFIGURATION AND MODE	47		
3.5.	DESCRIPTION OF TEST SETUP	48		
4. TE	ST RESULTS	51		
4.1.	NORMAL AND EXTREME CONDITIONS	51		
4.2. 4.2	OCCUPIED CHANNEL BANDWIDTH 2.1. GFSK MODE			
	HOPPING FREQUENCY SEPARATION			
- •	ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPIN	56		
	4.1. GFSK MODE			
	EFFECTIVE RADIATED POWER 5.1. GFSK MODE	62		
4.6. 4.6	TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN (OC 6.1. GFSK MODE	,		
	TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN 7.1. GFSK MODE			
4.8.	RECEIVER SPURIOUS EMISSIONS	68		
5. SE	TUP PHOTOS	71		

Pass

1. ATTESTATION OF TEST RESULTS

EN 300 328 v1.9.1

COMPANY NAME: Texas Instrument 2900 Semiconductor Drive Santa Clara, CA 95051			
EUT DESCRIPTION:	Bluetooth 2.0 Module		
MODEL:	LMX9838		
SERIAL NUMBER: QS1024013 (CONDUCTED), QS1024172 (RADIATED)		1024172 (RADIATED)	
DATE TESTED: July 29 th 2016 – August 02 2016			
	APPLICABLE STANDARDS		
S	TANDARD	TEST RESULTS	

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

somine de luck

Francisco de Anda CONSUMER TECHNOLOGY DIVISION Program Manager UL Verification Services Inc.

Prepared By:

Mit In

Clifford Susa CONSUMER TECHNOLOGY DIVISION Lab Engineer UL Verification Services Inc.

Page 43 of 75

2. SUMMARY OF TESTING

2.1. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street 47266 Benicia Stre	
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)
	Chamber G(IC: 2324B-7)
	Chamber H(IC: 2324B-8)

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

2.2. TEST METHODOLOGY

All tests were performed in accordance with the procedures documented in EN 300 328 v1.9.1.

Page 44 of 75

2.3. CALIBRATION AND UNCERTAINTY

MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY	
RF frequency	±3 x 10^(-7)	
RF power conducted	±0.35 dB	
RF power radiated	±5.5 dB	
Spurious emissions, conducted	±2.9 dB	
Spurious emissions, radiated	±5.6 dB	
Humidity	±4.5 % RH	
Temperature	±0.9 deg C	
Time	±0.02 %	

Uncertainty figures are valid to a confidence level of 95%.

Page 45 of 75

2.4. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Description	Manufacturer	Model	ID Num	Cal Due
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	T122	01/29/17
Antenna, Horn, 1-18GHz	ETS Lindgren	3117	T119	01/04/17
RF Preamplifier, 10kHz - 1GHz	НР	8447D	T15	08/13/16
RF Preamplifier, 1 - 18GHz	Miteq	AFS42-00101800-25-S-42	T931	04/29/17
Spectrum Analyzer, 44 GHz	Keysight	N9030A	T1450	12/21/16
Spectrum Analyzer, 44 GHz	Keysight	N9030A	T339	09/14/16
Environmental Chamber	Thermotron	SE-600-10-10	T80	11/16/16
EMI Power Sensor	ETS-Lindgren	7002-006	T1081	12/03/16

Test Software List				
Description Manufacturer Model Version				
Antenna Port Software	UL	UL RF	v5.1.1, 7/15/16	

Page 46 of 75

3. EQUIPMENT UNDER TEST

3.1. DESCRIPTION OF EUT

The EUT is a Bluetooth 2.0 Module, transmit only Basic data rate 1Mb/s GFSK mode.

The radio module is manufactured by Texas Instruments.

3.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range	Mode	Output EIRP	Output EIRP
(MHz)		(dBm)	(mW)
2402 - 2480	GFSK	-0.51	0.89

3.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an integral antenna with a maximum gain of -1.48dBi

3.4. WORST-CASE CONFIGURATION AND MODE

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Worst-case data rates as provided by the client were:

GFSK mode: 1-DH5

Page 47 of 75

3.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

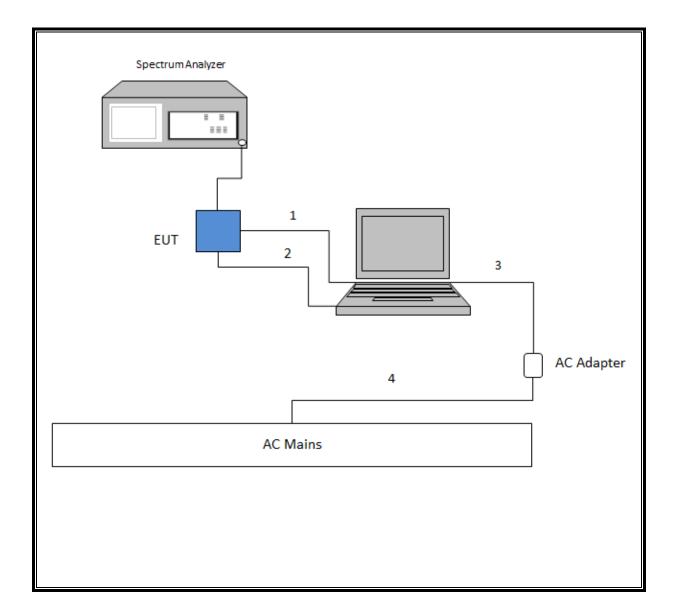
	Su	pport Equipr	nent List	
Description	Manufacturer	Model	Serial Number	FCC ID
Laptop	Dell	D620	C01089	DoC
Laptop AC Adapter	Dell	LA65NS-00	CN-00F263-71615-6AC-38D4	DoC

I/O CABLES

			I/O	Cable List		
Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks
No		ports	Туре		Length (m)	
1	DC	1	3.5mm	unshielded	0.9	USB to 3.5mm connector
2	Serial	1	DB9	shielded	2	USB to Serial cable
3	DC	1	barrel	unshielded	1.7	
4	AC	1	2 prong	unshielded	0.9	

