I3 TEXAS
INSTRUMENTS

CC23xx ROM BOOTLOADER

(DRAFT)

Basic usage of the ROM Bootloader is nearly identical to that of the previous CC26x2. For a
background in how those bootloaders functioned, review chapter 10 (Bootloader) of the CC26x2
Technical Reference Manual

Configuration

Configuration of the ROM Bootloader is done between the FCFG and the CCFG. There are
defaults that are set in the FCFG that will take effect if a valid CCFG is not present on startup. If
the user wants to alter the defaults set by the FCFG they can update their CCFG to provide the
behavior they desire. Both the FCFG and CCFG have the following struct inside providing ROM
Bootloader Configuration

bootCfg

BootCfg
// Bootloader/application configuration
struct { // [0]: length 16B

// Pointer to user bootloader vector table
void* pBldrVtor;
#define CCFG BC PBLDR USE FCFG
#define XCFG BC PBLDR FORBID
#define XCFG BC PBLDR UNDEF
#define CCFG_BC_PBLDR VALID (x)
// Parameter passed to bootloader
union {
uint32 t val32;
#define CCFG_BC_ BLDRCFG_UNDEF OXFFFFFFFF
// Serial ROM bootloader parameters (also used in FCFG.h)
struct serialRomBldrParam struct {
uint32 t bldrEnabled H
#define XCFG BC BLDR DIS 0
1
1

void*) 0xFFFFFFFO)
void*) 0xFFFFFFFC)
void*) 0xFFFFFFFF)
x) < CCFG_BC_PBLDR_USE_FCFG)

—~ e~~~
—~ e~~~

’

#define XCFG BC BLDR EN
uint32 t pinTriggerEnabled
#define XCFG_BC_PINTRIG DIS 0
#define XCFG BC PINTRIG EN 1

uint32 t pinTriggerLevel HEN
#define XCFG BC PINTRIG LEVEL LO 0
#define XCFG _BC PINTRIG LEVEL HI 1
uint32 t resO0 : 13;
uint32 t pinTriggerDio : 6;
uint32 t resl : 2;
uint32 t serialloCfglIndex : 3;
#define XCFG BC IOCFGIND DEFAULT O

’

TI Confidential — NDA Restrictions

https://www.ti.com/lit/ug/swcu185d/swcu185d.pdf?ts=1631717294807&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/swcu185d/swcu185d.pdf?ts=1631717294807&ref_url=https%253A%252F%252Fwww.google.com%252F

uint32 t res2 : 5;
b
} bldrParam;
// Pointer to application VTOR table
void* pAppVtor;
#define CCFG_BC_PAPP NONE ((void*)OxFFFFFFFF)
uint32 t crc32;

} bootCfg;

pBldrVtor

This pointer is used to specify if/which bootloader should be used.

CCFG_BC PBLDR USE FCFG - Indicates to use the bootloader that is specified as a
default in the FCFG (ROM Bootloader)

XCFG _BC PBLDR _FORBID - Indicates that the user doesn't want a bootloader to be
used

XCFG _BC PBLDR _UNDETF - Indicates that the user hasn't specified a bootloader
0xXXXXXXXX - Can indicate a completely variable pointer to a custom flash bootloader

bldrParam.serialRomBldrParam_struct

This struct contains the majority of the bootloader functional configuration.

bldrEnabled - Indicates if the bootloader should be enabled. If disabled, it's possible that
the bootloader still be entered/triggered, though the ROM Bootloader will only respond to
BLDR CMD_GET STATUS commands. In other words, if disabled, firmware updates are
not possible. This may be desired for security reasons.

pinTriggerEnabled - Indicates if the bootloader can be triggered via a GPIO pin.
Normally, the bootloader will only be triggered if there is no application. However if you'd
like to trigger the ROM Bootloader with a external pin, that behavior can be configured
here.

