
10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 1/26

CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP
Return to CC256x MSP432 TI’s Bluetooth stack Basic Demo APPS (http://www.ti.com/lit/ug/swru453a/swru453a.pdf)

Return to CC256x STM32F4 TI’s Bluetooth stack Basic Demo APPS (http://www.ti.com/lit/ug/swru428/swru428.pdf)

Demo Overview
Running the Bluetooth Code

Demo Application
Server setup using HFP demo application
Client setup on the demo application

Example: Audio gateway with a commercial headset

Application Commands
Generic Access Profile Commands

Help (DisplayHelp)
Inquiry
Pair
EndPairing
PINCodeResponse
PassKeyResponse
UserConfirmationResponse
SetDiscoverabilityMode
SetConnectabilityMode
SetPairabilityMode
ChangeSimplePairingParameters
GetLocalAddress
SetLocalName
GetLocalName
SetClassOfDevice
GetClassOfDevice
GetRemoteName

Hands-free Profile Commands
ServiceDiscovery
OpenAudioGatewayClient
ManageAudio
UpdateControlIndicators
CallWaiting
SetVoiceRecognitionActivation
SetSpeakerGain
SetMicroPhoneGain
DisableRemoteSoundEnhancement
SendCallerIdNotification
SetRingIndication
RingIndication
SendIncomingCallState
CloseAgClient
SendOperatorInfo
SendSubNumber
SendCallList

Demo Overview

The Hands-free profile allows the user to demonstrate the use of Hands-free profile on embedded device. The Hands-free profile is used to connect a headset or speakerphone with a

mobile device to provide remote control and voice connections. The Hands-free profile supports two roles, Hands-free and Audio Gateway. This document demonstrates how to use the

Audio Gateway role of the profile.

Note: The same instructions can be used to run this demo on the MSP432 or STM32F4 Platform.

Note: An external codec MUST be connected to the CC256x I2S/PCM interface to play and record audio.

It is recommended that the user visits the kit setup Getting Started Guide for MSP432 (http://www.ti.com/lit/ug/swru453a/swru453a.pdf) or Getting Started Guide for STM32F4 (htt

p://www.ti.com/lit/ug/swru428/swru428.pdf) pages before trying the application described on this page.

Contents

Running the Bluetooth Code

http://www.ti.com/lit/ug/swru453a/swru453a.pdf
http://www.ti.com/lit/ug/swru428/swru428.pdf
http://www.ti.com/lit/ug/swru453a/swru453a.pdf
http://www.ti.com/lit/ug/swru428/swru428.pdf

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 2/26

Once the code is flashed, connect the board to a PC using a miniUSB or microUSB cable. Once connected, wait for the driver to install. It will show up as, XDS110 Class
Application/User UART (COM x) for MSP432 under Ports (COM & LPT) in the Device manager. Attach a Terminal program like PuTTY to the serial port x for the board. The serial

parameters to use are 115200 Baud, 8, n, 1. Once connected, reset the device using Reset S3 button and you should see the stack getting initialized on the terminal and the help screen

will be displayed, which shows all of the commands. This device will become the Audio Gateway.

Demo Application
This section provides a description of how to use the demo application to connect two configured board and communicate over Bluetooth. The Bluetooth HFP is a simple Client-Server

connection process with one side operating in the Audio-Gateway role and the other operating in the Hands-free role. We will setup one of the boards as a Audio-Gateway client (HFPAG

Demo acts as Audio gateway) and use an another board as Hands-free server (using HFP Demo). we Will see how to initiate connection and send indications between the two devices

over Bluetooth.

Now use the second board and follow the steps as per either HFP Demo (http://processors.wiki.ti.com/index.php/CC256x_MSP430_TI%E2%80%99s_Bluetooth_Stack_Basic_HFPDe

mo_APP) when using Tiva or MSP430 as the server or HFPDemo_HF (http://processors.wiki.ti.com/index.php/CC256x_STM32_TI_Bluetooth_Stack_HFPDemo_App) for MSP432

or STM32F4 as the server. Perform the steps prior to running the Audio-Gateway Bluetooth code on the first board. The second device that is connected to the computer will be the

Hands-free Server.

a) Perform the steps mentioned earlier in Running the Bluetooth Code section to initialize the application.

b) Give a name for the platform by issuing the SetLocalName. In our example we give it a name of hfpserver.

c) Open a HFPServer by issuing the command, OpenHFServer. Here we use OpenHFServer to open port 1, the default first port.

a) Perform the steps mentioned earlier in "Running the Bluetooth Code" section to initialize the application.

Server setup using HFP demo application

Client setup on the demo application

http://processors.wiki.ti.com/index.php/CC256x_MSP430_TI%E2%80%99s_Bluetooth_Stack_Basic_HFPDemo_APP
http://processors.wiki.ti.com/index.php/CC256x_STM32_TI_Bluetooth_Stack_HFPDemo_App
https://processors.wiki.ti.com/index.php/File:HFP_server_initialization.png

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 3/26

b) Issue the Inquiry command for the HFP server.

c) Discover servers of the remote HFP server by issuing the ServiceDiscovery 1 12 , command to get the port number.

Note: The port ID on the remote Hands free device is 0x01 (The Unsigned int), as highlighted in the image below from the Attribute ID 0x0004. This port ID

is used in the following OpenAudioGatewayClient command as its second parameter.

https://processors.wiki.ti.com/index.php/File:HFP_AG_START_SCREEN.png
https://processors.wiki.ti.com/index.php/File:HFP_AG_Inquiry.png

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 4/26

d) Initiate connection to the remote HFP server by isssuing the OpenAudioGatewayClient 1 1 command.

You will see the output below from the HFP server

https://processors.wiki.ti.com/index.php/File:HFP_AG_ServiceDiscovery.png
https://processors.wiki.ti.com/index.php/File:HFP_AG_Initate_connection.png

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 5/26

e) Sending indications: Issue the RingIndication or SendCallerIdNotification +9198787899889 commands.

You will see the below output from the HFP server

f) Initiate audio connection/Disconnection and closing the HFP connection by issuing the: ManageAudio <STATE> and CloseAgClient commands.

You will see the below output from the HFP server

This demonstrates setting up the client to connect to a commercial headset.

Example: Audio gateway with a commercial headset

https://processors.wiki.ti.com/index.php/File:HFP_Server_connection.png
https://processors.wiki.ti.com/index.php/File:HFP_AG_Ring_CallerID_notification.png
https://processors.wiki.ti.com/index.php/File:HFP_Server_ring_CallerID_notification.png
https://processors.wiki.ti.com/index.php/File:HFP_AG_manage_audio.png
https://processors.wiki.ti.com/index.php/File:HFP_Server_manage_audio.png

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 6/26

a) Perform the steps mentioned earlier in "Running the Bluetooth Code" section to initialize the application.

OpenStack().
Bluetooth Stack ID: 1
WBS support enabled.
Device Chipset: Unknown (greater 4.1)
BTPS Version : 4.2.1.0
Project Type : 6
FW Version : 12.12
App Name : HFPDemo_AG
App Version : 0.3
LOCAL BD_ADDR: 0x88C255D1D645
GAP_Set_Connectability_Mode(cmConnectable).
GAP_Set_Discoverability_Mode(dmGeneralDiscoverable, 0).
GAP_Set_Pairability_Mode(pmPairableMode).
GAP_Register_Remote_Authentication() Success.

**
* Command Options: Inquiry, DisplayInquiryList, Pair, *
* EndPairing, PINCodeResponse, PassKeyResponse, *
* UserConfirmationResponse, *
* SetDiscoverabilityMode, SetConnectabilityMode,*
* SetPairabilityMode, *
* ChangeSimplePairingParameters, *
* GetLocalAddress, SetLocalName, GetLocalName, *
* SetClassOfDevice, GetClassOfDevice, *
* GetRemoteName, ManageAudio, *
* OpenAudioGatewayClient, CloseAgClient, *
* ServiceDiscovery, UpdateControlIndicators, *
* CallWaiting, SendCallerIdNotification, *
* SetRingIndication, RingIndication, *
* SetVoiceRecognitionActivation, *
* SetSpeakerGain, SetMicroPhoneGain, *
* DisableRemoteSoundEnhancement, *
* SendOperatorInfo, SendIncomingCallState, *
* SendSubNumber, SendCallList, *
* Help *
**

b) Issue the Inquiry command for the HFP server.

HFP AG>Inquiry
Return Value is 0 GAP_Perform_Inquiry() SUCCESS.

HFP AG>
GAP Inquiry Entry Result: 0x244B03F712D3.

HFP AG>
GAP Inquiry Entry Result: 0x3402862CCAE9.

HFP AG>
GAP Inquiry Entry Result: 0x340286605044.

HFP AG>
GAP Inquiry Entry Result: 0x484520902A4E.

HFP AG>
GAP Inquiry Entry Result: 0x08DF1F99F8D0.

HFP AG>
GAP Inquiry Entry Result: 0x002500F84FAB.

