
CC256x TI Bluetooth Stack AssistedA2DPSourceDemo App
Return to CC256x MSP430 TI’s Bluetooth stack Basic Demo APPS (http://processors.wiki.ti.com/index.php/CC256x_MSP430_TI_Bluetooth_Stack#Demos)

Return to CC256x Tiva TI’s Bluetoth stack Basic Demo APPS (http://processors.wiki.ti.com/index.php/CC256x_Tiva_TI_Bluetooth_Stack#Demos)

Return to CC256x MSP432 TI’s Bluetooth stack Basic Demo APPS (http://www.ti.com/lit/ug/swru453a/swru453a.pdf)

Return to CC256x STM32F4 TI’s Bluetooth stack Basic Demo APPS (http://www.ti.com/lit/ug/swru428/swru428.pdf)

Demo Overview
Running the Bluetooth Code

Demo Application
Connecting with a Bluetooth Speaker

Device 2 (Sink) setup
Device 1 (Source) setup on the demo application

Connecting with the BT-MSP-AUDSNK board
Device 2 (Sink) setup
Device 1 (Source) Setup

Application Commands
Generic Access Profile Commands

Help (DisplayHelp)
Inquiry
DisplayInquiryList
SetDiscoverabilityMode
SetPairabilityMode
Pair
EndPairing
PINCodeResponse
PassKeyResponse
UserConfirmationResponse
SetConnectabilityMode
SetPairabilityMode
ChangeSimplePairingParameters
SetBaudRate
GetLocalAddress
SetLocalName
GetLocalName
SetClassOfDevice
GetClassOfDevice
GetRemoteName

A3DP Profile Commands
SetBaudRate
OpenSink
CloseSink
Play
Pause

Demo Overview
The Assisted Advanced Audio Distribution Profile Source allows a device to act as an Audio Source and stream audio to an Audio Sink.

It is recommended that the user visits the kit setup Getting Started Guide for MSP430 (http://processors.wiki.ti.com/index.php/CC256x_MSP430_TI's_Bluetooth_Stack_Basic_Demo

_APPS), Getting Started Guide for Tiva (http://processors.wiki.ti.com/index.php/TIVA_TI's_Bluetooth_Stack_Basic_Demo_APPS), Getting Started Guide for MSP432 (http://www.ti.

com/lit/ug/swru453a/swru453a.pdf) or Getting Started Guide for STM32F4 (http://www.ti.com/lit/ug/swru428/swru428.pdf) pages before trying the application described on this

page.

Note: An external codec MUST be connected to the CC256x I2S/PCM interface to record audio, except for the BT-MSPAUDSOURCE Reference Design board.

Note: : The same instructions can be used to run this demo on the Tiva, MSP432 or STM32F4 Platforms.

Contents

Running the Bluetooth Code

http://processors.wiki.ti.com/index.php/CC256x_MSP430_TI_Bluetooth_Stack#Demos
http://processors.wiki.ti.com/index.php/CC256x_Tiva_TI_Bluetooth_Stack#Demos
http://www.ti.com/lit/ug/swru453a/swru453a.pdf
http://www.ti.com/lit/ug/swru428/swru428.pdf
http://processors.wiki.ti.com/index.php/CC256x_MSP430_TI's_Bluetooth_Stack_Basic_Demo_APPS
http://processors.wiki.ti.com/index.php/TIVA_TI's_Bluetooth_Stack_Basic_Demo_APPS
http://www.ti.com/lit/ug/swru453a/swru453a.pdf
http://www.ti.com/lit/ug/swru428/swru428.pdf


Once the code is flashed, connect the board to a PC using a miniUSB or microUSB cable. Once connected, wait for the driver to install. It will show up as MSP-EXP430F5438 USB -
Serial Port (COM x), Tiva Virtual COM Port (COM x), XDS110 Class Application/User UART (COM x) for MSP432, under Ports (COM & LPT) in the Device manager.

Attach a Terminal program like PuTTY to the serial port x for the board. The serial parameters to use are 115200 Baud (9600 for MSP430), 8, n, 1. Once connected, reset the device using

Reset S3 button (located next to the mini USB connector for the MSP430) and you should see the stack getting initialized on the terminal and the help screen will be displayed, which

shows all of the commands.

Note: Note in IAR make sure that the correct version of the demo (Line-IN) for your board is flashed.

Demo Application
This section provides a description of how to use the demo application to connect an audio sink to it and communicate over Bluetooth.

1) Before we turn on the Source Board, we make sure that the Sink is ready to connect. In our example, we use a Bluetooth Speaker.

Connecting with a Bluetooth Speaker

Device 2 (Sink) setup

https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_SRC_1.jpg
https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_SRC_2.png


2) Turn on the speaker using the On/Off Switch. You should hear an audible beep.

3) Hold the mode button until you hear an audible beep and the blue led is flashing. The device is now discoverable and ready to be paired.

2) Make sure that a microphone or similar device is connected to J39. Once the FTDI/microUSB cable is connected, press reset and you should see output similar to the Terminal output

above.

3) The Source device will begin auto connecting with any discoverable & connectable sink device and filter out other devices.

Device 1 (Source) setup on the demo application

https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_SRC_7.jpg
https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_SRC_6.jpg
https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_SRC_3.png


Note: The device will automatically begin an inquiry/open a sink. If you need to do this manually, Follow the steps and reference the Terminal Output

below

3a) Type Inquiry to begin scanning for nearby devices.
3b) Type OpenSink <Inquiry Number> to open a sink channel to a Bluetooth device found during the previous inquiry.

4) Depending on the settings of the speaker device, it may intiate pairing as well.

5) The device will finish the connection and you should see a Stream State Change Confirmation and AUD Remote Control Open Indication events.

6) You can now transmit audio from the source device. Speak something through the mic and the speakers should play the output.

1) Make sure that the profile is flashed and the device is powered up and the speakers are connected.

Connecting with the BT-MSP-AUDSNK board

Device 2 (Sink) setup

https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_SRC_5.png
https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_SRC_4.png
https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_9.jpg


1) Setup the device as shown in the previous section. The device should automatically perform an inquiry scan, pair and connect with the SNK board. The images below show the

terminal (SNK on the left, SRC on the right) output of both of the devices.