pinTriggerLevel - Only has effect if pinTriggerEnabled is enabled. This value indicates if
the bootloader is to be triggered by either a logic LOW or logic HIGH value on the GPIO
pin. If the configured pin has the configured value on bootup, the bootloader will be
triggered and instead of bootup into the application, the bootcode will remain in the
bootloader.

pinTriggerDio - only has effect if pinTriggerEnabled is enabled. This value indicates
which DIO should be used for reading the pinTriggerLevel.

serialloCfgIndex -

o Previous devices had no restrictions on which DIO's could be muxed to peripherals.
For instance, any and all DIOs could be used for UART/SPI peripherals. This is not
the case for the CC23xx devices, there are a very limited subset of DIOs that can be
muxed to the UART/SPI peripherals and in addition, there are specific muxing
settings for each pin that need to be known ahead of time. For these reasons, the
bootloader makes use of a table of possible serial IO configurations. Where each
index into the table has its own set of pre-configured DIOS.

TI Confidential — NDA Restrictions

.txDio ExMux
.misoDio i

ices (LaunchPad compatible) */

ExMux
.misoMus

(]

o The value of serialloCfgIndex indicates which index of the BldrloCfgTable to be
used. For example, if serialloCfgIndex has a value of 0x00, then the Oth index of
the table will be used and the DIOS specified in that index are to be used for any/all
bootloader communication.

Note: By default, the FCFG sets pin 21 as backdoor pin. FCFG default shouldn’t all that important
in most cases because if there is no CCFG, then the bootloader will run regardless of trigger pin.

pAppVtor

This pointer is used to specify if/where the application vector table resides. If this value points to
valid flash memory, then the bootcode/bootloader will attempt to pass execution on to the
application through this vector table. Of course, if the bootcode/bootloader is unable to pass
execution to the application for any reason, then the bootloader will still be triggered as a fall back.

Bootloader Entry Conditions

Invocation conditions

Using the FCFG and CCFG struct as described above the bootloader will be entered based on the
following conditions.

e Bootloader is configured with CCFG settings if all of the following conditions are true:
The device is not exiting a shutdown

FCFG is valid

FCFG.bootCfg.pBldrVtor != XCFG_BC PBLDR _FORBID

CCFG is valid

XCFG_BC PBLDR VALID(CCFG.bootCfg.pBldrVtor)

O O O O O

TI Confidential — NDA Restrictions

e Bootloader is configured with FCFG settings if all of the following conditions are true:
o The device is not exiting a shutdown

The conditions for the Bootloader to be configured with the CCFG were not met

FCFG is valid

XCFG_BC PBLDR_VALID(FCFG.bootCfg.pBldrVtor)

CCFQG is invalid OR CCFG.bootCfg.pBldrVtor is

not XCFG_BC PBLDR_FORBID

o O O O

If the conditions are met for the CCFG settings, the bootloader will be invoked using the settings
of the CCFG. Conversely, if the conditions are met for the FCFG settings, the bootloader will be
invoked using the settings of the FCFG.

Bootloader Definition

Here is the function prototype of the ROM Bootloader.

__noreturn static void EnterBootloader (serialRomBldrParam t bldrParam,
bldrEntryFlags t bldrFlags);

Just as the ROM Bootloader has been defined, it's possible for a customer to create their own
bootloader in flash. In such a situation, it is important the flash bootloader use the same function
prototype and use the bldrParam and bldrFlags as they've been provided from the bootcode.

The ROM Bootloader sets 'CFGAP.DEVICESTATUS.BOOTSTA = 0xBA (BLDR_STARTED)"
immediately upon invocation.