HFP AG>
GAP_Inquiry_Result: 6 Found.
GAP Inquiry Result: 1, 0x244B03F712D3.
GAP Inquiry Result: 2, 0x3402862CCAE9.
GAP Inquiry Result: 3, 0x340286605044.
GAP Inquiry Result: 4, 0x484520902A4E.
GAP Inquiry Result: 5, 0x08DF1F99F8D0.
GAP Inquiry Result: 6, 0x002500F84FAB.

c) Discover services of the remote HFP server by issuing the ServiceDiscovery 5 12 , command to get the port number.

Note: The port ID on the remote Hands free device is 0x0A (The Unsigned int), from the Attribute ID 0x0004. This port ID is used in the following

OpenAudioGatewayClient command as its second parameter after being converted to its decimal equivilant (10).

HFP AG>ServiceDiscovery
Usage: SERVICEDISCOVERY [Inquiry Index] [Profile Index] [16/32 bit UUID (Manual only)].

 Profile Index:
 0) Manual (MUST specify 16/32 bit UUID)
 1) L2CAP
 2) Advanced Audio
 3) A/V Remote Control
 4) Basic Imaging
 5) Basic Printing
 6) Dial-up Networking
 7) FAX
 8) File Transfer
 9) Hard Copy Cable Repl.
 10) Health Device
 11) Headset
 12) Handsfree
 13) HID
 14) LAN Access
 15) Message Access

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 7/26

 16) Object Push
 17) Personal Area Network
 18) Phonebook Access
 19) SIM Access
 20) Serial Port
 21) IrSYNC

Function Error.

HFP AG>ServiceDiscovery 5 12
SDP_Service_Search_Attribute_Request(Handsfree) Success.

HFP AG>
SDP Service Search Attribute Response Received (Size = 0x0010)
Service Record: 1:
Attribute ID 0x0000
Type: Unsigned Int = 0x00010000
Attribute ID 0x0001
Type: Data Element Sequence
Type: UUID_16 = 0x111E
Type: UUID_16 = 0x1203
Attribute ID 0x0004
Type: Data Element Sequence
Type: Data Element Sequence
Type: UUID_16 = 0x0100
Type: Data Element Sequence
Type: UUID_16 = 0x0003
Type: Unsigned Int = 0x0A
Attribute ID 0x0006
Type: Data Element Sequence
Type: Unsigned Int = 0x656E
Type: Unsigned Int = 0x006A
Type: Unsigned Int = 0x0100
Attribute ID 0x0009
Type: Data Element Sequence
Type: Data Element Sequence
Type: UUID_16 = 0x111E
Type: Unsigned Int = 0x0106
Attribute ID 0x0100
Type: Text String = Hands-Free unit
Attribute ID 0x0311
Type: Unsigned Int = 0x003F

d) Initiate connection to the remote HFP server by isssuing the OpenAudioGatewayClient 5 10 command.

HFP AG>OpenAudioGatewayClient
Usage: OPENAUDIOGATEWAYCLIENT [Inquiry Index] [Port Number].
Function Error.

HFP AG>OpenAudioGatewayClient 5 10
Bluetooth Device Address: 0x08DF1F99F8D0
Open Remote HandsFree Port = 000A
HFRE_Open_Remote_HandsFree_Port: Function Successful ID = 0001.
OpenRemoteHandsFreePort: HFRE_Update_Current_Control_Indicator_Status Function Status 0.

You will see the output below from the HFP server

HFP AG>
atLinkKeyRequest: 0x08DF1F99F8D0
GAP_Authentication_Response() Success.

HFP AG>
atPINCodeRequest: 0x08DF1F99F8D0

Respond with the command: PINCodeResponse

HFP AG>PINCodeResponse 0000
PINCodeResponse.
GAP_Authentication_Response(), Pin Code Response Success.

HFP AG>
atLinkKeyCreation: 0x08DF1F99F8D0
Link Key: 0x4AF49AD7072771919BAC62840F1F985D
Link Key Stored locally.

HFP AG>
HFRE Open Port Confirmation, ID: 0x0001, Status: 0x0000.

HFP AG>
HFRE Available Codec List Indiocation, ID: 0x0001 NumCodecs: 2 [1 2]

HFP AG>
HFRE Open Service Level Connection Indication, ID: 0x0001
 RemoteSupportedFeaturesValid: TRUE
 RemoteSupportedFeatures: 0x000000BF
 RemoteCallHoldMultipartySupport: 0x00000000
HFRE_Enable Call Line Identification

HFP AG>
HFRE Disable Sound_Enhancement Indication, ID: 0x0001
HFRE_Send_Terminating_Response (erOK) :: Res = 0

HFP AG>HFRE Speaker Gain Indication, ID: 0x0001, Speaker Gain 0x000A.

HFP AG>HFRE Call Line Identification Notification Activation Indication, ID: 0x0001, Enabled: TRUE.

HFP AG>HFRE Call Waiting Notification Activation Indication, ID: 0x0001, Enabled: TRUE.

HFP AG>
HFRE Response Hold Status Indication, ID: 0x0001

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 8/26

HFRE_Send_Incoming_Call_State (csNone) :: Res = 0

HFP AG>
HFRE_Current_Calls_List_Indication

HFRE_Send_Terminating_Response (erOK) :: Res = 0

e) Initiate audio connection by issuing the: ManageAudio <STATE> command which, by defaut chooses to uses Modified sub-band coding (MSBC).

HFP AG>ManageAudio
Usage: Audio [Release = 0, Setup = 1].
Function Error.

HFP AG>ManageAudio 1
HFRE_Send_Select_Codec:: Codec = 2, Res = 0

You will see the below output from the HFP server

HFP AG>
HFRE Codec Select Confirmation, ID: 0x0001 AcceptedCodec=2
Setup WBS with Audio for ACL handle 0x0001
HFRE_Setup_Audio_Connection: Function Successful.
HFRE_Setup_Audio_Connection:: Res = 0

HFP AG>
HFRE Audio Connection Indication, ID: 0x0001, BDADDR=0x08DF1F99F8D0, Status: 0x0000.

Application Commands
TI’s Bluetooth stack is an implementation of the upper layers of the Bluetooth protocol stack. TI’s Bluetooth stack provides a robust and flexible software development tool that

implements the Bluetooth Protocols and Profiles above the Host Controller Interface (HCI). TI’s Bluetooth stack's Application Programming Interface (API) provides access to the upper-

layer protocols and profiles and can interface directly with a Bluetooth controller chip.

The basic bluetooth application included with MSP432 (http://www.ti.com/tool/msp-exp432p401r) and STM32F4 (http://www.st.com/en/evaluation-tools/stm3240g-eval.html) is a

Hands-free audio gateway Application.

An overview of the application and other applications can be read at the Getting Started Guide (http://www.ti.com/lit/ug/swru453a/swru453a.pdf) for MSP432 and Getting Started

Guide (http://www.ti.com/lit/ug/swru428/swru428.pdf) for STM32F4.

This page describes the various commands that a user of the application can use. Each command is a wrapper over a TI’s Bluetooth stack API which gets invoked with the parameters

selected by the user. This is a subset of the APIs available to the user. TI’s Bluetooth stack API documentation (TI_Bluetooth_Stack_Version-Number\Documentation or for

STM32F4, TI_Bluetooth_Stack_Version-Number\RTOS_VERSION\Documentation) describes all of the API's in detail.

The Generic Access Profile defines standard procedures related to the discovery and connection of Bluetooth devices. It defines modes of operation that are generic to all devices and

allows for procedures which use those modes to decide how a device can be interacted with by other Bluetooth devices. Discoverability, Connectability, Pairability, Bondable Modes, and

Security Modes can all be changed using Generic Access Profile procedures. All of these modes affect the interaction two devices may have with one another. GAP also defines the

procedures for how bond two Bluetooth devices.

Description

The DisplayHelp command will display the Command Options menu. Depending on the UI_MODE of the device (Server or Client), different commands will be used in certain situations.

The Open and Close commands change their use depending on the mode the device is in.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Help Menu.

Possible Return Values

The return value is always 0

Description

The Inquiry command is responsible for performing a General Inquiry for discovering Bluetooth Devices. The command requires that a valid Bluetooth Stack ID exists before running.

This command returns zero on a successful call or a negative value if an error occurred during execution. The inquiry will last 10 seconds unless 20 devices (MAX_INQUIRY_RESULTS)

are found before that time limit.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Inquiry.