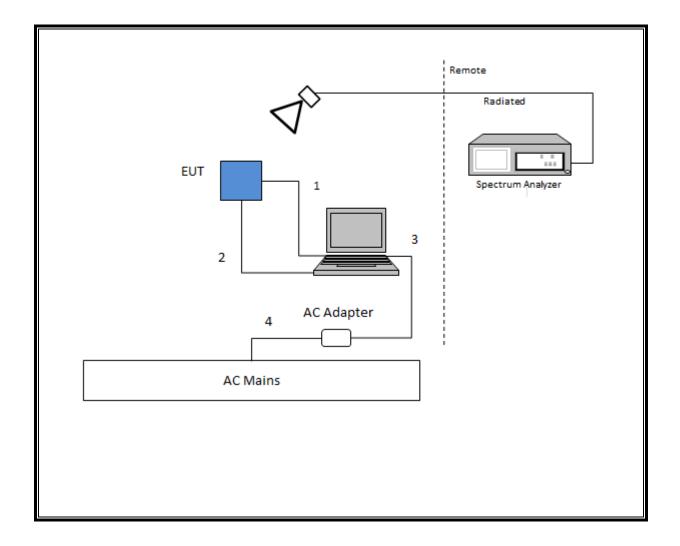
TEST SETUP

The EUT was connected to a host laptop computer via a USB to Serial cable adapter during the tests. Test software exercised the radio card.


SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was v.02.12 (Patch 2).

The test utility software used during testing was Simply Blue Commander v1.6.0.1


Page 48 of 75

SETUP DIAGRAM FOR CONDUCTED TESTS

Page 49 of 75

SETUP DIAGRAM FOR RADIATED TESTS

Page 50 of 75

4. TEST RESULTS

4.1. NORMAL AND EXTREME CONDITIONS

LIMITS

None; for reporting purposes only.

RESULTS

The normal and extreme conditions, as provided by the manufacturer, are as follows:

Normal conditions are 25 deg C, 5 Vdc. The low temperature condition is 0 deg C. The high temperature condition is 40 deg C.

Page 51 of 75

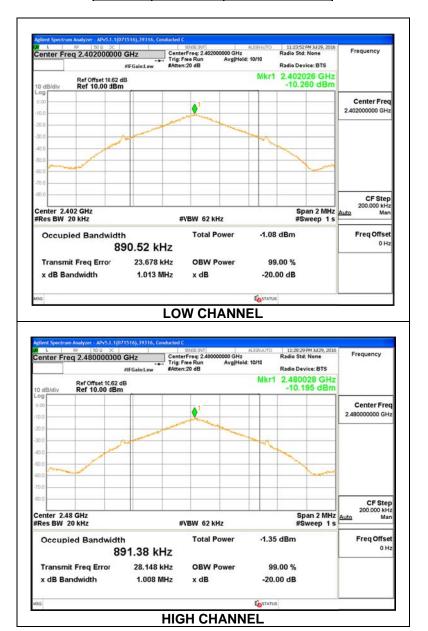
4.2. OCCUPIED CHANNEL BANDWIDTH

LIMITS

The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band given in clause 1 (2400 MHz – 2483.5 MHz).

For non-adaptive Frequency Hopping equipment with e.i.r.p greater than 10 dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than the Nominal Channel Bandwidth declared by the supplier. This declared value shall not be greater than 5 MHz.

TEST PROCEDURE


ETSI EN 300 328 V1.9.1 Section 5.3.8.2.1

Page 52 of 75

RESULTS

4.2.1. GFSK MODE

Channel	Frequency	99% Bandwidth
	(MHz)	(kHz)
Low	2402	890.520
High	2480	891.380

Page 53 of 75

4.3. HOPPING FREQUENCY SEPARATION

<u>LIMIT</u>

Non-adaptive frequency hopping equipment:

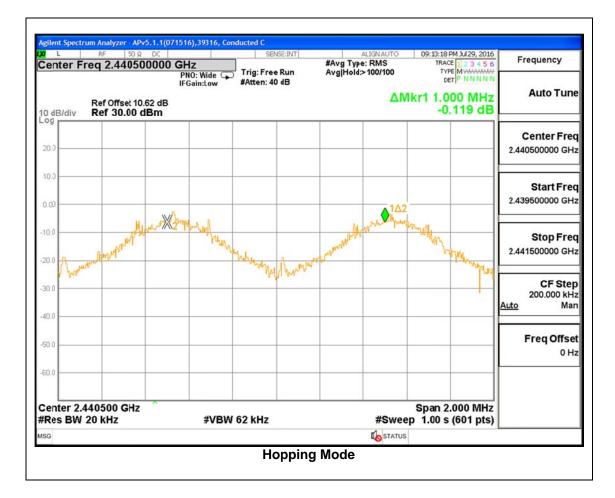
For non-adaptive Frequency Hopping equipment, the Hopping Frequency Separation shall be equal or greater than the Occupied Channel Bandwidth (see clause 4.3.1.8), with a minimum separation of 100 kHz.

For equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for non-adaptive Frequency Hopping equipment operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. only the minimum Hopping Frequency Separation of 100 kHz applies.

Adaptive frequency hopping equipment:

For adaptive Frequency Hopping equipment, the minimum Hopping Frequency Separation shall be 100 kHz.

Adaptive Frequency Hopping equipment, which for one or more hopping frequencies, has switched to a non-adaptive mode because interference was detected on all these hopping positions with a level above the threshold level defined in clause 4.3.1.7.2.2 or clause 4.3.1.7.3.2, is allowed to continue to operate with a minimum Hopping Frequency Separation of 100 kHz on these hopping frequencies as long as the interference is present on these frequencies. The equipment shall continue to operate in an adaptive mode on other hopping frequencies.