As seen in the function prototype, there are two input params to any bootloader.

o serialRomBldrParam_t bldrParam
o We've already seen the definition for this in the CCFG/FCFG
o This will hold the CCFG or FCFG settings depending on the method of invocation
e bldrEntryFlags t bldrFlags
o This is a struct that can be found in platform.h. It provides helpful information
regarding the state of the device and the invocation of the bootloader.

passing flag der/applicatio try function

resg

} bldr;
} FldrEntryFlags_t;

TI Confidential — NDA Restrictions

The ROM Bootloader uses these two parameters to determine what should be done next. The two
possible outcomes are

1. Stay in the ROM Bootloader
2. Pass through to the application in Flash

Stay in the ROM Bootloader

Although the bootloader has been invoked, we still need to determine based on the bldrParams if
we should stay in the bootloader. There are two reasons for this.

1. bldrFlags.bldr.bAppCanBoot is False
1. If there is no application in flash, then the bootloader cannot continue execution and
is forced to stay
2. If there is an application in flash, but for whatever reason it is not able to bootup,
the bootloader is forced to stay.
2. The bootloader trigger pin is enabled and active

If the following conditions are met, then the trigger pin has been activated and the
bootloader will stay.

bldrParams.pinTriggerEnabled is True AND the DIO specified by
bldrParams.pinTriggerDio has the value (high/low) specified by the
bldrParams.pinTriggerLevel

If it is determined to stay in the bootloader, then the bootloader will begin to select the serial
interface being used.

Pass through to the application in flash

Although the bootloader has been invoked, it's still possible that the bootloader decides to continue
the boot sequence and pass through to the application in flash.

If the conditions for staying in the bootloader are not met, the bootloader will pass on execution
and the application application vector will soon be invoked.

The bootloader sets CFGAP.DEVICESTATUS.BOOTSTA = 0xC0O (BLDR_COMPLETE)

Serial Interface Selection
Just as it was with previous devices, the ROM Bootloader supports SPI and UART. In order to
determine which interface is being used in any given situation, it will listen on the UART RX and
SP1 lines for incoming traffic.

o UART

TI Confidential — NDA Restrictions

The bootloader waits for what is called the auto baud sequence. This is simply a two byte
alternating bit pattern (0x55). If this sequence is received on the UART RX DIO, the
bootloader will recognize that UART is the desired interface and calculate the baud rate it was
sent with. After configuring the UART to match the incoming baud rate, a customer is free to
send/receive normal bootloader commands.

e SPI
The bootloader waits for any traffic at all over SPI. If the SPI hardware detects properly
formatted SPI transactions, the bootloader will recognize that SP1 is the desired interface and
finish up the SPI configuration. From this point on a customer is free to send/receive normal
bootloader commands.

After the serial interface has been selected, the normal command processing loop begins

Packet Protocol

Again, the packet protocol is identical to the ROM Bootloader of past devices. The protocol is
described in more detail in the CC26x2 TRM. Here is an image of that section for quick review.

10.2.1 Packet Handling

The bootloader uses well-defined packets to ensure reliable communications with the external
communicating program. All communications (with the exception of the UART automatic baud [see
Section 10.2.2.1]) use these well-defined packets. The packets are always acknowledged or not
acknowledged by the communicating devices with defined ACK or NACK bytes.

The packets use the same format for receiving and sending packets. This format includes the method to
acknowledge successful or unsuccessful reception of a packet.

While the actual signaling on the serial ports is different, the packet format remains the same for
supported UART and SS| interfaces.

Packet send and packet receive must adhere to the simple protocol shown in Figure 10-1.

Figure 10-1. Sequence Diagram for Send and Receive Protocol

:Sender :Receiver

i
—

Wait for nonzero data,

= Send size of packset N
read size

Send packet checksum I_l Get chacksum

Send byta 1

Get packet data

Send byts N

H
H

Calculate packet
Await ACK Send ACK checksum, signal

" A result

Commands

Command IDs

TI Confidential — NDA Restrictions

https://www.ti.com/lit/ug/swcu185d/swcu185d.pdf?ts=1631717294807&ref_url=https%253A%252F%252Fwww.google.com%252F

CMD ID Value
BLDR CMD PING 0x20
BLDR CMD_ GET STATUS 0x21
BLDR CMD GET PART ID 0x22
BLDR CMD_ RESET 0x23
BLDR CMD_CHIP ERASE 0x24
BLDR CMD_CRC(C32 0x25
BLDR CMD DOWNLOAD 0x26
BLDR CMD DOWNLOAD CRC |0x27
BLDR CMD SEND DATA 0x28

Command List
BLDR_CMD_PING

This command is used to receive an acknowledge from the bootloader proving that communication
has been established. This command is a single byte.