Generic Access Profile Commands

Help (DisplayHelp)

Inquiry

http://www.ti.com/tool/msp-exp432p401r
http://www.st.com/en/evaluation-tools/stm3240g-eval.html
http://www.ti.com/lit/ug/swru453a/swru453a.pdf
http://www.ti.com/lit/ug/swru428/swru428.pdf

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 9/26

Possible Return Values

(0) Successful Inquiry Procedure

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-58) BTPS_ERROR_INVALID_MODE

API Call
GAP_Perform_Inquiry(BluetoothStackID, itGeneralInquiry, 0, 0, 10, MAX_INQUIRY_RESULTS, GAP_Event_Callback, (unsigned long) NULL);

API Prototype

int BTPSAPI GAP_Perform_Inquiry(unsigned int BluetoothStackID, GAP_Inquiry_Type_t GAP_Inquiry_Type, unsigned int MinimumPeriodLength, unsigned int
MaximumPeriodLength, unsigned int InquiryLength, unsigned int MaximumResponses, GAP_Event_Callback_t GAP_Event_Callback, unsigned long CallbackParameter);

Description of API

This function is provided to allow a mechanism for starting an Inquiry Scan Procedure. The first parameter to this function is the Bluetooth Protocol Stack of the Bluetooth Device that is

to perform the Inquiry. The second parameter is the type of Inquiry to perform. The third and fourth parameters are the Minimum and Maximum Period Lengths which are specified in

seconds (only valid in case a Periodic Inquiry is to be performed). The fifth parameter is the Length of Time to perform the Inquiry, specified in seconds. The sixth parameter is the

Number of Responses to wait for. The final two parameters represent the Callback Function (and parameter) that is to be called when the specified Inquiry has completed. This function

returns zero is successful, or a negative return error code if an Inquiry was unable to be performed. Only ONE Inquiry can be performed at any given time. Calling this function with an

outstanding Inquiry is in progress will fail. The caller can call the GAP_Cancel_Inquiry() function to cancel a currently executing Inquiry procedure. The Minimum and Maximum

Inquiry Parameters are optional and, if specified, represent the Minimum and Maximum Periodic Inquiry Periods. The called should set BOTH of these values to zero if a simple Inquiry

Procedure is to be used (Non-Periodic). If these two parameters are specified, then these two parameters must satisfy the following formula:

MaximumPeriodLength > MinimumPeriodLength > InquiryLength

Description

The Pair command is responsible for initiating bonding with a remote Bluetooth Device. The function returns zero on a successful execution and a negative value on all errors. A

Bluetooth Stack ID must exist before attempting to pair and the device must not already be connected to any device (including the one it tries to pair with). It is also important to note

that the use of the Inquiry command before calling Pair is necessary to connect to a remote device. Both General and Dedicated bonding are supported.

Parameters

The Pair command requires one or two parameters with specific values in order to work successfully. The first parameter is the Inquiry Index of the remote Bluetooth Device. This

parameter is always necessary. This can be found after an Inquiry or displayed when the command DisplayInquiryList is used. If the desired remote device does not appear in the list, it

cannot be paired with. The second parameter is the bonding type used for the pairing procedure. It is an optional parameter which is only required if General Bonding is desired for the

connection. This must be specified as either 0 (for Dedicated Bonding) or 1 (for General Bonding). If only one parameter is given, the Bonding Type will be Dedicated Bonding.

Command Call Examples

"Pair 5 0" Attempts to pair with the remote device at the fifth Inquiry Index using Dedicated Bonding.

"Pair 5" Is the exact same as the above example. If no parameters, the Bonding Type will be Dedicated.

"Pair 8 1" Attempts to pair with the remote device at the eighth Inquiry Index using General Bonding.

Possible Return Values

(0) Successful Pairing

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-59) BTPS_ERROR_ADDING_CALLBACK_INFORMATION

(-8) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Initiate_Bonding(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam – 1)], BondingType, GAP_Event_Callback, (unsigned long)0);

API Prototype

int BTPSAPI GAP_Initiate_Bonding(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Bonding_Type_t GAP_Bonding_Type, GAP_Event_Callback_t
GAP_Event_Callback, unsigned long CallbackParameter);

Description of API

This function is provided to allow a means to Initiate a Bonding Procedure. This function can perform both General and Dedicated Bonding based upon the type of Bonding requested.

This function accepts as input, the Bluetooth Protocol Stack ID of the Local Bluetooth device that is perform the Bonding, the Remote Bluetooth address of the Device to Bond with, the

type of bonding to perform, and the GAP Event Callback Information that will be used to handle Authentication Events that will follow if this function is successful. If this function is

successful, then all further information will be returned through the Registered GAP Event Callback. It should be noted that if this function returns success that it does NOT mean that

the Remote Device has successfully Bonded with the Local Device, ONLY that the Remote Device Bonding Process has been started. This function will only succeed if a Physical

Connection to the specified Remote Bluetooth device does NOT already exist. This function will connect to the Bluetooth device and begin the Bonding Process. If General Bonding is

specified, then the Link is maintained, and will NOT be terminated until the GAP_End_Bonding function has been called. This will allow any higher level initialization that is needed on

the same physical link. If Dedicated Bonding is performed, then the Link is terminated automatically when the Authentication Process has completed.Due to the asynchronous nature of

this process, the GAP Event Callback that is specified will inform the caller of any Events and/or Data that is part of the Authentication Process. The GAP_Cancel_Bonding function can

be called at any time to end the Bonding Process and terminate the link (regardless of which Bonding method is being performed).When using General Bonding, if an L2CAP Connection

Pair

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 10/26

is established over the Bluetooth Link that was initiated with this function, the Bluetooth Protocol Stack MAY or MAY NOT terminate the Physical Link when (and if) an L2CAP

Disconnect Request (or Response) is issued. If this occurs, then calling the GAP_End_Bonding function will have no effect (the GAP_End_Bonding function will return an error code in

this case).

Description

The EndPairing command is responsible for ending a previously initiated bonding session with a remote device. The function returns zero on a successful execution and a negative value

on all errors. A Bluetooth Stack ID must exist before attempting to end pairing and the device must already be connected to a remote device. It is also important to note that the use of

the Pair and Inquiry commands before calling EndPairing are necessary to disconnect from a remote device.

Parameters

The EndPairing command requires one parameter which is the Inquiry Index of the Remote Bluetooth Device. This value can be found after an Inquiry or displayed when the command

DisplayInquiryList is used. It should be the same value as the first parameter used in the Pair command, unless a new Inquiry has been called after pairing. If this is the case, find the

Bluetooth Address of the device used in the Pair command.

Command Call Examples

"EndPairing 5" Attempts to end pairing with the remote device at the fifth Inquiry Index.

"EndPairing 8" Attempts to end pairing with the remote device at the eighth Inquiry Index.

Possible Return Values

(0) Successful End Pairing

(-2)BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1)BTPS_ERROR_INVALID_PARAMETER

(-58)BTPS_ERROR_INVALID_MODE

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

API Call
GAP_End_Bonding(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam – 1)]);

API Prototype

int BTPSAPI GAP_Initiate_Bonding(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Bonding_Type_t GAP_Bonding_Type, GAP_Event_Callback_t
GAP_Event_Callback, unsigned long CallbackParameter);

Description of API

This function is provided to allow a means to terminate a connection that was established via a call to the GAP_Initiate_Bonding function (that specified general bonding as the bonding

type to perform). This function has NO effect if the bonding procedure was initiated using dedicated bonding (or the device is already disconnected). This function accepts the Bluetooth

device address of the remote Bluetooth device that was specified to be bonded with (general bonding). This function terminates the ACL connection that was established and it

guarantees that NO GAP Event Callbacks will be issued to the GAP Event Callback that was specified in the original GAP_Initiate_Bonding function call (if this function returns success).

Description

The PINCodeResponse command is responsible for issuing a GAP Authentication Response with a PIN Code value specified via the input parameter. This function returns zero on a

successful execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function. The device must also be in the middle of an on-going

Pairing operation that was started by the local device or a remote device.

Parameters

The PINCodeResponse command requires one parameter which is the PIN Code used for authenticating the connection. This is a string value which can be up to 16 digits long. The

initiator of the Pairing will see a message displayed during the Pairing Procedure to call this command. A responder will receive a message to call this command after the initiator has put

in the PIN Code.

Command Call Examples

"PINCodeResponse 1234" Attempts to set the PIN Code to "1234."

"PINCodeResponse 5921302312564542 Attempts to set the PIN Code to "5921302312564542." This value represents the longest PIN Code value of 16 digits.

Possible Return Values

(0) Successful PIN Code Response

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Authentication_Response(BluetoothStackID, CurrentRemoteBD_ADDR, &GAP_Authentication_Information);

EndPairing

PINCodeResponse

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 11/26

API Prototype

int BTPSAPI GAP_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Authentication_Information_t *GAP_Authentication_Information);

Description of API

This function is provided to allow a mechanism for the local device to respond to GAP authentication events. This function is used to specify the authentication information for the

specified Bluetooth device. This function accepts as input, the Bluetooth protocol stack ID of the Bluetooth device that has requested the authentication action, and the authentication

response information (specified by the caller).

Description

The PassKeyResponse command is responsible for issuing a GAP Authentication Response with a Pass Key value via the input parameter. This function returns zero on a successful

execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function. The device must also be in the middle of an on-going Pairing

operation that was started by the local device or a remote device.

Parameters

The PassKeyResponse command requires one parameter which is the Pass Key used for authenticating the connection. This is a string value which can be up to 6 digits long (with a value

between 0 and 999999).

Command Call Examples

"PassKeyResponse 1234" Attempts to set the Pass Key to "1234."

"PassKeyResponse 999999" Attempts to set the Pass Key to "999999." This value represents the longest Pass Key value of 6 digits.

Possible Return Values

(0) Successful Pass Key Response

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Authentication_Response(BluetoothStackID, CurrentRemoteBD_ADDR, &GAP_Authentication_Information);

API Prototype

int BTPSAPI GAP_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Authentication_Information_t *GAP_Authentication_Information);

Description of API

This function is provided to allow a mechanism for the local device to respond to GAP authentication events. This function is used to specify the authentication information for the

specified Bluetooth device. This function accepts as input, the Bluetooth protocol stack ID of the Bluetooth device that has requested the authentication action, and the authentication

response information (specified by the caller).