Adaptive Frequency Hopping equipment which decided to operate in a non-adaptive mode on one or more hopping frequencies without the presence of interference, shall comply with the limit in clause 4.3.1.5.3.1 for these hopping frequencies as well as with all other requirements applicable to non-adaptive frequency hopping equipment.

TEST PROCEDURE

ETSI EN 300 328 V1.9.1 Section 5.3.5.2.1

Page 54 of 75

RESULTS

4.3.1. GFSK MODE

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 55 of 75

4.4. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

DEFINITIONS

The Accumulated Transmit Time is the total of the transmitter 'on' times, during an observation period, on a particular hopping frequency.

The Frequency Occupation is the number of times that each hopping frequency is occupied within a given period. A hopping frequency is considered to be occupied when the equipment selects that frequency from the hopping sequence.

The equipment may be transmitting, receiving or stay idle during the Dwell Time spent on that hopping frequency.

The Hopping Sequence of a frequency hopping equipment is the unrepeated pattern of the hopping frequencies used by the equipment

<u>LIMITS</u>

Non-adaptive frequency hopping equipment:

The Accumulated Transmit Time on any hopping frequency shall not be greater than 15 ms within any observation period of 15 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The occupation probability for each frequency shall be between $((1 / U) \times 25)$ %) and 77 % where U is the number of hopping frequencies in use.

The hopping sequence(s) shall contain at least N hopping frequencies where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

Adaptive frequency hopping equipment:

Adaptive Frequency Hopping equipment shall be capable of operating over a minimum of 70 % of the band specified in clause 1.

The Accumulated Transmit Time on any hopping frequency shall not be greater than 400 ms within any observation period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

Page 56 of 75

In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

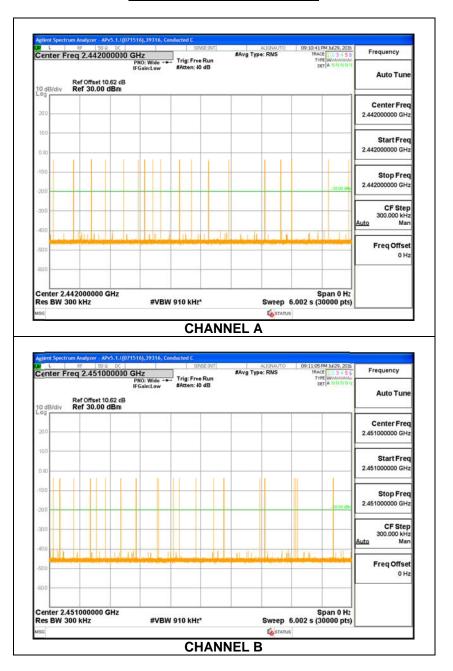
Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The occupation probability for each frequency shall be between $((1 / U) \times 25)$ %) and 77 % where U is the number of hopping frequencies in use.

The hopping sequence(s) shall contain at least N hopping frequencies at all times, where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

TEST PROCEDURE

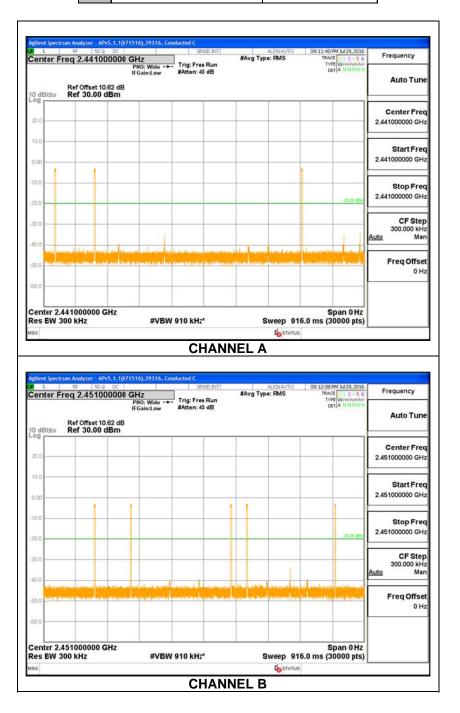
ETSI EN 300 328 V1.9.1 Section 5.3.4.2.1


RESULTS

Page 57 of 75

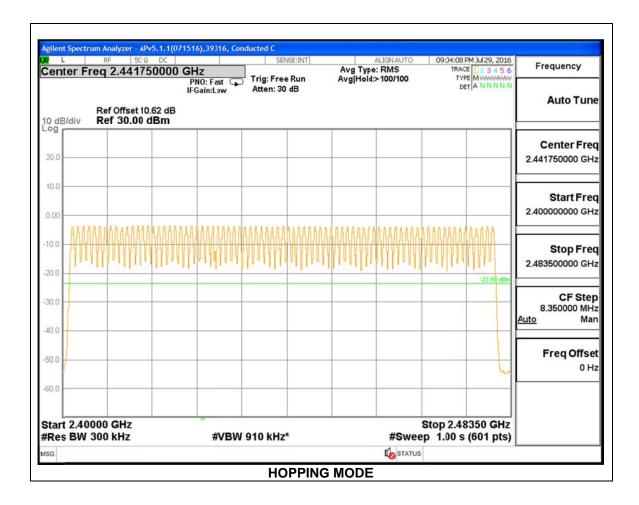
4.4.1. GFSK MODE

ACCUMULATED TRANSMIT TIME


	Measured	Limit	Margin
	Value (ms)	(ms)	(ms)
Α	55.82	400	-344.18
В	64.02	400	-335.98

Page 58 of 75

FREQUENCY OCCUPATION


	Measured	Limit
	Value (number of times)	(number of times)
А	3.00	≥1
В	5.00	≥1

Page 59 of 75

HOPPING SEQUENCE

	Measured	Limit	Margin
	Value (number of frequencies)	(number of frequencies)	(number of frequencies)
2402 - 2480MHz	79.00	15	-64.00

Page 60 of 75

4.5. EFFECTIVE RADIATED POWER

<u>LIMIT</u>

The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm.