Byte | Field Value Description

0 cmdld | BLDR_CMD PING | Ping Command ID

BLDR_CMD_GET_STATUS

This command returns the status of the last command that was issued. Typically this command
should be received after every command is sent to ensure that the previous command was
successful or, if unsuccessful, to properly respond to a failure. The command requires one byte in
the data of the packet and the bootloader should respond by sending a packet with one byte of data
that contains the current status code.

Byte | Field Value Description

0 cmdld | BLDR_CMD_GET _STATUS | Get StatusCommand ID

Possible returned status codes are as follows.

Status Codes

Return Name Value Description

TI Confidential — NDA Restrictions

BLDR_CMD RET SUCCESS

0x40

This is returned in response to a
BLDR_CMD_GET_STATUS command
and indicates that the previous command
completed successful.

BLDR CMD RET UNKNOWN CMD

0x41

This is returned in response to a
BLDR_CMD_GET_STATUS command
and indicates that the command sent was an
unknown command.

BLDR CMD RET INVALID CMD

0x42

This is returned in response to a
BLDR_CMD_GET_STATUS command
and indicates that the previous command
was formatted incorrectly.

BLDR _CMD RET INVALID ADR

0x43

This is returned in response to a
BLDR_CMD_GET_STATUS command
and indicates that the previous download
command contained an invalid

address value.

BLDR_CMD RET FLASH FAIL

0x44

This is returned in response to a
BLDR_CMD_GET_STATUS command
and indicates that an attempt to program or
erase the flash has failed.

BLDR CMD RET CRC FAIL

0x45

This is returned in response to a
BLDR_CMD_GET_STATUS command
and indicates that the previous CRC32
command match failed.

BLDR_CMD RET NEEDS CHIP ERASE

0x46

This is returned in response to a
BLDR_CMD_GET_STATUS command
and indicates that the previous Download
command failed because a

BLDR CMD_ CHIP_ERASE command
must be run first.

BLDR_CMD_GET_PART_ID

This command is sent to the bootloader to get the Part ID of the device.

Byte | Field Description

0 cmdld

BLDR CMD GET PART ID command ID

BLDR_CMD_RESET

TI Confidential — NDA Restrictions

This command is used to tell the bootloader to reset. This can be is used after downloading a new
image to the device to cause the new application to start from a reset. The normal boot sequence
occurs and the image runs as if from a hardware reset. It can also be used to reset the bootloader if
a critical error occurs and the host device wants to restart communication with the boot loader.

The bootloader responds with an ACK signal to the host device before actually executing the
system reset of the device running the bootloader. This informs the updater host device that the
command was received successfully and the part will be reset.

Byte | Field Description

0 cmdld | BLDR_CMD RESETcommand ID

BLDR_CMD_CHIP_ERASE

This command is used to perform a chip erase of the device. All main flash bank sectors not
protected by FCFG1 and CCFG protect bits will be erased. The CCFG will be erased once the
bank erase has completed.

This command will first invalidate the CCFG and then begin erasing all unprotected sectors in the
main flash bank. Once the flash sectors have been erased, it will finally erase the contents of the
CCFG.

If the CCFG permissions disallow a chip erase, the command will respond
with CMD_INVALID_CMD.

Byte | Field Description

0 cmdld | BLDR _CMD CHIP_ERASE command ID

BLDR_CMD_CRC32

This command is sent to the bootloader to calculate a CRC32 for a specified memory area. The
command consists of three 32-bit values that are each transferred MSB first.