Description

The UserConfirmationResponse command is responsible for issuing a GAP Authentication Response with a User Confirmation value via the input parameter. This function returns zero

on a successful execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function. The device must also be in the middle of an on-going

Pairing operation that was started by the local device or a remote device.

Parameters

The UserConfirmationResponse command requires one parameter which is the User Confirmation value used for authenticating the connection. This is an integer value that must be

either 1, to confirm the connection, or 0 to NOT confirm the Authentication and stop the Pairing Procedure.

Command Call Examples

"UserConfirmationResponse 0" Attempts to decline the connection made with a remote Bluetooth Device and cancels the Authentication Procedure.

"UserConfirmationResponse 1" Attempts to accept the connection made with a remote Bluetooth Device and confirm the Authentication Procedure.

Possible Return Values

(0) Successful User Confirmation Response

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Authentication_Response(BluetoothStackID, CurrentRemoteBD_ADDR, &GAP_Authentication_Information);

PassKeyResponse

UserConfirmationResponse

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 12/26

API Prototype

int BTPSAPI GAP_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Authentication_Information_t *GAP_Authentication_Information);

Description of API

This function is provided to allow a mechanism for the local device to respond to GAP authentication events. This function is used to specify the authentication information for the

specified Bluetooth device. This function accepts as input, the Bluetooth protocol stack ID of the Bluetooth device that has requested the authentication action, and the authentication

response information (specified by the caller).

Description

The SetDiscoverabilityMode command is responsible for setting the Discoverability Mode of the local device. This command returns zero on successful execution and a negative value on

all errors. A Bluetooth Stack ID must exist before attempting to call this function. If setting the device as Limited Discoverable, the device will be discoverable for 60 seconds; a General

Discoverable device will always be discoverable.

Parameters

This command requires only one parameter which is an integer value that represents a Discoverability Mode. This value must be specified as 0 (for Non-Discoverable Mode), 1 (for

Limited Discoverable Mode), or 2 (for General Discoverable Mode).

Command Call Examples

"SetDiscoverabilityMode 0" Attempts to change the Discoverability Mode of the Local Device to Non-Discoverable.

"SetDiscoverabilityMode 1" Attempts to change the Discoverability Mode of the Local Device to Limited Discoverable.

"SetDiscoverabilityMode 2" Attempts to change the Discoverability Mode of the Local Device to General Discoverable.

Possible Return Values

(0) Successfully Set Discoverability Mode

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-5) BTPS_ERROR_GAP_NOT_INITIALIZED

(-58) BTPS_ERROR_INVALID_MODE

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-64) BTPS_ERROR_INTERNAL_ERROR

(-1) BTPS_ERROR_INVALID_PARAMETER

API Call
GAP_Set_Discoverability_Mode(BluetoothStackID, DiscoverabilityMode, (DiscoverabilityMode == dmLimitedDiscoverableMode)?60:0);

API Prototype

int BTPSAPI GAP_Set_Discoverability_Mode(unsigned int BluetoothStackID, GAP_Discoverability_Mode_t GAP_Discoverability_Mode, unsigned int Max_Discoverable_Time);

Description of API

This function is provided to set the discoverability mode of the local Bluetooth device specified by the Bluetooth Protocol Stack that is specified by the Bluetooth protocol stack ID. The

second parameter specifies the discoverability mode to place the local Bluetooth device into, and the third parameter species the length of time (in seconds) that the local Bluetooth

device is to be placed into the specified discoverable mode (if mode is not specified as non-discoverable). At the end of this time (provided the time is not infinite), the local Bluetooth

device will return to non-discoverable mode.

Description

The SetConnectabilityMode command is responsible for setting the Connectability Mode of the local device. This command returns zero on successful execution and a negative value on

all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters

This command requires only one parameter which is an integer value that represents a Discoverability Mode. This value must be specified as 0 (for Non-Connectable) or 1 (for

Connectable).

Command Call Examples

"SetConnectabilityMode 0" Attempts to set the Local Device's Connectability Mode to Non-Connectable.

"SetConnectabilityMode 1" Attempts to set the Local Device's Connectability Mode to Connectable.

Possible Return Values

(0) Successfully Set Connectability Mode

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

SetDiscoverabilityMode

SetConnectabilityMode

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 13/26

(-5) BTPS_ERROR_GAP_NOT_INITIALIZED

(-58) BTPS_ERROR_INVALID_MODE

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Set_Connectability_Mode(BluetoothStackID, ConnectableMode);

API Prototype

int BTPSAPI GAP_Set_Connectability_Mode(unsigned int BluetoothStackID, GAP_Connectability_Mode_t GAP_Connectability_Mode);

Description of API

This function is provided to set the connectability mode of the local Bluetooth device specified by the Bluetooth protocol stack that is specified by the Bluetooth protocol stack ID. The

second parameter specifies the connectability mode to place the local Bluetooth device into.

Description

The SetPairabilityMode command is responsible for setting the Pairability Mode of the local device. This command returns zero on successful execution and a negative value on all

errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters

This command requires only one parameter which is an integer value that represents a Pairability Mode. This value must be specified as 0 (for Non-Pairable), 1 (for Pairable), or 2 (for

Secure Simple Pairing).

Command Call Examples

"SetPairabilityMode 0" Attempts to set the Pairability Mode of the Local Device to Non-Pairable.

"SetPairabilityMode 1" Attempts to set the Pairability Mode of the Local Device to Pairable.

"SetPairabilityMode 2" Attempts to set the Pairability Mode of the Local Device to Secure Simple Pairing.

Possible Return Values

(0) Successfully Set Pairability Mode

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-5) BTPS_ERROR_GAP_NOT_INITIALIZED

(-58) BTPS_ERROR_INVALID_MODE

API Call
GAP_Set_Pairability_Mode(BluetoothStackID, PairabilityMode);

API Prototype

int BTPSAPI GAP_Set_Pairability_Mode(unsigned int BluetoothStackID, GAP_Pairability_Mode_t GAP_Pairability_Mode);

Description of API

This function is provided to set the pairability mode of the local Bluetooth device. The second parameter specifies the pairability mode to place the local Bluetooth device into. If secure

simple pairing (SSP) pairing mode is specified, then SSP *MUST* be used for all pairing operations. The device can be placed into non pairable mode after this, however, if pairing is re-

enabled, it *MUST* be set to pairable with SSP enabled.

Description

The ChangeSimplePairingParameters command is responsible for changing the Secure Simple Pairing Parameters that are exchanged during the Pairing procedure whenSecure Simple

Pairing (Security Level 4) is used. This function returns zero on a successful execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this

function. The IOCapability and MITMProtection values are stored in static global variables which are used for Secure Simple Pairing.

Parameters

This command requires two parameters which are the I/O Capability and the MITM Requirement. The first parameter must be specified as 0 (for Display Only), 1 (for Display Yes/No), 2

(for Keyboard Only), or 3 (for No Input/Output). The second parameter must be specified as 0 (for No MITM) or 1 (for MITM required).

Command Call Examples

"ChangeSimplePairingParameters 3 0" Attempts to set the I/O Capability to No Input/Output and turns off MITM Protection.

"ChangeSimplePairingParameters 2 1" Attempts to set the I/O Capability to Keyboard Only and activates MITM Protection.

"ChangeSimplePairingParameters 1 1" Attempts to set the I/O Capability to Display Yes/No and activates MITM Protection.

Possible Return Values

(0) Successfully Pairing Parameters Change

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

SetPairabilityMode

ChangeSimplePairingParameters

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 14/26

Description

The GetLocalAddress command is responsible for querying the Bluetooth Device Address of the local Bluetooth Device. This function returns zero on a successful execution and a

negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Query.

Possible Return Values

(0) Successfully Query Local Address

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

API Call
GAP_Query_Local_BD_ADDR(BluetoothStackID, &BD_ADDR);

API Prototype

int BTPSAPI GAP_Query_Local_BD_ADDR(unsigned int BluetoothStackID, BD_ADDR_t *BD_ADDR);

Description of API

This function is responsible for querying (and reporting) the device address of the local Bluetooth device. The second parameter is a pointer to a buffer that is to receive the device

address of the local Bluetooth device. If this function is successful, the buffer that the BD_ADDR parameter points to will be filled with the device address read from the local Bluetooth

device. If this function returns a negative value, then the device address of the local Bluetooth device was NOT able to be queried (error condition).

Description

The SetLocalName command is responsible for setting the name of the local Bluetooth Device to a specified name. This function returns zero on a successful execution and a negative

value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters

One parameter is necessary for this command. The specified device name must be the only parameter (which means there should not be spaces in the name or only the first section of the

name will be set).

Command Call Examples

"SetLocalName New_Bluetooth_Device_Name" Attempts to set the Local Device Name to "New_Bluetooth_Device_Name."

"SetLocalName New Bluetooth Device Name" Attempts to set the Local Device Name to "New Bluetooth Device Name" but only sets the first parameter, which would make the Local

Device Name "New."