The maximum RF output power for non-adaptive Frequency Hopping equipment shall be declared by the supplier. The maximum RF output power for this equipment shall be equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.

This limit shall apply for any combination of power level and intended antenna assembly.

TEST PROCEDURE

ETSI EN 300 328 V1.9.1 Clause 5.3.2.2.1.2

CALCULATIONS

EIRP = A + G + Y

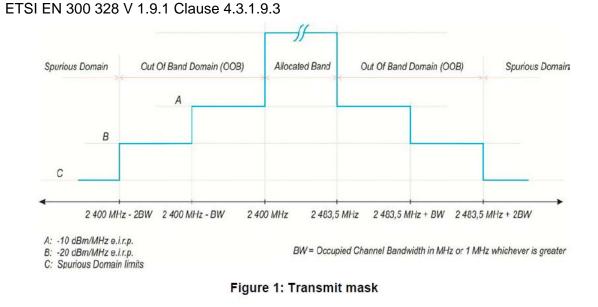
Where,

EIRP is the effective isotropic radiated power in dBm A is the highest of all Pburst values as measured by the test system in dBm G is stated assembly antenna gain of the individual antenna in dBi Y is any additional beam-forming gain

Page 61 of 75

RESULTS

4.5.1. GFSK MODE

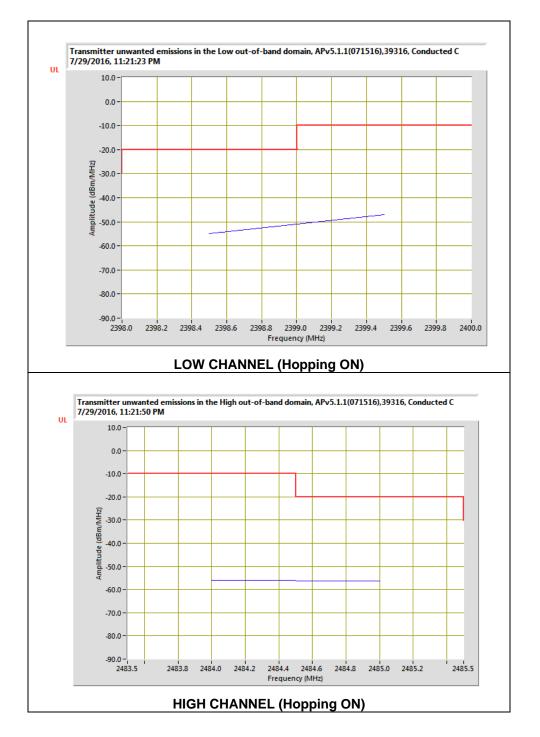

Tested By:	37699 CS
Date:	8/1/2016

EUT Antenna Gain (dBi) = -1.48

Condition	Ouput Power	EIRP	Limit	Margin
	(dBm)	(dBm)	(dB)	(dB)
HOPPING ON				
Normal	0.43	-1.05	20	-21.05
Extreme Low Temp	0.97	-0.51	20	-20.51
Extreme High Temp	0.06	-1.42	20	-21.42

Page 62 of 75

4.6. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN (OOB)



TEST PROCEDURE

ETSI EN 300 328 V 1.9.1 Clause 5.3.9.2.1

Page 63 of 75

RESULTS

4.6.1. GFSK MODE

Page 64 of 75

4.7. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

LIMITS

ETSI EN 300 328 V1.9.1 Clause 4.3.1.10.3

Table 1: Transmitter limits for spurious emissions

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

TEST PROCEDURE

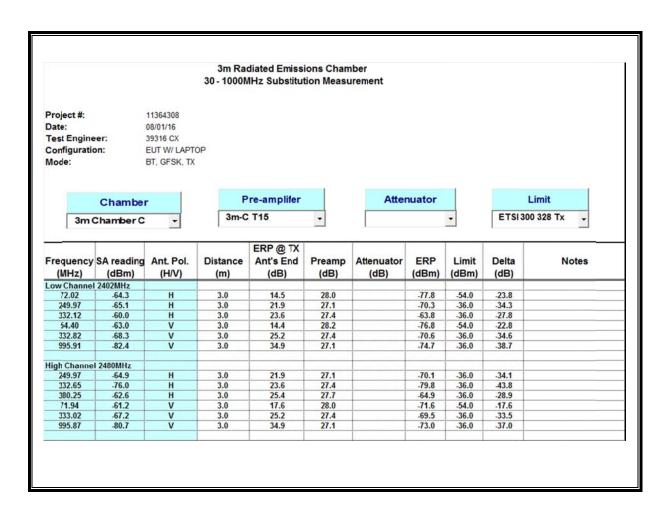
ETSI EN 300 328 V1.9.1 Clause 5.3.10.2.1

TEST CONDITIONS

The level of spurious emissions shall be measured as, either:

a) their power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation); or

b) their effective radiated power when radiated by cabinet and antenna in case of integral antenna equipment with no temporary antenna connectors


Protocol (b) was used for emissions testing as covered by this report.