The Memory address must be sector aligned. Only memory addresses within the main flash region
or the CCFG_BASE address itself are valid.

The Size must be sector aligned or (sector - 4 bytes) aligned.
The combination of memory address and size cannot go outside of either the main flash region or
the CCFG region. If the parameters are valid, the command will only report if the expected

CRC matches the calculated CRC. One should follow up this command with the
BLDR_CMD_GET_STATUS to read the result of the CRC comparison.

TI Confidential — NDA Restrictions

Byte Field Description

BLDR CMD CRC32

0 cmdld command ID
1 Memory

Address [31:24]
) Memory

Address [23:16]

Memory Address to

3 Memory start the CRC

Address [15:8] | calculation
4 Memory

Address [7:0]
5 Memory Area

Size [31:24]
6 Memory Area

Size [23:16]

5 |Memory Area | Number of bytes to
Size [15:8] run the CRC

calculation over

3 Memory Area
Size [7:0]
9 Expected CRC
[31:24]
10 Expected
CRC [23:16] The CRC value the
host is expecting the
11 |Expected CRC calculation will
CRC[15:8] result in
12 Expected CRC
[7:0]

BLDR_CMD_DOWNLOAD

This command is sent to the bootloader to indicate where to store data and how many bytes will be
sent by the BLDR_CMD_SEND_DATA commands that follow. The command consists of two
32-bit values that are both transferred MSB first.

The first 32-bit value is the address to start programming data into, while the second is the 32-bit
size of the data that will be sent.

TI Confidential — NDA Restrictions

This command should be followed by BLDR_CMD_GET_STATUS to ensure that the program
address and program size were valid for the device running the bootloader.

Byte Field Description
BLDR CMD DOWNLOAD
0 cmdId — _
command ID
1 Program
Address [31:24]
) Program
Address [23:16]
3 Program Start address of the
Address [15:8] download
4 Program
Address [7:0]
5 Program Size
[31:24]
6 Program Size
[23:16]
7 Program Size
[15:8] Number of bytes (length of
the download)
g Program Size
[7:0]

BLDR_CMD_DOWNLOAD_CRC

This command is sent to the bootloader to indicate where to store data, how many bytes will be
sent by the BLDR_CMD_SEND_DATA commands that follow and the crc32 value covering all
the bytes.

The command consists of three 32-bit values that are all transferred MSB first. The first 32-bit
value is the address to start programming data into, the second is the 32-bit size of the data
that will be sent and the third is the 32-bit crc expected value.

This command should be followed by a BLDR_CMD_GET_STATUS to ensure that the program
address and program size were valid for the device running the bootloader.

Byte Field Description

BLDR_CMD DOWNLOAD CRC

0 cmdld command D

TI Confidential — NDA Restrictions

Program
Address [31:24]

) Program
Address [23:16]
3 Program Start address of the download
Address [15:8]
4 Program
Address [7:0]
5 Program Size
[31:24]
6 Program Size
[23:16]
7 Program Size
[15:8] Number of bytes (length of the
download)
3 Program Size
[7:0]
9 Expected
CRC [31:24]
Expected CRC | The expected CRC ca_lculation over the
10 [23:16] completed download image.
11 |Expected If the CRC calculation fails, the
CRC[15:8] download will be considered a failure
0 Expected and zjmmecljla':jelél erase the content that
CRC [7:0] was downloaded.

BLDR_CMD_SEND_DATA

This command should only follow a BLDR_CMD_DOWNLOAD command or another

BLDR_CMD_SEND_DATA command, if more data is needed.

Consecutive send data commands automatically increment the address and continue programming
from the previous location. The caller should allow the device to finish the flash programming
before issuing another command in order to avoid overflowing the input buffers of the serial
interface. The command terminates programming once the number of bytes indicated by

the BLDR_CMD_DOWNLOAD command has been received. Each time this function is called, it
should be followed by a BLDR_CMD_GET_STATUS command to ensure that the data was

successfully programmed into the flash.