Device Initialization

Pairing

Stream State Change Confirmation and AUD Remote Control Open Indication

Application Commands
TI’s Bluetooth stack is implementation of the upper layers of the Bluetooth protocol stack. TI’s Bluetooth stack provides a robust and flexible software development tool that implements

the Bluetooth Protocols and Profiles above the Host Controller Interface (HCI). TI’s Bluetooth stack's Application Programming Interface (API) provides access to the upper-layer

protocols and profiles and can interface directly with the Bluetooth chips.

This page describes the various commands that a user of the application can use. Each command is a wrapper over a TI’s Bluetooth stack API which gets invoked with the parameters

selected by the user. This is a subset of the APIs available to the user. TI’s Bluetooth stack API documentation (TI_Bluetooth_Stack_Version-Number\Documentation or for

STM32F4, TI_Bluetooth_Stack_Version-Number\RTOS_VERSION\Documentation) describes all of the API's in detail.

Device 1 (Source) Setup

Generic Access Profile Commands

https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_SRC_7.png
https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_SRC_8.png
https://processors.wiki.ti.com/index.php/File:Ss1_Msp430_A3DP_SRC_9.png


The Generic Access Profile defines standard procedures related to the discovery and connection of Bluetooth devices. It defines modes of operation that are generic to all devices and

allows for procedures which use those modes to decide how a device can be interacted with by other Bluetooth devices. Discoverability, Connectability, Pairability, Bondable Modes, and

Security Modes can all be changed using Generic Access Profile procedures. All of these modes affect the interaction two devices may have with one another. GAP also defines the

procedures for how bond two Bluetooth devices.

Description
The DisplayHelp command will display the Command Options menu. Depending on the UI_MODE of the device (Server or Client), different commands will be used in certain situations.

The Open and Close commands change their use depending on the mode the device is in.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Help Menu.

Possible Return Values

The return value is always 0

Description
The Inquiry command is responsible for performing a General Inquiry for discovering Bluetooth Devices. The command requires that a valid Bluetooth Stack ID exists before running.

This command returns zero on a successful call or a negative value if an error occurred during execution. The inquiry will last 10 seconds unless 20 devices (MAX_INQUIRY_RESULTS)

are found before that time limit.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Inquiry.

Possible Return Values

(0) Successful Inquiry Procedure

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-58) BTPS_ERROR_INVALID_MODE

API Call

GAP_Perform_Inquiry(BluetoothStackID, itGeneralInquiry, 0, 0, 10, MAX_INQUIRY_RESULTS, GAP_Event_Callback, (unsigned long) NULL);

API Prototype

int BTPSAPI GAP_Perform_Inquiry(unsigned int BluetoothStackID, GAP_Inquiry_Type_t GAP_Inquiry_Type, unsigned int MinimumPeriodLength, unsigned int
MaximumPeriodLength, unsigned int InquiryLength, unsigned int MaximumResponses, GAP_Event_Callback_t GAP_Event_Callback, unsigned long CallbackParameter);

Description of API
This function is provided to allow a mechanism for starting an Inquiry Scan Procedure. The first parameter to this function is the Bluetooth Protocol Stack of the Bluetooth Device that is

to perform the Inquiry. The second parameter is the type of Inquiry to perform. The third and fourth parameters are the Minimum and Maximum Period Lengths which are specified in

seconds (only valid in case a Periodic Inquiry is to be performed). The fifth parameter is the Length of Time to perform the Inquiry, specified in seconds. The sixth parameter is the

Number of Responses to wait for. The final two parameters represent the Callback Function (and parameter) that is to be called when the specified Inquiry has completed. This function

returns zero is successful, or a negative return error code if an Inquiry was unable to be performed. Only ONE Inquiry can be performed at any given time. Calling this function with an

outstanding Inquiry is in progress will fail. The caller can call the GAP_Cancel_Inquiry() function to cancel a currently executing Inquiry procedure. The Minimum and Maximum

Inquiry Parameters are optional and, if specified, represent the Minimum and Maximum Periodic Inquiry Periods. The called should set BOTH of these values to zero if a simple Inquiry

Procedure is to be used (Non-Periodic). If these two parameters are specified, then these two parameters must satisfy the following formula:

MaximumPeriodLength > MinimumPeriodLength > InquiryLength

Description
The DisplayInquiryList command exists to display the current Inquiry List with indexes. This command is useful for when a user has forgotten the Inquiry Index for a particular

Bluetooth Device the user may want to interact with. This function returns zero on a successful execution and a negative value on all errors. The command requires that a valid Bluetooth

Stack ID exists before running and it should be called after using the Inquiry command, since the list would be empty without already discovering devices.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Inquiry List displayed.

Possible Return Values

(0) Successful Display of the Inquiry List

(-8) INVALID_STACK_ID_ERROR

Help (DisplayHelp)

Inquiry

DisplayInquiryList



Description

The SetDiscoverabilityMode command is responsible for setting the Discoverability Mode of the local device. This command returns zero on successful execution and a negative value on

all errors. A Bluetooth Stack ID must exist before attempting to call this function. If setting the device as Limited Discoverable, the device will be discoverable for 60 seconds; a General

Discoverable device will always be discoverable.

Parameters
This command requires only one parameter which is an integer value that represents a Discoverability Mode. This value must be specified as 0 (for Non-Discoverable Mode), 1 (for

Limited Discoverable Mode), or 2 (for General Discoverable Mode).

Command Call Examples

"SetDiscoverabilityMode 0" Attempts to change the Discoverability Mode of the Local Device to Non-Discoverable.

"SetDiscoverabilityMode 1" Attempts to change the Discoverability Mode of the Local Device to Limited Discoverable.

"SetDiscoverabilityMode 2" Attempts to change the Discoverability Mode of the Local Device to General Discoverable.

Possible Return Values
(0) Successfully Set Discoverability Mode

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-5) BTPS_ERROR_GAP_NOT_INITIALIZED

(-58) BTPS_ERROR_INVALID_MODE

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-64) BTPS_ERROR_INTERNAL_ERROR

(-1) BTPS_ERROR_INVALID_PARAMETER

API Call
GAP_Set_Discoverability_Mode(BluetoothStackID, DiscoverabilityMode, (DiscoverabilityMode == dmLimitedDiscoverableMode)?60:0);

API Prototype
int BTPSAPI GAP_Set_Discoverability_Mode(unsigned int BluetoothStackID, GAP_Discoverability_Mode_t GAP_Discoverability_Mode, unsigned int Max_Discoverable_Time);

Description of API
This function is provided to set the discoverability mode of the local Bluetooth device specified by the Bluetooth Protocol Stack that is specified by the Bluetooth protocol stack ID. The

second parameter specifies the discoverability mode to place the local Bluetooth device into, and the third parameter species the length of time (in seconds) that the local Bluetooth

device is to be placed into the specified discoverable mode (if mode is not specified as non-discoverable). At the end of this time (provided the time is not infinite), the local Bluetooth

device will return to non-discoverable mode.