Page 65 of 75

RESULTS

4.7.1. GFSK MODE

RADIATED SPURIOUS EMISSIONS BELOW 1 GHz

Page 66 of 75

RADIATED SPURIOUS EMISSIONS ABOVE 1 GHz

				8m Radiated En		mber tion Measurem	ent			
company:		Texas Instrum								
Project #:		11364308	ents							
ate:		8/1/2016								
est Engine		39316 CX								
Configuratio										
Aode:		EUT w/ Laptop BT, GFSK, TX								
lode:		BI, GFSK. IX								
	Chamber			Pre-amplifer		Filte	er	1	Li	mit
		1.1					_	1	ETOLOGO	100 T.
3m C	hamber C	•	31	n Chamber C	-				ETSI 300 3	328 Tx -
requency	SA reading	Ant Pol	Distance	EIRP @ TX	Preamp	Attenuator	EIRP	Limit	Delta	Notes
Frequency (GHz)	SA reading (dBm)	Ant. Pol. (H/V)	Distance (m)	EIRP @ TX Ant's End (dBm)	Preamp (dB)	Attenuator (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
(GHz) ow Channel	(dBm) 2402MHz	(H/V)	(m)	Ant's End (dBm)	(dB)		(dBm)	(dBm)	(dB)	Notes
(GHz) ow Channel 1.66	(dBm) 2402MHz -52.9	(H/V) н	(m) 3.0	Ant's End (dBm)	(dB) 36.5		(dBm)	(dBm)	(dB) -14.9	Notes
(GHz) ow Channel 1.66 1.75	(dBm) 2402MHz -52.9 -61.4	(H/V) н н	(m) 3.0 3.0	Ant's End (dBm) -8.4 -16.0	(dB) 36.5 36.4		(dBm) -44.9 -52.4	(dBm) -30.0 -30.0	(dB) -14.9 -22.4	Notes
(GHz) ow Channel 1.66 1.75 4.80	(dBm) 2402MHz -52.9 -61.4 -58.6	(H/V) H H H	(m) 3.0 3.0 3.0	Ant's End (dBm) -8.4 -16.0 -5.6	(dB) 36.5 36.4 33.5		(dBm) -44.9 -52.4 -39.1	(dBm) -30.0 -30.0 -30.0	(dB) -14.9 -22.4 -9.1	Notes
(GHz) ow Channel 1.66 1.75 4.80 1.08	(dBm) 2402MHz -52.9 -61.4 -58.6 -65.3	(H/V) H H H V	(m) 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -8.4 -16.0 -5.6 -23.1	(dB) 36.5 36.4 33.5 36.5		(dBm) -44.9 -52.4 -39.1 -59.6	(dBm) -30.0 -30.0 -30.0 -30.0	(dB) -14.9 -22.4 -9.1 -29.6	Notes
(GHz) ow Channel 1.66 1.75 4.80 1.08 1.66	(dBm) 2402MHz -52.9 -61.4 -58.6 -65.3 -57.4	(H/V) H H V V V	(m) 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -8.4 -16.0 -5.6 -23.1 -12.1	(dB) 36.5 36.4 33.5 36.5 36.5 36.5		(dBm) -44.9 -52.4 -39.1 -59.6 -48.6	(dBm) -30.0 -30.0 -30.0 -30.0 -30.0	(dB) -14.9 -22.4 -9.1 -29.6 -18.6	Notes
(GHz) ow Channel 1.66 1.75 4.80 1.08	(dBm) 2402MHz -52.9 -61.4 -58.6 -65.3	(H/V) H H H V	(m) 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -8.4 -16.0 -5.6 -23.1	(dB) 36.5 36.4 33.5 36.5		(dBm) -44.9 -52.4 -39.1 -59.6	(dBm) -30.0 -30.0 -30.0 -30.0	(dB) -14.9 -22.4 -9.1 -29.6	Notes
(GHz) ow Channel 1.66 1.75 4.80 1.08 1.66	(dBm) 2402MHz -52.9 -61.4 -58.6 -65.3 -57.4 -63.2	(H/V) H H V V V	(m) 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -8.4 -16.0 -5.6 -23.1 -12.1	(dB) 36.5 36.4 33.5 36.5 36.5 36.5		(dBm) -44.9 -52.4 -39.1 -59.6 -48.6	(dBm) -30.0 -30.0 -30.0 -30.0 -30.0	(dB) -14.9 -22.4 -9.1 -29.6 -18.6	Notes
(GHz) ow Channel 1.66 1.75 4.80 1.08 1.66 3.83 Wigh Channel 1.66	(dBm) 2402MHz -52.9 -61.4 -58.6 -65.3 -57.4 -63.2 2480MHz -51.0	(H/V) H H V V V V	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) 	(dB) 36.5 36.4 33.5 36.5 36.5 34.0 36.5		(dBm) -44.9 -52.4 -39.1 -59.6 -48.6 -45.5 -43.0	(dBm) -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	(dB) -14.9 -22.4 -9.1 -29.6 -18.6 -15.5 -13.0	Notes
(GHz) ow Channel 1.66 1.75 4.80 1.08 1.66 3.83 ligh Channel 1.66 1.74	(dBm) 2402MHz -52.9 -61.4 -58.6 -65.3 -57.4 -63.2 2480MHz -51.0 -60.2	(H/V) H H V V V V H H	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -8.4 -16.0 -5.6 -23.1 -12.1 -12.1 -11.5 	(dB) 36.5 36.4 33.5 36.5 36.5 34.0 36.5 36.4		(dBm) -44.9 -52.4 -39.1 -59.6 -48.6 -45.5 -43.0 -51.2	(dBm) -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	(dB) -14.9 -22.4 -9.1 -29.6 -18.6 -15.5 -15.5 -13.0 -21.2	Notes
(GHz) ow Channel 1.66 1.75 4.80 1.08 1.66 3.83 ligh Channel 1.66 1.74 4.96	(dBm) 2402MHz -52.9 -61.4 -58.6 -65.3 -57.4 -63.2 -63.2 -2480MHz -51.0 -60.2 -55.6	(H/V) H H V V V V H H H	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) 	(dB) 36.5 36.4 33.5 36.5 36.5 34.0 		(dBm) -44.9 -52.4 -39.1 -59.6 -48.6 -45.5 -43.0 -51.2 -35.8	(dBm) -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	(dB) -14.9 -22.4 -9.1 -29.6 -18.6 -15.5 -15.5 -13.0 -21.2 -5.8	Notes
(GHz) ow Channel 1.66 1.75 4.80 1.08 1.66 3.83 ligh Channel 1.66 1.74 4.96 1.66	(dBm) 2402MHz -52.9 -61.4 -58.6 -65.3 -57.4 -63.2 2480MHz -51.0 -60.2 -55.6 -48.1	(H/V) H H V V V V V H H H H V	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) 3.8.4 16.0 5.6 -23.1 1.12.1 1.12.1 -11.5 -6.6 1.14.8 2.3 -2.8	(dB) 36.5 36.4 33.5 36.5 36.5 34.0 36.5 36.4 33.4 33.4 35.5		(dBm) -44.9 -52.4 -39.1 -59.6 -48.6 -45.5 -45.5 -43.0 -51.2 -35.8 -39.2	(dBm) -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	(dB) -14.9 -22.4 -9.1 -29.6 -18.6 -15.5 -13.0 -21.2 -5.8 -9.2	Notes
(GHz) ow Channel 1.66 1.75 4.80 1.08 1.66 3.83 ligh Channel 1.66 1.74 4.96	(dBm) 2402MHz -52.9 -61.4 -58.6 -65.3 -57.4 -63.2 -63.2 -2480MHz -51.0 -60.2 -55.6	(H/V) H H V V V V H H H	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) 	(dB) 36.5 36.4 33.5 36.5 36.5 34.0 		(dBm) -44.9 -52.4 -39.1 -59.6 -48.6 -45.5 -43.0 -51.2 -35.8	(dBm) -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	(dB) -14.9 -22.4 -9.1 -29.6 -18.6 -15.5 -15.5 -13.0 -21.2 -5.8	Notes