"SetLocalName MSP430" Attempts to set the Local Device Name to "MSP430."

Possible Return Values

(0) Successfully Set Local Device Name

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Set_Local_Device_Name(BluetoothStackID, TempParam->Params[0].strParam);

API Prototype

int BTPSAPI GAP_Set_Local_Device_Name(unsigned int BluetoothStackID, char *Name);

Description of API

This function is provided to allow the changing of the device name of the local Bluetooth device. The Name parameter must be a pointer to a NULL terminated ASCII string of at most

MAX_NAME_LENGTH (not counting the trailing NULL terminator). This function will return zero if the local device name was successfully changed, or a negative return error code if

there was an error condition.

Description

This function is responsible for querying the name of the local Bluetooth Device. This function returns zero on a successful execution and a negative value on all errors. A Bluetooth Stack

ID must exist before attempting to call this function.

GetLocalAddress

SetLocalName

GetLocalName

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 15/26

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Query.

Possible Return Values

(0) Successfully Queried Local Device Name

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-65) BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

API Call
GAP_Query_Local_Device_Name(BluetoothStackID, 257, (char *)LocalName);

API Prototype

int BTPSAPI GAP_Query_Local_Device_Name(unsigned int BluetoothStackID, unsigned int NameBufferLength, char *NameBuffer);

Description of API

This function is responsible for querying (and reporting) the user friendly name of the local Bluetooth device. The final parameters to this function specify the buffer and buffer length of

the buffer that is to receive the local device name. The NameBufferLength parameter should be at least (MAX_NAME_LENGTH+1) to hold the maximum allowable device name (plus a

single character to hold the NULL terminator). If this function is successful, this function returns zero, and the buffer that NameBuffer points to will be filled with a NULL terminated

ASCII representation of the local device name. If this function returns a negative value, then the local device name was NOT able to be queried (error condition).

Description

The SetClassOfDevice command is responsible for setting the Class of Device of the local Bluetooth Device to a Class of Device value. This function returns zero on a successful execution

and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters

The only parameter needed is the new Class of Device value. It is preferred to start the value with “0x” and use a six digit value after that. Without doing this, the Class of Device written

will be assumed decimal and will be converted to hexadecimal format and change the values given.

Command Call Examples

"SetClassOfDevice 0x123456" Attempts to set the Class of Device for the local Bluetooth Device to "0x123456."

"SetClassOfDevice 123456" Attempts to set the Class of Device for the local Bluetooth Device to "0x01E240" which is equivalent to the decimal value of 123456.

Possible Return Values

(0) Successfully Set Local Class of Device

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-5) BTPS_ERROR_GAP_NOT_INITIALIZED

API Call
GAP_Set_Class_of_Device(BluetoothStackID, Class_of_Device);

API Prototype

int BTPSAPI GAP_Set_Class_Of_Device(unsigned int BluetoothStackID, Class_of_Device_t Class_of_Device);

Description of API

This function is provided to allow the changing of the class of device of the local Bluetooth device. The Class_of_Device parameter represents the class of device value that is to be written

to the local Bluetooth device. This function will return zero if the class of device was successfully changed, or a negative return error code if there was an error condition.

Description

The GetClassOfDevice command is responsible for querying the Bluetooth Class of Device of the local Bluetooth Device. This function returns zero on a successful execution and a

negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Query.

Possible Return Values

(0) Successfully Queried Local Class of Device

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

SetClassOfDevice

GetClassOfDevice

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 16/26

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-1) BTPS_ERROR_INVALID_PARAMETER

API Call
GAP_Query_Class_Of_Device(BluetoothStackID, &Class_of_Device);

API Prototype

int BTPSAPI GAP_Query_Class_Of_Device(unsigned int BluetoothStackID, Class_of_Device_t *Class_of_Device);

Description of API

This function is responsible for querying (and reporting) the class of device of the local Bluetooth device. The second parameter is a pointer to a class of device buffer that is to receive the

Bluetooth class of device of the local device. If this function is successful, this function returns zero, and the buffer that Class_Of_Device points to will be filled with the Class of Device

read from the local Bluetooth device. If there is an error, this function returns a negative value, and the class of device of the local Bluetooth device is NOT copied into the specified input

buffer.

Description

The GetRemoteName command is responsible for querying the Bluetooth Device Name of a Remote Device. This function returns zero on a successful execution and a negative value on

all errors. The command requires that a valid Bluetooth Stack ID exists before running and it should be called after using the Inquiry command. The DisplayInquiryList command would

be useful in this situation to find which Remote Device goes with which Inquiry Index.

Parameters

The GetRemoteName command requires one parameter which is the Inquiry Index of the Remote Bluetooth Device. This value can be found after an Inquiry or displayed when the

command DisplayInquiryList is used.

Command Call Examples

"GetRemoteName 5" Attempts to query the Device Name for the Remote Device that is at the fifth Inquiry Index.

"GetRemoteName 8" Attempts to query the Device Name for the Remote Device that is at the eighth Inquiry Index.

Possible Return Values

(0) Successfully Queried Remote Name

(-6) INVALID_PARAMETERS_ERROR

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-59) BTPS_ERROR_ADDING_CALLBACK_INFORMATION

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Query_Remote_Device_Name(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam – 1)], GAP_Event_Callback, (unsigned long)0);

API Prototype

int BTPSAPI GAP_Query_Remote_Device_Name(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Event_Callback_t GAP_Event_Callback, unsigned long
CallbackParameter);

Description of API

This function is provided to allow a mechanism to query the user-friendly Bluetooth device name of the specified remote Bluetooth device. This function accepts as input the Bluetooth

device address of the remote Bluetooth device to query the name of and the GAP event callback information that is to be used when the remote device name process has completed. This

function returns zero if successful, or a negative return error code if the remote name request was unable to be submitted. If this function returns success, then the caller will be notified

via the specified callback when the remote name information has been determined (or there was an error). This function cannot be used to determine the user-friendly name of the local

Bluetooth device. The GAP_Query_Local_Name function should be used to query the user-friendly name of the local Bluetooth device. Because this function is asynchronous in nature

(specifying a remote device address), this function will notify the caller of the result via the specified callback. The caller is free to cancel the remote name request at any time by issuing

the GAP_Cancel_Query_Remote_Name function and specifying the Bluetooth device address of the Bluetooth device that was specified in the original call to this function. It should be

noted that when the callback is cancelled, the operation is attempted to be cancelled and the callback is cancelled (i.e. the GAP module still might perform the remote name request, but

no callback is ever issued).

Description

The following function is responsible for issuing a Service Search Attribute Request to a Remote SDP Server. This function returns zero if successful and a negative value if an error

occurred.

GetRemoteName

Hands-free Profile Commands

ServiceDiscovery

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 17/26

Parameters

The command requires two parameter. first parameter is the Inquiry Index and the second is Profile Index.

Command Call Examples

"ServiceDiscovery 1 12" Attempts to Open a Audio Gateway client port on inquiry index #1 and Profile Index Number #12 (Hands-free).

"ServiceDiscovery 3 12" Attempts to Open a Audio Gateway client port on inquiry index #3 and Profile Index Number #12 (Hands-free).

Possible Return Values

(-1) BTPS_ERROR_INVALID_PARAMETER (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-40) BTPS_ERROR_MEMORY_ALLOCATION_ERROR (-54) BTPS_ERROR_EXPECTED_UUID_ENTRY (-64) BTPS_ERROR_INTERNAL_ERROR (-103)

BTPS_ERROR_FEATURE_NOT_AVAILABLE

API Call
SDP_Service_Search_Attribute_Request(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam - 1)], 1, &SDPUUIDEntry, 1, &AttributeID, SDP_Event_Callback,

(unsigned long)0)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI SDP_Service_Search_Attribute_Request(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, unsigned int NumberServiceUUID,

SDP_UUID_Entry_t SDP_UUID_Entry[], unsigned int NumberAttributeListElements, SDP_Attribute_ID_List_Entry_t AttributeIDList[], SDP_Response_Callback_t

SDP_Response_Callback, unsigned long CallbackParameter)

Description of API

The following function is responsible for issuing an SDP Service Search Attribute Request to the specified BD_ADDR. This function will return the result of the Service Search Attribute

Request in the SDP Response Callback that is specified in the calling of this function. This function accepts as input, the Bluetooth Stack ID of the Bluetooth Protocol Stack that the SDP

Client resides on, the Bluetooth Board Address to remotely connect to (the Remote SDP Server will reside on this BD_ADDR), the Number of Service UUID's that are to be searched for,

the Servcee UUID's to actually search for, the Number of Entries in the Attribute List that are to be queried, the Attribute List to actually use in the Query, the SDP Response Callback

Function, and the SDP Response Callback Function Callback Parameter. This function will return a positive, non-zero, return code if successful, or a negative return error code if there

was an error. If this function is successful, the user can call the SDP_Cancel_Service_Request() function to cancel a the SDP Service Search Request prematurely.It should be noted that

the Number of UUID Parameter must be at least one, and the Service UUID Parameter must point to a List of at least the Number of UUID's that have been specified. Finally, the

BD_ADDR Parameter and the SDP_Reponse_Callback Parameter MUST be valid or the call to this function will be unsuccessful. It should also be noted that the Number of Attributes

that are in the Attribute List must be at least one, and the Attribute ID List Parameter must point to a List of Attribute ID's that contains at least the Number of Attribute List Entries that

have been specified. Finally, the BD_ADDR Parameter and the SDP_Reponse_Callback Parameter MUST be valid or the call to this function will be unsuccessful.