NOTE: By Default, the application uses Secure Simple Pairing. Once SSP is turned on, you cannot go back to regular Pairing. Description
The SetPairabilityMode command is responsible for setting the Pairability Mode of the local device. This command returns zero on successful execution and a negative value on all

errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters

This command requires only one parameter which is an integer value that represents a Pairability Mode. This value must be specified as 0 (for Non-Pairable), 1 (for Pairable), or 2 (for

Secure Simple Pairing).

Command Call Examples
"SetPairabilityMode 0" Attempts to set the Pairability Mode of the Local Device to Non-Pairable.

"SetPairabilityMode 1" Attempts to set the Pairability Mode of the Local Device to Pairable.

"SetPairabilityMode 2" Attempts to set the Pairability Mode of the Local Device to Secure Simple Pairing.

Possible Return Values

(0) Successfully Set Pairability Mode

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-5) BTPS_ERROR_GAP_NOT_INITIALIZED

(-58) BTPS_ERROR_INVALID_MODE

API Call

GAP_Set_Pairability_Mode(BluetoothStackID, PairabilityMode);

SetDiscoverabilityMode

SetPairabilityMode



API Prototype
int BTPSAPI GAP_Set_Pairability_Mode(unsigned int BluetoothStackID, GAP_Pairability_Mode_t GAP_Pairability_Mode);

Description of API
This function is provided to set the pairability mode of the local Bluetooth device. The second parameter specifies the pairability mode to place the local Bluetooth device into. If secure

simple pairing (SSP) pairing mode is specified, then SSP *MUST* be used for all pairing operations. The device can be placed into non pairable mode after this, however, if pairing is re-

enabled, it *MUST* be set to pairable with SSP enabled.

Description
The Pair command is responsible for initiating bonding with a remote Bluetooth Device. The function returns zero on a successful execution and a negative value on all errors. A

Bluetooth Stack ID must exist before attempting to pair and the device must not already be connected to any device (including the one it tries to pair with). It is also important to note

that the use of the Inquiry command before calling Pair is necessary to connect to a remote device. Both General and Dedicated bonding are supported.

Parameters
The Pair command requires one or two parameters with specific values in order to work successfully. The first parameter is the Inquiry Index of the remote Bluetooth Device. This

parameter is always necessary. This can be found after an Inquiry or displayed when the command DisplayInquiryList is used. If the desired remote device does not appear in the list, it

cannot be paired with. The second parameter is the bonding type used for the pairing procedure. It is an optional parameter which is only required if General Bonding is desired for the

connection. This must be specified as either 0 (for Dedicated Bonding) or 1 (for General Bonding). If only one parameter is given, the Bonding Type will be Dedicated Bonding.

Command Call Examples
"Pair 5 0" Attempts to pair with the remote device at the fifth Inquiry Index using Dedicated Bonding.

"Pair 5" Is the exact same as the above example. If no parameters, the Bonding Type will be Dedicated.

"Pair 8 1" Attempts to pair with the remote device at the eighth Inquiry Index using General Bonding.

Possible Return Values

(0) Successful Pairing

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-59) BTPS_ERROR_ADDING_CALLBACK_INFORMATION

(-8) BTPS_ERROR_DEVICE_HCI_ERROR

API Call

GAP_Initiate_Bonding(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam – 1)], BondingType, GAP_Event_Callback, (unsigned long)0);

API Prototype

int BTPSAPI GAP_Initiate_Bonding(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Bonding_Type_t GAP_Bonding_Type, GAP_Event_Callback_t
GAP_Event_Callback, unsigned long CallbackParameter);

Description of API
This function is provided to allow a means to Initiate a Bonding Procedure. This function can perform both General and Dedicated Bonding based upon the type of Bonding requested.

This function accepts as input, the Bluetooth Protocol Stack ID of the Local Bluetooth device that is perform the Bonding, the Remote Bluetooth address of the Device to Bond with, the

type of bonding to perform, and the GAP Event Callback Information that will be used to handle Authentication Events that will follow if this function is successful. If this function is

successful, then all further information will be returned through the Registered GAP Event Callback. It should be noted that if this function returns success that it does NOT mean that

the Remote Device has successfully Bonded with the Local Device, ONLY that the Remote Device Bonding Process has been started. This function will only succeed if a Physical

Connection to the specified Remote Bluetooth device does NOT already exist. This function will connect to the Bluetooth device and begin the Bonding Process. If General Bonding is

specified, then the Link is maintained, and will NOT be terminated until the GAP_End_Bonding function has been called. This will allow any higher level initialization that is needed on

the same physical link. If Dedicated Bonding is performed, then the Link is terminated automatically when the Authentication Process has completed.Due to the asynchronous nature of

this process, the GAP Event Callback that is specified will inform the caller of any Events and/or Data that is part of the Authentication Process. The GAP_Cancel_Bonding function can

be called at any time to end the Bonding Process and terminate the link (regardless of which Bonding method is being performed).When using General Bonding, if an L2CAP Connection

is established over the Bluetooth Link that was initiated with this function, the Bluetooth Protocol Stack MAY or MAY NOT terminate the Physical Link when (and if) an L2CAP

Disconnect Request (or Response) is issued. If this occurs, then calling the GAP_End_Bonding function will have no effect (the GAP_End_Bonding function will return an error code in

this case).

Description
The EndPairing command is responsible for ending a previously initiated bonding session with a remote device. The function returns zero on a successful execution and a negative value

on all errors. A Bluetooth Stack ID must exist before attempting to end pairing and the device must already be connected to a remote device. It is also important to note that the use of

the Pair and Inquiry commands before calling EndPairing are necessary to disconnect from a remote device.

Parameters
The EndPairing command requires one parameter which is the Inquiry Index of the Remote Bluetooth Device. This value can be found after an Inquiry or displayed when the command

DisplayInquiryList is used. It should be the same value as the first parameter used in the Pair command, unless a new Inquiry has been called after pairing. If this is the case, find the

Bluetooth Address of the device used in the Pair command.

Pair

EndPairing



Command Call Examples
"EndPairing 5" Attempts to end pairing with the remote device at the fifth Inquiry Index.