Page 67 of 75

4.8. RECEIVER SPURIOUS EMISSIONS

<u>LIMITS</u>

ETSI EN 300 328 V1.9.1 Clause 4.3.1.11.3

TEST PROCEDURE

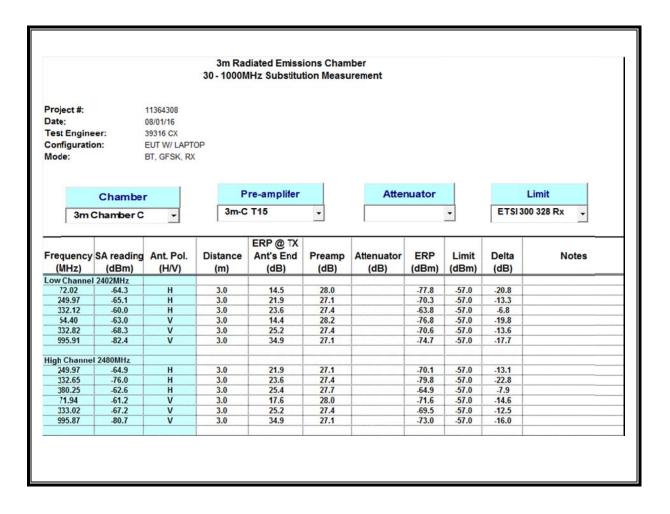
EN 300 328 V1.9.1 Clause 5.3.11.2.1 Table 2: Spurious emission limits for receivers

Frequency range	Maximum power	Measurement bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

TEST CONDITIONS

The level of spurious emissions shall be measured as, either:

a) their power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment (cabinet radiation); or


b) their effective radiated power when radiated by cabinet and antenna in case of integral antenna equipment with no temporary antenna connectors

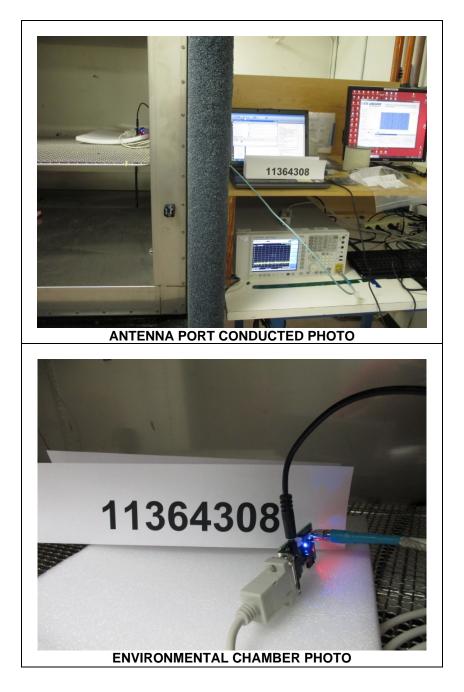
Protocol (b) was used for emissions testing as covered by this report.