TI Confidential — NDA Restrictions

If the bootloader responds with a BLDR_CMD_NAK to this command, the bootloader will not
increment the current address to allow re-transmission of the previous data.

A maximum of 253 bytes of data can be sent per BLDR_CMD_SEND_DATA command.

Byte

Field Description

0

BLDR_CMD SEND DATA

cmdld command D

1

download image[0]

X <=
253

Consecutive bytes of the image to

download_image[X |0 qownloaded

<=253]

FW Image Update Example

The following steps can be followed to perform a FW image update to a device enabled to run the
ROM Bootloader.

For this example, let's assume we have an updated application which begins at address
0x00000000, has a length of 0x28000 and a CRC over all of the bytes has a value of
OXFACEFACE.

1.

The device needs to bootup into the ROM Bootloader. This can be done either by setting
the pAppVtor to an invalid value OR by setting the pinTriggerDio to the
specified pinTriggerLevel.
The bootloader needs to know which serial interface is being used.
1. UART - send the AutoBaud sequence as described in the CC26x2 Technical
Reference Manual
2. SPI - send any ROM Bootloader cmd (pin command is a good suggestion)
Now that the bootloader is triggered and it you're communicating with it correctly, prepare
the device for the FW image update
1. Send the BLDR CMD_CHIP_ERASE command
2. Wait for the ACK/NACK and then send the BLDR CMD GET STATUS
3. Wait for the ACK/NACK and ensure the previous command was completed
successfully with the BLDR _CMD RET SUCCESS value
Start the Application Download
1. Send the BLDR CMD_ DOWNLOAD_ CRC command, passing as input the
startAddress=(0x00000000), length=(0x28000), CRC=(0xFACEFACE)
2. wait for the ACK/NACK and then send the BLDR CMD_ GET STATUS
3. wait for the ACK/NACK and ensure the previous command was completed
successfully with the BLDR _CMD RET SUCCESS value

TI Confidential — NDA Restrictions

https://www.ti.com/lit/ug/swcu185d/swcu185d.pdf?ts=1631717294807&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ug/swcu185d/swcu185d.pdf?ts=1631717294807&ref_url=https%253A%252F%252Fwww.google.com%252F

5. Loop over the bytes of the image and send the data to the ROM Bootloader
1. Send the BLDR CMD_SEND DATA command, passing as input the next 253
bytes of the application image.
2. wait for the ACK/NACK and then send the BLDR CMD_ GET STATUS
3. wait for the ACK/NACK and ensure the previous command was completed
successfully with the BLDR CMD_RET SUCCESS value
4. Repeat steps Sa-5c until all 0x28000 bytes have been transferred
6. Start the CCFG Download
1. Send the BLDR CMD DOWNLOAD CRC command passing as input the
startAddress=(0x4E020000), length=(2048), CRC=(calc_crc(ccfg_contents))
2. wait for the ACK/NACK and then send the BLDR CMD_ GET STATUS
3. wait for the ACK/NACK and ensure the previous command was completed
successfully with the BLDR CMD RET SUCCESS value
7. Loop over the bytes of the CCFG contents and send the data to the ROM Bootloader
1. Send the BLDR CMD SEND DATA command, passing as input the next 253
bytes of the CCFG content.
2. wait for the ACK/NACK and then send the BLDR CMD_ GET STATUS
3. wait for the ACK/NACK and ensure the previous command was completed
successfully with the BLDR CMD_RET SUCCESS value
4. Repeat steps 5a-5c until all 2048 bytes have been transferred
8. Reset the device either by pulling the RST pin externally or by sending the
BLDR_CMD_RESET command.
1. Keeping in mind that the triggerPin should now be inverted so that the
bootcode/bootlaoder can freely pass execution onto the application this time around
9. DONE! The device will now bootup into the new flash content that has been programmed
to 1t.

TI Confidential — NDA Restrictions