"EndPairing 8" Attempts to end pairing with the remote device at the eighth Inquiry Index.

Possible Return Values

(0) Successful End Pairing

(-2)BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1)BTPS_ERROR_INVALID_PARAMETER

(-58)BTPS_ERROR_INVALID_MODE

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

API Call

GAP_End_Bonding(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam – 1)]);
API Prototype
int BTPSAPI GAP_Initiate_Bonding(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Bonding_Type_t GAP_Bonding_Type, GAP_Event_Callback_t

GAP_Event_Callback, unsigned long CallbackParameter);

Description of API

This function is provided to allow a means to terminate a connection that was established via a call to the GAP_Initiate_Bonding function (that specified general bonding as the bonding

type to perform). This function has NO effect if the bonding procedure was initiated using dedicated bonding (or the device is already disconnected). This function accepts the Bluetooth

device address of the remote Bluetooth device that was specified to be bonded with (general bonding). This function terminates the ACL connection that was established and it

guarantees that NO GAP Event Callbacks will be issued to the GAP Event Callback that was specified in the original GAP_Initiate_Bonding function call (if this function returns success).

Description
The PINCodeResponse command is responsible for issuing a GAP Authentication Response with a PIN Code value specified via the input parameter. This function returns zero on a

successful execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function. The device must also be in the middle of an on-going

Pairing operation that was started by the local device or a remote device.

Parameters
The PINCodeResponse command requires one parameter which is the PIN Code used for authenticating the connection. This is a string value which can be up to 16 digits long. The

initiator of the Pairing will see a message displayed during the Pairing Procedure to call this command. A responder will receive a message to call this command after the initiator has put

in the PIN Code.

Command Call Examples
"PINCodeResponse 1234" Attempts to set the PIN Code to "1234."

"PINCodeResponse 5921302312564542 Attempts to set the PIN Code to "5921302312564542." This value represents the longest PIN Code value of 16 digits.

Possible Return Values
(0) Successful PIN Code Response

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Authentication_Response(BluetoothStackID, CurrentRemoteBD_ADDR, &GAP_Authentication_Information);

API Prototype
int BTPSAPI GAP_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Authentication_Information_t *GAP_Authentication_Information);

Description of API
This function is provided to allow a mechanism for the local device to respond to GAP authentication events. This function is used to specify the authentication information for the

specified Bluetooth device. This function accepts as input, the Bluetooth protocol stack ID of the Bluetooth device that has requested the authentication action, and the authentication

response information (specified by the caller).

Description
The PassKeyResponse command is responsible for issuing a GAP Authentication Response with a Pass Key value via the input parameter. This function returns zero on a successful

execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function. The device must also be in the middle of an on-going Pairing

operation that was started by the local device or a remote device.

PINCodeResponse

PassKeyResponse



Parameters
The PassKeyResponse command requires one parameter which is the Pass Key used for authenticating the connection. This is a string value which can be up to 6 digits long (with a value

between 0 and 999999).

Command Call Examples

"PassKeyResponse 1234" Attempts to set the Pass Key to "1234."

"PassKeyResponse 999999" Attempts to set the Pass Key to "999999." This value represents the longest Pass Key value of 6 digits.

Possible Return Values
(0) Successful Pass Key Response

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Authentication_Response(BluetoothStackID, CurrentRemoteBD_ADDR, &GAP_Authentication_Information);

API Prototype
int BTPSAPI GAP_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Authentication_Information_t *GAP_Authentication_Information);

Description of API
This function is provided to allow a mechanism for the local device to respond to GAP authentication events. This function is used to specify the authentication information for the

specified Bluetooth device. This function accepts as input, the Bluetooth protocol stack ID of the Bluetooth device that has requested the authentication action, and the authentication

response information (specified by the caller).

Description
The UserConfirmationResponse command is responsible for issuing a GAP Authentication Response with a User Confirmation value via the input parameter. This function returns zero

on a successful execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function. The device must also be in the middle of an on-going

Pairing operation that was started by the local device or a remote device.

Parameters
The UserConfirmationResponse command requires one parameter which is the User Confirmation value used for authenticating the connection. This is an integer value that must be

either 1, to confirm the connection, or 0 to NOT confirm the Authentication and stop the Pairing Procedure.

Command Call Examples
"UserConfirmationResponse 0" Attempts to decline the connection made with a remote Bluetooth Device and cancels the Authentication Procedure.

"UserConfirmationResponse 1" Attempts to accept the connection made with a remote Bluetooth Device and confirm the Authentication Procedure.

Possible Return Values
(0) Successful User Confirmation Response

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Authentication_Response(BluetoothStackID, CurrentRemoteBD_ADDR, &GAP_Authentication_Information);

API Prototype
int BTPSAPI GAP_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Authentication_Information_t *GAP_Authentication_Information);

Description of API
This function is provided to allow a mechanism for the local device to respond to GAP authentication events. This function is used to specify the authentication information for the

specified Bluetooth device. This function accepts as input, the Bluetooth protocol stack ID of the Bluetooth device that has requested the authentication action, and the authentication

response information (specified by the caller).

Description
The SetConnectabilityMode command is responsible for setting the Connectability Mode of the local device. This command returns zero on successful execution and a negative value on

all errors. A Bluetooth Stack ID must exist before attempting to call this function.

UserConfirmationResponse

SetConnectabilityMode



Parameters
This command requires only one parameter which is an integer value that represents a Discoverability Mode. This value must be specified as 0 (for Non-Connectable) or 1 (for

Connectable).

Command Call Examples

"SetConnectabilityMode 0" Attempts to set the Local Device's Connectability Mode to Non-Connectable.

"SetConnectabilityMode 1" Attempts to set the Local Device's Connectability Mode to Connectable.

Possible Return Values
(0) Successfully Set Connectability Mode

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-5) BTPS_ERROR_GAP_NOT_INITIALIZED

(-58) BTPS_ERROR_INVALID_MODE

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Set_Connectability_Mode(BluetoothStackID, ConnectableMode);

API Prototype
int BTPSAPI GAP_Set_Connectability_Mode(unsigned int BluetoothStackID, GAP_Connectability_Mode_t GAP_Connectability_Mode);

Description of API
This function is provided to set the connectability mode of the local Bluetooth device specified by the Bluetooth protocol stack that is specified by the Bluetooth protocol stack ID. The

second parameter specifies the connectability mode to place the local Bluetooth device into.