Description

The following function is responsible for opening an Audio Gateway client port. This function returns zero on successful execution and a negative value on all errors.

Parameters

The command requires two parameter. first parameter is the Inquiry Index and the second is the remote device Port Number

Command Call Examples

"OpenAudioGatewayClient 1 1" Attempts to Open a Audio Gateway client port on inquiry index #1 and remote Port Number #1.

"OpenAudioGatewayClient 2 3" Attempts to Open a Audio Gateway client port on inquiry index #2 and remote Port Number #3.

Possible Return Values

(0) AG Client opened successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Open_Remote_Hands-free_Port(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam-1)], TempParam->Params[1].intParam,

DEFAULT_AG_SUPPORTED_FEATURES, DEFAULT_CALL_HOLDING_SUPPORT, 0, NULL, HFRE_Event_Callback, (unsigned long)0)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Open_Remote_Hands-free_Port(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, unsigned int RemoteServerPort, unsigned

long SupportedFeaturesMask, unsigned long CallHoldSupportMask, unsigned int NumberAdditionalIndicators, HFRE_Control_Indicator_Entry_t AdditionalSupportedIndicators[],

HFRE_Event_Callback_t EventCallback, unsigned long CallbackParameter)

Description of API

The following function is responsible for Opening a Remote Hands-Free Port on the specified Remote Device. This function accepts the Bluetooth Stack ID of the Bluetooth Stack which

is to open the HFRE Connection as the first parameter. The second parameter specifies the Board Address (NON NULL) of the Remote Bluetooth Device to connect with. The third

parameter specifies the features the local Audio Gateway supports. The next parameter is a bit mask which specifies the Call Hold and Multiparty Handling Features that are supported.

The fifth parameter to this function is the number of indicator names which appear in the list represented by the previous parameter. The next parameter is a list of additional indicators

in which this Audio Gateway will support. If the Additional Indicators parameter is NULL and Number Additional Indicators is zero no additional parameters will be supported. The final

two parameters specify the HFRE Event Callback function, and callback parameter, respectively, of the HFRE Event Callback that is to process any further interaction with the specified

OpenAudioGatewayClient

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 18/26

Remote Port (Opening Status, Close Status,etc). This function returns a non-zero, positive, value if successful, or a negative return error code if this function is unsuccessful. If this

function is successful, the return value will represent the HFRE Port ID that can be passed to all other functions that require it. Once a Remote Hands-Free unit is opened, it can only be

closed via a call to the HFRE_Close_Port() function (passing the return value from this function). NOTE : The Mandatory Hands-Free Indicators (call, service, and call_setup) are

automatically added to the list and need not be specified as additional indicators.

Description

The following function is responsible for setting up or releasing an audio connection. This function returns zero on successful execution and a negative value on all errors.

Parameters
The Manage Audio command requires only one parameter to which is is an integer value that represents the ManageAudio mode. This value must be specified as 0 (for Release) or 1 (for

Setup)

Command Call Examples

"ManageAudio 0" Attempts to Release the Audio Connection.

"ManageAudio 1" Attempts to Setup the Audio Connection.

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Setup_Audio_Connection(BluetoothStackID, CurrentClientPortID)

or HFRE_Release_Audio_Connection(BluetoothStackID, CurrentClientPortID)

API Prototype

int BTPSAPI HFRE_Setup_Audio_Connection(unsigned int BluetoothStackID, unsigned int HFREPortID)

or int BTPSAPI HFRE_Release_Audio_Connection(unsigned int BluetoothStackID, unsigned int HFREPortID)

Description of API

This function is responsible for Setting Up an Audio Connection between the Local and Remote Device. This function may be used by either an Audio Gateway or a Hands-Free unit for

which a valid Service Level Connection Exists. This function accepts as its input parameters the Bluetooth Stack ID for which the HFRE Port ID is valid as well as the HFRE Port ID. This

function returns zero if successful or a negative return error code if there was an error.

(or) This function is responsible for Releasing an Audio Connection which was previously established by the Remote Device or by a call to the HFRE_Setup_Audio_Connection()

function. This function may be used by either an Audio Gateway or a Hands-Free unit. This function accepts as its input parameters the Bluetooth Stack ID for which the HFRE Port ID is

valid as well as the HFRE Port ID. This function returns zero if successful or a negative return error code if there was an error.

Description

The following function is responsible for updating the current state of the Control Indicators on the Remote Hands-Free unit. This function returns zero on successful execution and a

negative value on all errors. indicators name : Call Status, Call Setup, Service availability, Signal indicator, Roam indicator, battchg indicator and Call Held

Parameters
The command requires two parameter. first parameter is the indicators name and the second is the value you want to set.

Command Call Examples

"UpdateControlIndicators Call Setup 1"

"UpdateControlIndicators Call Held 3"

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

ManageAudio

UpdateControlIndicators

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 19/26

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Update_Current_Control_Indicator_Status(BluetoothStackID, PortToUse, 1, &HFREIndicatorUpdate)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Update_Current_Control_Indicator_Status(unsigned int BluetoothStackID, unsigned int HFREPortID, unsigned int

NumberUpdateIndicators, HFRE_Indicator_Update_t UpdateIndicators[])

Description of API

The following function is responsible for Updating the Current Control Indicator Status. This function may only be performed by Audio Gateways that have a valid Service Level

Connection or by Audio Gateways that have received the etHFRE_Control_Indicator_Request_Indication event. This function accepts as its input parameters the Bluetooth Stack ID for

which the HFRE Port ID is valid as well as the HFRE Port ID. The third parameter to this function is the number of name/value pairs that are present in the list. The final parameter to

this function is a list of name/value pairs for the indicators to be updated. This function returns zero if successful or a negative return error code if there was an error.

NOTE : This function will only work if call waiting feature is supported in the remote HF device. Description

The following function is responsible for sending a Call Waiting Notification to the Remote Hands-Free unit. This function returns zero on successful execution and a negative value on

all errors. If the remote device callwaiting feature is supported in the HF device than this will work.

Parameters
The Call Waiting command takes only one parameter, which is the phone number to be sent as part of this response.

Command Call Examples

"CallWaiting +9198787899889"

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Send_Call_Waiting_Notification(BluetoothStackID, CurrentClientPortID, TempParam->Params->strParam)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Send_Call_Waiting_Notification(unsigned int BluetoothStackID, unsigned int HFREPortID, char *PhoneNumber)

Description of API

This function is responsible for Sending Call Waiting Notifications to the Remote Device. This function may only be performed by Audio Gateways which have Call Waiting Notification

Enabled and have a valid Service Level Connection. This function accepts as its first input parameter the HFRE Port ID. The final parameter is the Phone Number required as one of the

parameters within this response. This parameter should be a pointer to a NULL terminated string (if specified) and must have a length less than

HFRE_PHONE_NUMBER_LENGTH_MAXIMUM. This function returns zero if successful or a negative return error code if there was an error.

NOTE :It is valid to either pass a NULL for the PhoneNumber parameter of a blank string to specify that there is no phone number present.

Description

The following function is responsible for deactivating Voice Recognition Activation on the Audio Gateway and for change the Voice Recognition Activation state on the Hands-free Unit.

This function returns zero on successful execution and a negative value on all errors.

Parameters
The Voice Recognition command takes only one parameter, This value must be specified as 0 (for Deactivate) or 1 (to Activate).

Command Call Examples

"SetVoiceRecognitionActivation 0"

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

CallWaiting

SetVoiceRecognitionActivation

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 20/26

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Set_Remote_Voice_Recognition_Activation(BluetoothStackID, CurrentClientPortID, (Boolean_t)TempParam->Params->intParam)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Set_Remote_Voice_Recognition_Activation(unsigned int BluetoothStackID, unsigned int HFREPortID, Boolean_t

VoiceRecognitionActive)

Description of API

This function is responsible for activation and deactivation of the Voice Recognition which resides on the Remote Audio Gateway when called by a Hands-Free unit. When called by an

Audio Gateway this function is responsible for informing the remote Hands-Free unit of the current activation state of the local Voice Recognition function. This function may only be

called by local devices that were opened with the Supported Feature Bit set for Voice Recognition. This function accepts as its input parameters the Bluetooth Stack ID for which the

HFRE Port ID is valid as well as the HFRE Port ID. The final parameter is a Boolean flag specifying if this is a call to Activate or Deactivate this function on a Remote Audio Gateway, or

to specify that Voice Recoginition is locally Activated or Deactivated to a Remote Hands-Free unit. When active the Voice Recognition function on the Audio Gateway is turned on, when

inactive the Voice Recognition function on the Audio Gateway is turned off. This function returns zero if successful or a negative return error code if there was an error.

Description

The following function is responsible for setting the Speaker Gain on Remote Device. This function returns zero on successful execution and a negative value on all errors. If the remote

audio volume control feature is supported in the HF device than this will work.