Page 68 of 75

RESULTS

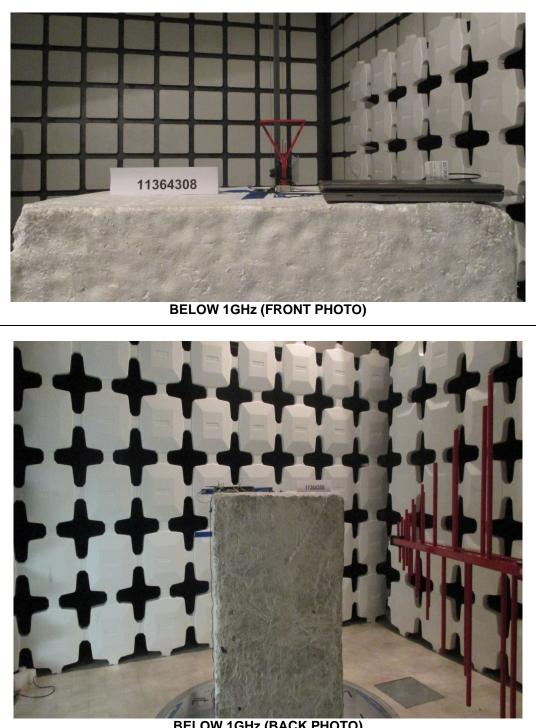
RADIATED SPURIOUS EMISSIONS BELOW 1 GHz

Page 69 of 75

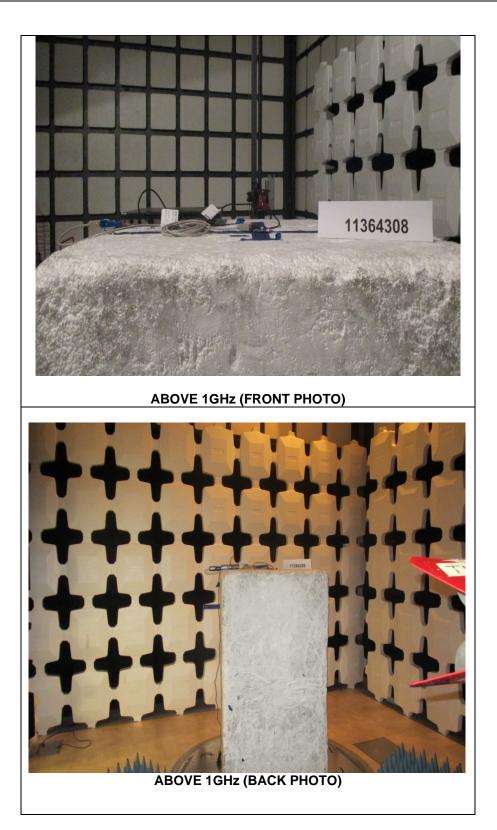

RADIATED SPURIOUS EMISSIONS ABOVE 1 GHz

				om Radiated En		mber tion Measurem	ent			
Company:		Texas Instrum	ents							
Project #:		11364308	ento							
Date:		42583								
lest Engine		39316 CX								
Configuration:		EUT w/ Laptop								
Aode:		BT, GFSK, RX								
Chamber 3m Chamber C 🗸			Pre-amplifer 3m Chamber C -			Filter		Limit ETSI 300 328 Rx 🗸		
Frequency	SA reading	Ant. Pol.	Distance	EIRP @ TX Ant's End	Preamp	Attenuator	EIRP	Limit	Delta	Notes
requency (GHz)	SA reading (dBm)	Ant. Pol. (H/V)	Distance (m)		Preamp (dB)	Attenuator (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
(GHz)	(dBm)			Ant's End					(dB)	Notes
(GHz) ow Channel 1.20	(dBm) 2402MHz -59.2	(H/V) н	(m) 3.0	Ant's End (dBm)	(dB) 36.6		(dBm)	(dBm)	(dB) -6.2	Notes
(GHz) ow Channel 1.20 1.31	(dBm) 2402MHz -59.2 -60.4	(H/V) н н	(m) 3.0 3.0	Ant's End (dBm) -16.6 -17.8	(dB) 36.6 36.6		(dBm) -53.2 -54.4	(dBm) -47.0 -47.0	(dB) -6.2 -7.4	Notes
(GHz) ow Channel 1.20 1.31 1.66	(dBm) 2402MHz -59.2 -60.4 -67.7	(H/V) H H H	(m) 3.0 3.0 3.0	Ant's End (dBm) -16.6 -17.8 -23.2	(dB) 36.6 36.6 36.5		(dBm) -53.2 -54.4 -59.7	(dBm) -47.0 -47.0 -47.0	(dB) -6.2 -7.4 -12.7	Notes
(GHz) ow Channel 1.20 1.31 1.66 1.58	(dBm) 2402MHz -59.2 -60.4 -67.7 -76.0	(H/V) H H H V	(m) 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -16.6 -17.8 -23.2 -31.7	(dB) 36.6 36.6 36.5 36.6		(dBm) -53.2 -54.4 -59.7 -68.3	(dBm) 47.0 47.0 47.0 47.0	(dB) -6.2 -7.4 -12.7 -21.3	Notes
(GHz) ow Channel 1.20 1.31 1.66 1.58 1.66	(dBm) 2402MHz -59.2 -60.4 -67.7 -76.0 -59.2	(H/V) H H V V V	(m) 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -16.6 -17.8 -23.2 -31.7 -14.0	(dB) 36.6 36.5 36.5 36.6 36.5		(dBm) -53.2 -54.4 -59.7 -68.3 -50.5	(dBm) -47.0 -47.0 -47.0 -47.0 -47.0	(dB) -6.2 -7.4 -12.7 -21.3 -3.5	Notes
(GHz) ow Channel 1.20 1.31 1.66 1.58	(dBm) 2402MHz -59.2 -60.4 -67.7 -76.0	(H/V) H H H V	(m) 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -16.6 -17.8 -23.2 -31.7	(dB) 36.6 36.6 36.5 36.6		(dBm) -53.2 -54.4 -59.7 -68.3	(dBm) 47.0 47.0 47.0 47.0	(dB) -6.2 -7.4 -12.7 -21.3	Notes
(GHz) ow Channel 1.20 1.31 1.66 1.58 1.66	(dBm) 2402MHz -59.2 -60.4 -67.7 -76.0 -59.2 -68.2	(H/V) H H V V V	(m) 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -16.6 -17.8 -23.2 -31.7 -14.0	(dB) 36.6 36.5 36.5 36.6 36.5		(dBm) -53.2 -54.4 -59.7 -68.3 -50.5	(dBm) -47.0 -47.0 -47.0 -47.0 -47.0	(dB) -6.2 -7.4 -12.7 -21.3 -3.5	Notes
(GHz) ow Channel 1.20 1.31 1.66 1.58 1.66 1.75	(dBm) 2402MHz -59.2 -60.4 -67.7 -76.0 -59.2 -68.2	(H/V) H H V V V V	(m) 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -16.6 -17.8 -23.2 -31.7 -14.0	(dB) 36.6 36.5 36.5 36.5 36.4 36.4		(dBm) -53.2 -54.4 -59.7 -68.3 -50.5	(dBm) 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0	(dB) -6.2 -7.4 -12.7 -21.3 -3.5	Notes
(GHz) ow Channel 1.20 1.31 1.66 1.58 1.66 1.75 ligh Channel 1.58 1.66	(dBm) 2402MHz -59.2 -60.4 -67.7 -76.0 -59.2 -68.2 2480MHz -62.4 -66.8	(H/V) H H V V V V	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -16.6 -17.8 -23.2 -31.7 -14.0 -21.9 - - - - - - - - - - - - - - - - - - -	(dB) 36.6 36.5 36.5 36.6 36.5 36.4 36.6 36.5		(dBm) -53.2 -54.4 -59.7 -68.3 -50.5 -58.3 -55.4 -55.4 -58.8	(dBm) 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0	(dB) -6.2 -7.4 -12.7 -21.3 -3.5 -11.3 -11.3 -8.4 -11.8	Notes
(GHz) ow Channel 1.20 1.31 1.66 1.58 1.66 1.75 ligh Channel 1.58 1.66 2.14	(dBm) 2402MHz -59.2 -60.4 -67.7 -76.0 -59.2 -68.2 -68.2 -68.2 -66.8 -66.8 -66.8	(H/V) H H V V V H H H	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -16.6 -17.8 -23.2 -31.7 -14.0 -21.9 -18.8 -22.3 -17.9	(dB) 36.6 36.5 36.5 36.5 36.4 36.6 36.5 36.5 35.7		(dBm) -53.2 -54.4 -59.7 -68.3 -50.5 -58.3 -55.4 -55.4 -58.8 -53.7	(dBm) 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0	(dB) -6.2 -7.4 -12.7 -21.3 -3.5 -11.3 -11.3 -8.4 -11.8 -6.7	Notes
(GHz) ow Channel 1.20 1.31 1.66 1.58 1.66 1.75 ligh Channel 1.58 1.66 2.14 1.58	(dBm) 2402MHz -59.2 -60.4 -67.7 -76.0 -59.2 -68.2 2480MHz -62.4 -66.8 -66.4 -69.6	(H/V) H H V V V V H H H V	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -16.6 -17.8 -23.2 -31.7 -14.0 -21.9 - 	(dB) 36.6 36.5 36.5 36.5 36.5 36.4 36.6 36.5 35.7 35.6		(dBm) -53.2 -54.4 -59.7 -68.3 -50.5 -58.3 -58.3 -55.4 -55.4 -55.4 -55.8 -53.7 -61.9	(dBm) 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0	(dB) -6.2 -7.4 -12.7 -21.3 -3.5 -11.3 -11.3 -8.4 -11.8 -6.7 -44.9	Notes
(GHz) ow Channel 1.20 1.31 1.66 1.58 1.66 1.75 ligh Channel 1.58 1.66 2.14	(dBm) 2402MHz -59.2 -60.4 -67.7 -76.0 -59.2 -68.2 -68.2 -68.2 -66.8 -66.8 -66.8	(H/V) H H V V V H H H	(m) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Ant's End (dBm) -16.6 -17.8 -23.2 -31.7 -14.0 -21.9 -18.8 -22.3 -17.9	(dB) 36.6 36.5 36.5 36.5 36.4 36.6 36.5 36.5 35.7		(dBm) -53.2 -54.4 -59.7 -68.3 -50.5 -58.3 -55.4 -55.4 -58.8 -53.7	(dBm) 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0	(dB) -6.2 -7.4 -12.7 -21.3 -3.5 -11.3 -11.3 -8.4 -11.8 -6.7	Notes