Description
The SetPairabilityMode command is responsible for setting the Pairability Mode of the local device. This command returns zero on successful execution and a negative value on all

errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters
This command requires only one parameter which is an integer value that represents a Pairability Mode. This value must be specified as 0 (for Non-Pairable), 1 (for Pairable), or 2 (for

Secure Simple Pairing).

Command Call Examples
"SetPairabilityMode 0" Attempts to set the Pairability Mode of the Local Device to Non-Pairable.

"SetPairabilityMode 1" Attempts to set the Pairability Mode of the Local Device to Pairable.

"SetPairabilityMode 2" Attempts to set the Pairability Mode of the Local Device to Secure Simple Pairing.

Possible Return Values
(0) Successfully Set Pairability Mode

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-5) BTPS_ERROR_GAP_NOT_INITIALIZED

(-58) BTPS_ERROR_INVALID_MODE

API Call
GAP_Set_Pairability_Mode(BluetoothStackID, PairabilityMode);

API Prototype
int BTPSAPI GAP_Set_Pairability_Mode(unsigned int BluetoothStackID, GAP_Pairability_Mode_t GAP_Pairability_Mode);

Description of API
This function is provided to set the pairability mode of the local Bluetooth device. The second parameter specifies the pairability mode to place the local Bluetooth device into. If secure

simple pairing (SSP) pairing mode is specified, then SSP *MUST* be used for all pairing operations. The device can be placed into non pairable mode after this, however, if pairing is re-

enabled, it *MUST* be set to pairable with SSP enabled.

Description
The ChangeSimplePairingParameters command is responsible for changing the Secure Simple Pairing Parameters that are exchanged during the Pairing procedure whenSecure Simple

Pairing (Security Level 4) is used. This function returns zero on a successful execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this

SetPairabilityMode

ChangeSimplePairingParameters



function. The IOCapability and MITMProtection values are stored in static global variables which are used for Secure Simple Pairing.

Parameters
This command requires two parameters which are the I/O Capability and the MITM Requirement. The first parameter must be specified as 0 (for Display Only), 1 (for Display Yes/No), 2

(for Keyboard Only), or 3 (for No Input/Output). The second parameter must be specified as 0 (for No MITM) or 1 (for MITM required).

Command Call Examples
"ChangeSimplePairingParameters 3 0" Attempts to set the I/O Capability to No Input/Output and turns off MITM Protection.

"ChangeSimplePairingParameters 2 1" Attempts to set the I/O Capability to Keyboard Only and activates MITM Protection.

"ChangeSimplePairingParameters 1 1" Attempts to set the I/O Capability to Display Yes/No and activates MITM Protection.

Possible Return Values
(0) Successfully Pairing Parameters Change

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

Description

The SetBaudRate command is responsible for changing the current Baud Rate used to talk to the Radio. This function ONLY configures the Baud Rate for a TI Bluetooth chipset. This

command requires that a valid Bluetooth Stack ID exists.

Parameters
This command requires one parameter. The value is an integer representing a value used for the Baud Rate. The options are 0 (for Baud Rate of 115200), 1 (for Baud Rate 230400), 2 (for

Baud Rate 460800), 3 (for Baud Rate 921600), 4 (for Baud Rate 1843200), or 5 (for Baud Rate 3686400). The maximum baud rate default is 921600 so options 4 and 5 are disable.

Command Call Examples
"SetBaudRate 0" Attempts to set the Baud Rate to 115200.

"SetBaudRate 1" Attempts to set the Baud Rate to 230400.

"SetBaudRate 2" Attempts to set the Baud Rate to 460800.

"SetBaudRate 3" Attempts to set the Baud Rate to 921600.

Possible Return Values
(0) Successfully Set Baud Rate

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

API Call
HCI_Reconfigure_Driver(BluetoothStackID, FALSE, &(Data.DriverReconfigureData));

API Prototype
int BTPSAPI HCI_Reconfigure_Driver(unsigned int BluetoothStackID,Boolean_t ResetStateMachines,HCI_Driver_Reconfigure_Data_t *DriverReconfigureData);

Description of API
This function issues the appropriate call to an HCI driver to request the HCI Driver to reconfigure itself with the corresponding configuration information.

Description
The GetLocalAddress command is responsible for querying the Bluetooth Device Address of the local Bluetooth Device. This function returns zero on a successful execution and a

negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Query.

Possible Return Values

(0) Successfully Query Local Address

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

API Call
GAP_Query_Local_BD_ADDR(BluetoothStackID, &BD_ADDR);

SetBaudRate

GetLocalAddress



API Prototype
int BTPSAPI GAP_Query_Local_BD_ADDR(unsigned int BluetoothStackID, BD_ADDR_t *BD_ADDR);

Description of API
This function is responsible for querying (and reporting) the device address of the local Bluetooth device. The second parameter is a pointer to a buffer that is to receive the device

address of the local Bluetooth device. If this function is successful, the buffer that the BD_ADDR parameter points to will be filled with the device address read from the local Bluetooth

device. If this function returns a negative value, then the device address of the local Bluetooth device was NOT able to be queried (error condition).

Description
The SetLocalName command is responsible for setting the name of the local Bluetooth Device to a specified name. This function returns zero on a successful execution and a negative

value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters

One parameter is necessary for this command. The specified device name must be the only parameter (which means there should not be spaces in the name or only the first section of the

name will be set).

Command Call Examples
"SetLocalName New_Bluetooth_Device_Name" Attempts to set the Local Device Name to "New_Bluetooth_Device_Name."

"SetLocalName New Bluetooth Device Name" Attempts to set the Local Device Name to "New Bluetooth Device Name" but only sets the first parameter, which would make the Local

Device Name "New."

"SetLocalName MSP430" Attempts to set the Local Device Name to "MSP430."

Possible Return Values
(0) Successfully Set Local Device Name

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Set_Local_Device_Name(BluetoothStackID, TempParam->Params[0].strParam);

API Prototype
int BTPSAPI GAP_Set_Local_Device_Name(unsigned int BluetoothStackID, char *Name);

Description of API
This function is provided to allow the changing of the device name of the local Bluetooth device. The Name parameter must be a pointer to a NULL terminated ASCII string of at most

MAX_NAME_LENGTH (not counting the trailing NULL terminator). This function will return zero if the local device name was successfully changed, or a negative return error code if

there was an error condition.