Parameters
The command requires only one parameter. It would be a integer value for the Speaker Gain.

Command Call Examples

"SetSpeakerGain 5"

"SetSpeakerGain 6"

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Set_Remote_Speaker_Gain(BluetoothStackID, CurrentClientPortID, TempParam->Params->intParam)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Set_Remote_Speaker_Gain(unsigned int BluetoothStackID, unsigned int HFREPortID, unsigned int SpeakerGain)

Description of API

This function is responsible for allowing synchronization and setting of the Remote Devices Speaker Gain. This function may only be performed if a valid Service Level Connection exists.

When called by a Hands-Free unit this function is provided as a means to inform the Remote Audio Gateway of the current Speaker Gain value. When called by an Audio Gateway this

function provides a means for the Audio Gateway to control the Speaker Gain of the Remote Hands-Free unit. This function accepts as its input parameters the Bluetooth Stack ID for

which the HFRE Port ID is valid as well as the HFRE Port ID. The final parameter is the Speaker Gain to be sent to the Remote Device. The Speaker Gain Parameter *MUST* be between

the values of HFRE_SPEAKER_GAIN_MINIMUM and HFRE_SPEAKER_GAIN_MAXIMUM. This function returns zero if successful or a negative return error code if there was an

error.

Description

The following function is responsible for setting the Microphone Gain on Remote Device. This function returns zero on successful execution and a negative value on all errors. If the

remote audio volume control feature is supported in the HF device than this will work.

Parameters
The command requires only one parameter. It would be a integer value for the MicroPhone Gain.

Command Call Examples

"SetMicroPhoneGain 5"

"SetMicroPhoneGain 6"

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

SetSpeakerGain

SetMicroPhoneGain

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 21/26

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Set_Remote_Microphone_Gain(BluetoothStackID, CurrentClientPortID, TempParam->Params->intParam)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Set_Remote_Microphone_Gain(unsigned int BluetoothStackID, unsigned int HFREPortID, unsigned int MicrophoneGain)

Description of API

This function is responsible for allowing synchronization and setting of the Remote Devices Microphone Gain. This function may only be performed if a valid Service Level Connection

exists. When called by a Hands-Free unit this function is provided as a means to inform the Remote Audio Gateway of the current Microphone Gain value. When called by an Audio

Gateway this function provides a means for the Audio Gateway to control the Microphone Gain of the Remote Hands-Free unit. This function accepts as its input parameters the

Bluetooth Stack ID for which the HFRE Port ID is valid as well as the HFRE Port ID. The final parameter is the Microphone Gain to be sent to the Remote Device. The Microphone Gain

Parameter *MUST* be between the values of HFRE_MICROPHONE_GAIN_MINIMUM and HFRE_MICROPHONE_GAIN_MAXIMUM. This function returns zero if successful or a

negative return error code if there was an error.

NOTE : This function may be performed only when a valid Service Level Connection exist but no Audio Connection exists. Description

The following function is responsible for disabling Sound Enhancement on the Remote Device. This function returns zero on successful execution and a negative value on all errors. This

function may be performed only when a valid Service Level Connection exist but no Audio Connection exists.

Parameters
t is not necessary to include parameters when using this command, A parameter will have no effect on the outcome of DisableRemoteSoundEnhancement.

Command Call Examples

"DisableRemoteSoundEnhancement"

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Disable_Remote_Echo_Cancelation_Noise_Reduction(BluetoothStackID, CurrentClientPortID)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Disable_Remote_Echo_Cancelation_Noise_Reduction(unsigned int BluetoothStackID, unsigned int HFREPortID)

Description of API

This function is responsible for Disabling Echo Cancelation and Noise Reduction on the Remote Device. This function may be performed by both the Hands-Free unit and the Audio

Gateway for which a valid Service Level Connection exist but no Audio Connection exists. This function accepts as its input parameters the Bluetooth Stack ID for which the HFRE Port

ID is valid as well as the HFRE Port ID. This function returns zero if successful or a negative return error code if there was an error. NOTE : It is not possible to enable this feature once

it has been disbled because the specification provides no means to re-enable this feature. This feature will remained disabled until the current Service Level Connection has been

dropped.

Description

The following function is responsible for sending a Call Line Identification Notification to the Remote Hands-Free unit. This function returns zero on successful execution and a negative

value on all errors.

Parameters
The command requires only one parameter. It would be a CALLER id (phone number).

Command Call Examples

"SendCallerIdNotification +9198787899889"

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

DisableRemoteSoundEnhancement

SendCallerIdNotification

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 22/26

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Send_Call_Line_Identification_Notification(BluetoothStackID, CurrentClientPortID, TempParam->Params->strParam)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Send_Call_Line_Identification_Notification(unsigned int BluetoothStackID, unsigned int HFREPortID, char *PhoneNumber)

Description of API

This function is responsible for sending Call Line Identification Notifications to the Remote device. This function may only be performed by Audio Gateways which have Call Line

Identification Notification Enabled and have a valid Service Level Connection. This function accepts as its input parameters the Bluetooth Stack ID for which the HFRE Port ID is valid as

well as the HFRE Port ID. The final parameter is the Phone Number required as one of the parameters within this response. This parameter should be a pointer to a NULL terminated

string and its length *MUST* be between the values of HFRE_PHONE_NUMBER_LENGTH_MINIMUM and HFRE_PHONE_NUMBER_LENGTH_MAXIMUM. This function return

zero if successful or a negative return error code if there was an error.

Description

The following function is responsible for sending an enable or disable In-Band Ring Indication to the Remote Hands-Free unit. This function returns zero on successful execution and a

negative value on all errors.

Parameters
The command requires only one parameter. This value must be specified as 0 (for disable) or 1 (for enabling).

Command Call Examples

"SetRingIndication 1" for enabling In-Band Ring Indication

"SetRingIndication 0" for disable In-Band Ring Indication

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Enable_Remote_InBand_Ring_Tone_Setting(BluetoothStackID, CurrentClientPortID, TempParam->Params[0].intParam? TRUE : FALSE)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Enable_Remote_InBand_Ring_Tone_Setting(unsigned int BluetoothStackID, unsigned int HFREPortID, Boolean_t

EnableInBandRing)

Description of API

This function is responsible for Enabling or Disabling In-Band Ring Tone Capabilities for the Local Device. This function may only be performed by Audio Gateways for which a valid

Service Level Connection exists. This function may only be used to enable In-Ring Tone Capabilities if the Local Audio Gateway supports this feature. This function accepts as its input

parameters the Bluetooth Stack ID for which the HFRE Port ID is valid as well as the HFRE Port ID. The final parameter is a Boolean flag specifying if this is a call to Enable or Disable

this functionality. This function returns zero if successful or a negative return error code if there was an error.

Description

The following function is responsible for sending a Ring Indication to the Remote Hands-Free unit. This function returns zero on successful execution and a negative value on all errors.

Parameters
It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of RingIndication.

Command Call Examples

"RingIndication" send ring indication.

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

SetRingIndication

RingIndication

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 23/26

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Ring_Indication(BluetoothStackID, CurrentClientPortID)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Ring_Indication(unsigned int BluetoothStackID, unsigned int HFREPortID)

Description of API

This function is responsible for sending a Ring Indication to the Remote Hands-Free unit. This function may only be performed by Audio Gateways for which a valid Service Level

Connection exists. This function accepts as its input parameters the Bluetooth Stack ID for which the HFRE Port ID is valid as well as the HFRE Port ID. This function returns zero if

successful or a negative return error code if there was an error.

Description

The following function is responsible for sending the Response and Hold Command (+BTRH) to the remote device. This function returns zero on successful execution and a negative

value on all errors.

Parameters
This command requires only one parameter to which is is an integer value that represents the incoming call state. This value must be specified as 0 (incoming call is put on hold), 1 (held

call is accept) and 2(held call is reject).

Command Call Examples

"SendIncomingCallState 1" if there is a incoming call.

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Send_Incoming_Call_State(BluetoothStackID, CurrentClientPortID, (HFRE_Call_State_t) CallState)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Send_Incoming_Call_State(unsigned int BluetoothStackID, unsigned int HFREPortID, HFRE_Call_State_t CallState)

Description of API

The following function is responsible for sending information about the incoming call state. This function may only be performed by Audio Gateways that have a valid Service Level

Connection. This function accepts as its input parameters the Bluetooth Stack ID for which the HFRE Port ID is valid as well as the HFRE Port ID. The final parameter to this function

indicates the call state to set as part of this message. This function returns zero if successful or a negative return error code if there was an error.

Description

The following function is responsible for closing any open HFP ports. This function returns zero on successful execution and a negative value on all errors.

Parameters
It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of Close.

Possible Return Values

(0) Client closed successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

SendIncomingCallState

CloseAgClient

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 24/26

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Close_Port(BluetoothStackID, CurrentClientPortID)

API Prototype

int BTPSAPI HFRE_Close_Port(unsigned int BluetoothStackID, unsigned int HFREPortID)

Description of API

The following function exists to close a HFRE Port that was previously opened by any of the following mechanisms:

- Successful call to HFRE_Open_Remote_Hands-free_Port() function.