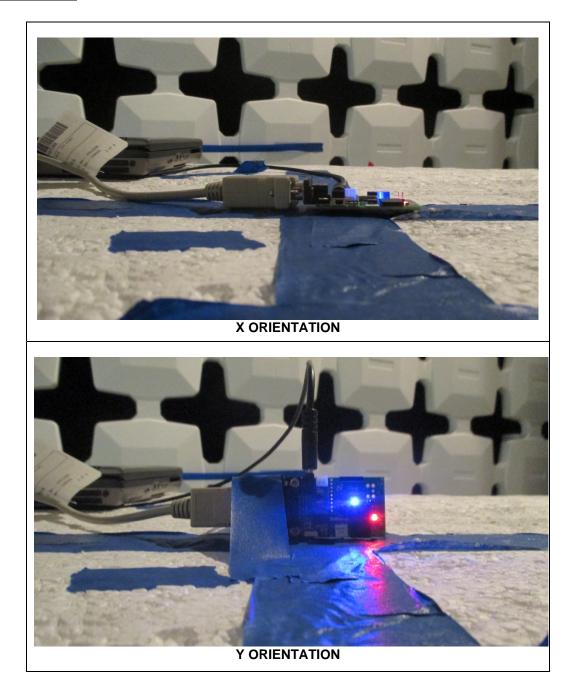
Page 70 of 75


5. SETUP PHOTOS

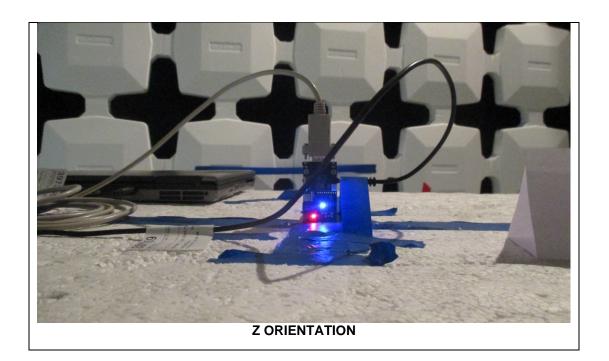
RF CONDUCTED MEASUREMENT AT ANTENNA PORT


Page 71 of 75

RADIATED SPURIOUS EMISSIONS


BELOW 1GHz (BACK PHOTO)

Page 72 of 75



Page 73 of 75

ORIENTATIONS

Page 74 of 75

END OF REPORT

Page 75 of 75