Description
This function is responsible for querying the name of the local Bluetooth Device. This function returns zero on a successful execution and a negative value on all errors. A Bluetooth Stack

ID must exist before attempting to call this function.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Query.

Possible Return Values

(0) Successfully Queried Local Device Name

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-65) BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

API Call

GAP_Query_Local_Device_Name(BluetoothStackID, 257, (char *)LocalName);

API Prototype

int BTPSAPI GAP_Query_Local_Device_Name(unsigned int BluetoothStackID, unsigned int NameBufferLength, char *NameBuffer);

SetLocalName

GetLocalName



Description of API
This function is responsible for querying (and reporting) the user friendly name of the local Bluetooth device. The final parameters to this function specify the buffer and buffer length of

the buffer that is to receive the local device name. The NameBufferLength parameter should be at least (MAX_NAME_LENGTH+1) to hold the maximum allowable device name (plus a

single character to hold the NULL terminator). If this function is successful, this function returns zero, and the buffer that NameBuffer points to will be filled with a NULL terminated

ASCII representation of the local device name. If this function returns a negative value, then the local device name was NOT able to be queried (error condition).

Description

The SetClassOfDevice command is responsible for setting the Class of Device of the local Bluetooth Device to a Class of Device value. This function returns zero on a successful execution

and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters
The only parameter needed is the new Class of Device value. It is preferred to start the value with “0x” and use a six digit value after that. Without doing this, the Class of Device written

will be assumed decimal and will be converted to hexadecimal format and change the values given.

Command Call Examples
"SetClassOfDevice 0x123456" Attempts to set the Class of Device for the local Bluetooth Device to "0x123456."

"SetClassOfDevice 123456" Attempts to set the Class of Device for the local Bluetooth Device to "0x01E240" which is equivalent to the decimal value of 123456.

Possible Return Values

(0) Successfully Set Local Class of Device

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-5) BTPS_ERROR_GAP_NOT_INITIALIZED

API Call
GAP_Set_Class_of_Device(BluetoothStackID, Class_of_Device);

API Prototype
int BTPSAPI GAP_Set_Class_Of_Device(unsigned int BluetoothStackID, Class_of_Device_t Class_of_Device);

Description of API
This function is provided to allow the changing of the class of device of the local Bluetooth device. The Class_of_Device parameter represents the class of device value that is to be written

to the local Bluetooth device. This function will return zero if the class of device was successfully changed, or a negative return error code if there was an error condition.

Description

The GetClassOfDevice command is responsible for querying the Bluetooth Class of Device of the local Bluetooth Device. This function returns zero on a successful execution and a

negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters
It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Query.

Possible Return Values
(0) Successfully Queried Local Class of Device

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-1) BTPS_ERROR_INVALID_PARAMETER

API Call

GAP_Query_Class_Of_Device(BluetoothStackID, &Class_of_Device);

API Prototype

int BTPSAPI GAP_Query_Class_Of_Device(unsigned int BluetoothStackID, Class_of_Device_t *Class_of_Device);

Description of API

This function is responsible for querying (and reporting) the class of device of the local Bluetooth device. The second parameter is a pointer to a class of device buffer that is to receive the

Bluetooth class of device of the local device. If this function is successful, this function returns zero, and the buffer that Class_Of_Device points to will be filled with the Class of Device

read from the local Bluetooth device. If there is an error, this function returns a negative value, and the class of device of the local Bluetooth device is NOT copied into the specified input

buffer.

SetClassOfDevice

GetClassOfDevice



Description

The GetRemoteName command is responsible for querying the Bluetooth Device Name of a Remote Device. This function returns zero on a successful execution and a negative value on

all errors. The command requires that a valid Bluetooth Stack ID exists before running and it should be called after using the Inquiry command. The DisplayInquiryList command would

be useful in this situation to find which Remote Device goes with which Inquiry Index.

Parameters
The GetRemoteName command requires one parameter which is the Inquiry Index of the Remote Bluetooth Device. This value can be found after an Inquiry or displayed when the

command DisplayInquiryList is used.

Command Call Examples

"GetRemoteName 5" Attempts to query the Device Name for the Remote Device that is at the fifth Inquiry Index.

"GetRemoteName 8" Attempts to query the Device Name for the Remote Device that is at the eighth Inquiry Index.

Possible Return Values
(0) Successfully Queried Remote Name

(-6) INVALID_PARAMETERS_ERROR

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-59) BTPS_ERROR_ADDING_CALLBACK_INFORMATION

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Query_Remote_Device_Name(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam – 1)], GAP_Event_Callback, (unsigned long)0);

API Prototype
int BTPSAPI GAP_Query_Remote_Device_Name(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Event_Callback_t GAP_Event_Callback, unsigned long

CallbackParameter);

Description of API
This function is provided to allow a mechanism to query the user-friendly Bluetooth device name of the specified remote Bluetooth device. This function accepts as input the Bluetooth

device address of the remote Bluetooth device to query the name of and the GAP event callback information that is to be used when the remote device name process has completed. This

function returns zero if successful, or a negative return error code if the remote name request was unable to be submitted. If this function returns success, then the caller will be notified

via the specified callback when the remote name information has been determined (or there was an error). This function cannot be used to determine the user-friendly name of the local

Bluetooth device. The GAP_Query_Local_Name function should be used to query the user-friendly name of the local Bluetooth device. Because this function is asynchronous in nature

(specifying a remote device address), this function will notify the caller of the result via the specified callback. The caller is free to cancel the remote name request at any time by issuing

the GAP_Cancel_Query_Remote_Name function and specifying the Bluetooth device address of the Bluetooth device that was specified in the original call to this function. It should be

noted that when the callback is cancelled, the operation is attempted to be cancelled and the callback is cancelled (i.e. the GAP module still might perform the remote name request, but

no callback is ever issued).

Description
The following command is responsible for checking changing the current baud rate used to talk to the Radio. NOTE: This function ONLY configures the baud rate for a TI Bluetooth

chipset.

Parameters

This command requires one parameter which is the Baud Rate that needs to be set.

Possible Return Values

(0) Success

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

API Call
VS_Update_UART_Baud_Rate(BluetoothStackID, (DWord_t)TempParam->Params[0].intParam);

API Prototype
int BTPSAPI VS_Update_UART_Baud_Rate(unsigned int BluetoothStackID, DWord_t BaudRate)

GetRemoteName

A3DP Profile Commands

SetBaudRate



Description of API
The following function prototype represents the vendor specific function which is used to change the Bluetooth UART for the Local Bluetooth Device specified by the Bluetooth Protocol

Stack that is specified by the Bluetooth Protocol Stack ID. The second parameter specifies the new baud rate to set. This change encompasses both changing the speed of the Bluetooth

chip (by issuing the correct commands) and then, if successful, informing the HCI Driver of the change (so the driver can communicate with the Bluetooth device at the new baud rate).