- Successful call to HFRE_Open_Remote_Audio_Gateway_Port() function.

- Incoming open request (Hands-Free or Audio Gateway) which the server was opened with either the HFRE_Open_Hands-free_Server_Port() or the

HFRE_Open_Audio_Gateway_Server_Port() functions.

This function accepts as input the Bluetooth Stack ID of the Bluetooth Stack which the Open HFRE Port resides and the HFRE Port ID (return value from one of the above mentioned

Open functions) of the Port to Close. This function returns zero if successful, or a negative return value if there was an error. This function does NOT Un-Register a HFRE Server Port

from the system, it ONLY disconnects any connection that is currently active on the Server Port. The HFRE_Close_Server_Port()function can be used to Un-Register the HFRE Server

Port.

NOTE : This function should be performed When received a request to query the network operator selection from the remote Hands-free device.

Description

The following function is responsible for sending the command to send an Operator Selection Response to the Remote Hands-free Device. When received a request to query the remote

network operator selection from the the remote Hands-free device. This function returns zero on successful execution and a negative value on all errors.

Parameters
The Send Operator info command requires only one parameter which is the current Network Operator.

Command Call Examples

"SendOperatorInfo airtel"

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Send_Network_Operator_Selection(BluetoothStackID, CurrentClientPortID, 1, TempParam->Params[0].strParam)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Send_Network_Operator_Selection(unsigned int BluetoothStackID, unsigned int HFREPortID, unsigned int NetworkMode, char

*NetworkOperator)

Description of API

The following function is responsible for sending the network operator. This function may only be performed by Audio Gateways that have received a request to query the remote

network operator selection. This function accepts as its input parameters the Bluetooth Stack ID for which the HFRE Port ID is valid as well as the HFRE Port ID. The third parameter to

this function is the current Network Mode. The final parameter The final parameter is the current Network Operator. This parameter should be a pointer to a NULL terminated string (if

specified) and must have a length less than HFRE_NETWORK_OPERATOR_LENGTH_MAXIMUM. This function returns zero if successful or a negative return error code if there was

an error. NOTE : It is valid to either pass a NULL for the NetworkOperator parameter of a blank string to specify that there is no Network Operator present.

NOTE : This function should be performed when received a request to query the subscriber number information from the the remote Hands-free device.

Description

The following function is responsible for sending the command to send a subscriber number to the Remote Hands-free Device. when received a request to query the subscriber number

information from the remote Hands-free device. This function returns zero on successful execution and a negative value on all errors.

Parameters
The Send Subscriber Number command requires only one parameter which is the phone number to be sent as part of this response.

Command Call Examples

"SendSubNumber +9198787899889"

SendOperatorInfo

SendSubNumber

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 25/26

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Send_Subscriber_Number_Information(BluetoothStackID, CurrentClientPortID, TempParam->Params[0].strParam, 4, HFRE_DEFAULT_NUMBER_FORMAT, TRUE)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Send_Subscriber_Number_Information(unsigned int BluetoothStackID, unsigned int HFREPortID, char *PhoneNumber, unsigned int

ServiceType, unsigned int NumberFormat, Boolean_t FinalEntry)

Description of API

The following function is responsible for sending Subscriber Number Information. This function may only be performed by Audio Gateways that have received a request to query the

subscriber number information. This function accepts as its input parameters the Bluetooth Stack ID for which the HFRE Port ID is valid as well as the HFRE Port ID. The third

parameter to this function is the phone number to be sent as part of this response. The Phone Number Parameter String Length *MUST* be between the values of

HFRE_PHONE_NUMBER_LENGTH_MINIMUM and HFRE_PHONE_NUMBER_LENGTH_MAXIMUM. The fourth parameter to this function is the Service type related to the

specified Phone Number. The fifth paramter to this function is the Number Format to use for this number, The final parameter to this function is a boolean indicating if this is the last

subscriber number information entry to be sent therefore requiring that an OK be sent as well. This function returns zero if successful or a negative return error code if there was an

error.

NOTE : This function should be performed when received a request to query the current calls list information from the the remote Hands-free device.

Description

The following function is responsible for sending the command(s) to send the Call Entry to a remote Hands-free Device. When received a request to query the remote current calls list

from the remote Hands-free device. This function returns zero on successful execution and a negative value on all errors.

Parameters
The Send Call list command takes six parameter, they are Index, call direction, call status, call Mode, Multiparty, Phone Number (in the same order).

Command Call Examples

"SendCallList 0 1 1 0 0 5551212"

Possible Return Values

(0) Command sent successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHFRE_ERROR_INVALID_PARAMETER

(-1001) BTHFRE_ERROR_NOT_INITIALIZED

(-1002) BTHFRE_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1003) BTHFRE_ERROR_LIBRARY_INITIALIZATION_ERROR

(-1004) BTHFRE_ERROR_INSUFFICIENT_RESOURCES

(-1005) BTHFRE_ERROR_INVALID_OPERATION

(-1006) BTHFRE_ERROR_INVALID_CODEC_ID

API Call
HFRE_Send_Current_Calls_List(BluetoothStackID, CurrentClientPortID, &CurrentCallListEntry, Final)

API Prototype

BTPSAPI_DECLARATION int BTPSAPI HFRE_Send_Current_Calls_List(unsigned int BluetoothStackID, unsigned int HFREPortID, HFRE_Current_Call_List_Entry_t

*CurrentCallListEntry, Boolean_t FinalEntry)

Description of API

The following function is responsible for Sending Current Calls List Entries to the Remote Device. This function may only be performed by Audio Gateways that have received a request

to query the remote current calls list. This function accepts as its input parameters the Bluetooth Stack ID for which the HFRE Port ID is valid as well as the HFRE Port ID. The third

parameter to this function is the current call list entry to be sent. The final parameter to this function is a boolean indicating if this is the last call list entry to be sent therefore requiring

that an OK be sent as well. This function returns zero if successful or a negative return error code if there was an error.

NOTE : If the third parameter is specified as NULL, then the Final parameter *MUST* specify that this is the Final Entry. In this case, no call list entry will be sent, however, the

terminating response will be sent.

NOTE : This function does not send the Phonebook Name as part of the Call List Entry. Use HFRE_Send_Current_Calls_List_With_Phonebook_Name if you wish to also send the

Phonebook Name with the entry.

{{

1. switchcategory:MultiCore=

For technical support on
MultiCore devices, please

Keystone=

For technical
support on
MultiCore devices,
please post your

C2000=For
technical
support on the
C2000 please
post your
questions on

DaVinci=For
technical
support on
DaVincoplease
post your
questions on

MSP430=For
technical
support on
MSP430
please post
your

OMAP35x=For
technical
support on
OMAP please
post your
questions on

OMAPL1=For
technical
support on
OMAP please
post your
questions on

MAVRK=For
technical
support on
MAVRK
please post
your

For tech
please p
question
http://e2e
Please p
commen

SendCallList

http://e2e.ti.com/

10/14/21, 11:46 AM CC256x TI’s Bluetooth Stack Basic HFGAGDemo APP - Texas Instruments Wiki

https://processors.wiki.ti.com/index.php/CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP 26/26

post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article CC256x TI’s
Bluetooth Stack Basic
HFGAGDemo APP here.

questions in the
C6000 MultiCore
Forum
For questions
related to the
BIOS MultiCore
SDK (MCSDK),
please use the
BIOS Forum

Please post only
comments related to the
article CC256x TI’s
Bluetooth Stack Basic
HFGAGDemo APP here.

The C2000
Forum.
Please post
only
comments
about the
article
CC256x TI’s
Bluetooth
Stack Basic
HFGAGDemo
APP here.

The DaVinci
Forum. Please
post only
comments
about the
article CC256x
TI’s Bluetooth
Stack Basic
HFGAGDemo
APP here.

questions on
The MSP430
Forum.
Please post
only
comments
about the
article
CC256x TI’s
Bluetooth
Stack Basic
HFGAGDemo
APP here.

The OMAP
Forum. Please
post only
comments
about the
article CC256x
TI’s Bluetooth
Stack Basic
HFGAGDemo
APP here.

The OMAP
Forum.
Please post
only
comments
about the
article
CC256x TI’s
Bluetooth
Stack Basic
HFGAGDemo
APP here.

questions on
The MAVRK
Toolbox
Forum.
Please post
only
comments
about the
article
CC256x TI’s
Bluetooth
Stack Basic
HFGAGDemo
APP here.

article C
Bluetoo
Basic H
APP her
}}

Links
Amplifiers & Linear
Audio
Broadband RF/IF & Digital Radio
Clocks & Timers
Data Converters

DLP & MEMS
High-Reliability
Interface
Logic
Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers
Temperature Sensors & Control ICs
Wireless Connectivity

Retrieved from "https://processors.wiki.ti.com/index.php?title=CC256x_TI’s_Bluetooth_Stack_Basic_HFGAGDemo_APP&oldid=225547"

This page was last edited on 14 March 2017, at 16:43.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
http://e2e.ti.com/support/development_tools/mavrk/default.aspx
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003§ionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=CC256x_TI%E2%80%99s_Bluetooth_Stack_Basic_HFGAGDemo_APP&oldid=225547
http://creativecommons.org/licenses/by-sa/3.0/