This function returns zero if successful or a negative return error code if there was an error.

Description

The following command is for opening a connection to a remote A2DP endpoint (Sink).

Parameters

This command requires one parameter which is the Inquiry Index of the Remote Bluetooth Device. This value can be found after an Inquiry or displayed when the command

DisplayInquiryList is used. If the desired remote device does not appear in the list, it cannot be paired with.

Possible Return Values
(0) A3DP Endpoint opened successfully

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2001) BTAUD_ERROR_NOT_INITIALIZED

(-2002) BTAUD_ERROR_INVALID_BLUETOOTH_STACK_ID

(-2005) BTAUD_ERROR_ALREADY_CONNECTED

(-2008) BTAUD_ERROR_STREAM_NOT_INITIALIZED

(-2010) BTAUD_ERROR_STREAM_ALREADY_CONNECTED

(-2013) BTAUD_ERROR_STREAM_IS_ACTIVE

(-2032) BTAUD_ERROR_STREAM_CONNECTED

API Call

AUD_Open_Remote_Stream(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam - 1)], astSRC)

API Prototype
int BTPSAPI AUD_Open_Remote_Stream(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, AUD_Stream_Type_t StreamType)

Description of API
The following function is responsible for opening a remote streaming endpoint on the specified remote device. This function accepts as input the Bluetooth stack ID of the Bluetooth

protocol stack that the requested Audio Manager is present, followed by the remote Bluetooth device AND the local Stream type. This function returns zero if successful or a negative

return error code if there was an error

Description

The following command is responsible for cleaning up AUD and the A3DP stream, if the stream is opened and/or playing.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the query.

Possible Return Values

(0) A3DP Endpoint opened successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2001) BTAUD_ERROR_NOT_INITIALIZED

(-2002) BTAUD_ERROR_INVALID_BLUETOOTH_STACK_ID

(-2011) BTAUD_ERROR_STREAM_NOT_CONNECTED (-2014) BTAUD_ERROR_STREAM_IS_NOT_ACTIVE

API Call
AUD_Close_Stream(BluetoothStackID, RemoteSinkBD_ADDR, astSRC);

API Prototype

int BTPSAPI AUD_Close_Stream(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, AUD_Stream_Type_t StreamType)

Description of API
The following function is responsible for Closing a currently open stream endpoint on the local device. This function accepts as input the Bluetooth stack ID of the Bluetooth protocol

stack that the requested Audio Manager is present, followed by the remote device address of the connected stream, followed by the stream endpoint type to close (local Stream

Endpoint). This function returns zero if successful or a negative return error code if there was an error.

Description
This command is responsible for handling a play command issued by the user.

OpenSink

CloseSink

Play



Parameters
It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the query.

Possible Return Values
(0) A3DP Endpoint opened successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2001) BTAUD_ERROR_NOT_INITIALIZED

(-2002) BTAUD_ERROR_INVALID_BLUETOOTH_STACK_ID

(-2007) BTAUD_ERROR_UNABLE_TO_INITIALIZE_AVCTP

(-2008) BTAUD_ERROR_STREAM_NOT_INITIALIZED

(-2009) BTAUD_ERROR_UNABLE_TO_CONNECT_REMOTE_STREAM (-2011) BTAUD_ERROR_STREAM_NOT_CONNECTED

(-2014) BTAUD_ERROR_STREAM_IS_NOT_ACTIVE

(-2015) BTAUD_ERROR_STREAM_STATE_ALREADY_CURRENT

(-2016) BTAUD_ERROR_UNABLE_TO_CHANGE_STREAM_STATE

(-2017) BTAUD_ERROR_STREAM_STATE_CHANGE_IN_PROGRESS

(-2018) BTAUD_ERROR_STREAM_FORMAT_CHANGE_IN_PROGRESS

(-2019) BTAUD_ERROR_UNSUPPORTED_FORMAT

(-2020) BTAUD_ERROR_UNABLE_TO_CHANGE_STREAM_FORMAT

(-2021) BTAUD_ERROR_SAME_FORMAT

(-2022) BT_AUD_ERROR_RETRIEVING_SUPPORTED_FORMATS

(-2023) BTAUD_ERROR_UNABLE_TO_SEND_STREAM_DATA

(-2024) BTAUD_ERROR_UNABLE_TO_SEND_REMOTE_CONTROL_COMMAND

(-2026) BTAUD_ERROR_REMOTE_DEVICE_NOT_CONNECTED

(-2027) BTAUD_ERROR_REMOTE_CONTROL_NOT_CONNECTED

(-2028) BTAUD_ERROR_INVALID_REMOTE_CONTROL_DATA

(-2029) BTAUD_ERROR_REMOTE_CONTROL_ALREADY_CONNECTED

(-2030) BTAUD_ERROR_REMOTE_CONTROL_CONNECTION_IN_PROGRESS

(-2031) BTAUD_ERROR_REMOTE_CONTROL_NOT_INITIALIZED

API Call

AUD_Change_Stream_State(BluetoothStackID, RemoteSinkBD_ADDR, astSRC, astStreamStarted);

API Prototype
int BTPSAPI AUD_Change_Stream_State(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, AUD_Stream_Type_t StreamType, AUD_Stream_State_t StreamState)

Description of API

The following function is responsible for Changing the Stream State of a currently opened stream endpoint on the local device. This function accepts as input the Bluetooth stack ID of

the Bluetooth protocol stack that the requested Audio Manager is present, followed by the remote device address of the connected stream, followed by the stream endpoint type to change

the state of (local Stream Endpoint), followed by the new Stream Endpoint state. This function returns zero if successful or a negative return error code if there was an error.

Description

This command is responsible for handling a local pause command issued by the user.

Parameters
It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the query.

Possible Return Values
(0) A3DP Endpoint opened successfully

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2001) BTAUD_ERROR_NOT_INITIALIZED

(-2002) BTAUD_ERROR_INVALID_BLUETOOTH_STACK_ID

(-2007) BTAUD_ERROR_UNABLE_TO_INITIALIZE_AVCTP

(-2008) BTAUD_ERROR_STREAM_NOT_INITIALIZED

(-2009) BTAUD_ERROR_UNABLE_TO_CONNECT_REMOTE_STREAM

(-2011) BTAUD_ERROR_STREAM_NOT_CONNECTED

(-2014) BTAUD_ERROR_STREAM_IS_NOT_ACTIVE

(-2015) BTAUD_ERROR_STREAM_STATE_ALREADY_CURRENT

(-2016) BTAUD_ERROR_UNABLE_TO_CHANGE_STREAM_STATE

(-2017) BTAUD_ERROR_STREAM_STATE_CHANGE_IN_PROGRESS

(-2018) BTAUD_ERROR_STREAM_FORMAT_CHANGE_IN_PROGRESS

(-2019) BTAUD_ERROR_UNSUPPORTED_FORMAT

(-2020) BTAUD_ERROR_UNABLE_TO_CHANGE_STREAM_FORMAT

(-2021) BTAUD_ERROR_SAME_FORMAT

(-2022) BT_AUD_ERROR_RETRIEVING_SUPPORTED_FORMATS

(-2023) BTAUD_ERROR_UNABLE_TO_SEND_STREAM_DATA

(-2024) BTAUD_ERROR_UNABLE_TO_SEND_REMOTE_CONTROL_COMMAND

(-2026) BTAUD_ERROR_REMOTE_DEVICE_NOT_CONNECTED

Pause



(-2027) BTAUD_ERROR_REMOTE_CONTROL_NOT_CONNECTED

(-2028) BTAUD_ERROR_INVALID_REMOTE_CONTROL_DATA

(-2029) BTAUD_ERROR_REMOTE_CONTROL_ALREADY_CONNECTED

(-2030) BTAUD_ERROR_REMOTE_CONTROL_CONNECTION_IN_PROGRESS

(-2031) BTAUD_ERROR_REMOTE_CONTROL_NOT_INITIALIZED

API Call
AUD_Change_Stream_State(BluetoothStackID, RemoteSinkBD_ADDR, astSRC, astStreamStarted);

API Prototype
int BTPSAPI AUD_Change_Stream_State(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, AUD_Stream_Type_t StreamType, AUD_Stream_State_t StreamState)

Description of API

The following function is responsible for Changing the Stream State of a currently opened stream endpoint on the local device. This function accepts as input the Bluetooth stack ID of

the Bluetooth protocol stack that the requested Audio Manager is present, followed by the remote device address of the connected stream, followed by the stream endpoint type to change

the state of (local Stream Endpoint), followed by the new Stream Endpoint state. This function returns zero if successful or a negative return error code if there was an error.

{{

1. switchcategory:MultiCore=

For technical support on
MultiCore devices, please
post your questions in the
C6000 MultiCore Forum
For questions related to
the BIOS MultiCore SDK
(MCSDK), please use the
BIOS Forum

Please post only comments related
to the article CC256x TI Bluetooth
Stack AssistedA2DPSourceDemo
App here.

Keystone=

For technical
support on
MultiCore devices,
please post your
questions in the
C6000 MultiCore
Forum
For questions
related to the BIOS
MultiCore SDK
(MCSDK), please
use the BIOS Forum

Please post only comments
related to the article CC256x
TI Bluetooth Stack
AssistedA2DPSourceDemo
App here.

C2000=For technical support
on the C2000 please post
your questions on The
C2000 Forum. Please post
only comments about the
article CC256x TI Bluetooth
Stack
AssistedA2DPSourceDemo
App here.

DaVinci=For technical
support on DaVincoplease
post your questions on The
DaVinci Forum. Please post
only comments about the
article CC256x TI Bluetooth
Stack
AssistedA2DPSourceDemo
App here.

MSP430=For technical
support on MSP430 please
post your questions on The
MSP430 Forum. Please post
only comments about the
article CC256x TI Bluetooth
Stack
AssistedA2DPSourceDemo
App here.

OMAP35
support o
post you
OMAP F
only com
article CC
Stack
Assisted
App here

Links
Amplifiers & Linear
Audio
Broadband RF/IF & Digital Radio
Clocks & Timers
Data Converters

DLP & MEMS
High-Reliability
Interface
Logic
Power Management

Processors

ARM Processors
Digital Signal Processors (DSP)
Microcontrollers (MCU)
OMAP Applications Processors

Switches & Multiplexers
Temperature Sensors & Control ICs
Wireless Connectivity

Retrieved from "https://processors.wiki.ti.com/index.php?title=CC256x_TI_Bluetooth_Stack_AssistedA2DPSourceDemo_App&oldid=222888"

This page was last edited on 16 November 2016, at 09:29.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/dsp/c6000_multi-core_dsps/default.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/microcontrollers/tms320c2000_32-bit_real-time_mcus/f/171.aspx
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/default.aspx
http://e2e.ti.com/support/microcontrollers/msp43016-bit_ultra-low_power_mcus/default.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/default.aspx
https://processors.wiki.ti.com/index.php/File:Hyperlink_blue.png
http://www.ti.com/lsds/ti/analog/amplifier_and_linear.page
http://www.ti.com/lsds/ti/analog/audio/audio_overview.page
http://www.ti.com/lsds/ti/analog/rfif.page
http://www.ti.com/lsds/ti/analog/clocksandtimers/clocks_and_timers.page
http://www.ti.com/lsds/ti/analog/dataconverters/data_converter.page
http://www.ti.com/lsds/ti/analog/mems/mems.page
http://www.ti.com/lsds/ti/analog/high_reliability.page
http://www.ti.com/lsds/ti/analog/interface/interface.page
http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.ti.com/lsds/ti/analog/powermanagement/power_portal.page
http://www.ti.com/lsds/ti/dsp/embedded_processor.page
http://www.ti.com/lsds/ti/dsp/arm.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/microcontroller/home.page
http://www.ti.com/lsds/ti/omap-applications-processors/the-omap-experience.page
http://www.ti.com/lsds/ti/analog/switches_and_multiplexers.page
http://www.ti.com/lsds/ti/analog/temperature_sensor.page
http://focus.ti.com/wireless/docs/wirelessoverview.tsp?familyId=2003&sectionId=646&tabId=2735
https://processors.wiki.ti.com/index.php?title=CC256x_TI_Bluetooth_Stack_AssistedA2DPSourceDemo_App&oldid=222888
http://creativecommons.org/licenses/by-sa/3.0/

