CC256x TI Bluetooth Stack HSPDemo App

Return to CC256x MSP432 TI’s Bluetooth stack Basic Demo APPS (http://www.ti.com/lit/ug/swrugq53a/swrug53a.pdf)

Return to CC256x STM32F4 TI'’s Bluetooth stack Basic Demo APPS (http://www.ti.com/lit/ug/swru428/swrug28.pdf)

Contents

Demo Overview
Running the Bluetooth Code
Demo Application
Headset role
Server setup on the demo application
Client setup and device discovery
Audio Gateway role
Server setup on the demo application
Client setup and device discovery
Example: Audio gateway with a commercial headset

Application Commands
Generic Access Profile Commands
Help (DisplayHelp)
Inquiry
Pair
EndPairing
PINCodeResponse
PassKeyResponse
UserConfirmationResponse
SetDiscoverabilityMode
SetConnectabilityMode
SetPairabilityMode
ChangeSimplePairingParameters
GetlLocalAddress
SetLocalName
GetlLocalName
SetClassOfDevice
GetClassOfDevice
GetRemoteName
HeadSet Profile Commands

OpenServer
CloseServer
PressButton
ChangeSpeakerGain
ChangeMicrophoneGain
OpenClient
CloseClient
Ringlndication
ManageAudio

Demo Overview

4 Note: The same instructions can be used to run this demo on the MSP432 or STM32F4 Platforms.

The Headset profile (HSP) is used to connect a headset or speakerphone with a mobile device or used to connect a Audio gateway with headset device to provide basic control and voice

connections. The Headset profile supports two roles, Headset and Audio Gateway. This document demonstrates how to use both roles of the profile.

It is recommended that the user visits the kit setup Getting Started Guide for MSP432 (http://www.ti.com/lit/ug/swrugq53a/swrugs3a.pdf) or Getting Started Guide for STM32F4 (htt
p://www.ti.com/lit/ug/swrugq28/swruq28.pdf) pages before trying the application described on this page.

Running the Bluetooth Code

Once the code is flashed, connect the board to a PC using a miniUSB or microUSB cable. Once connected, wait for the driver to install. It will show up as XDS110 Class
Application/User UART (COM x) for MSP432, under Ports (COM & LPT) in the Device manager. Attach a Terminal program like PuTTY to the serial port x for the board. The serial
parameters to use are 115200 Baud, 8, n, 1. Once connected, reset the device using Reset S3 button (For MSP432) and you should see the stack getting initialized on the terminal and the
help screen will be displayed, which shows all of the commands.

= COM14 - PUTTY

Note: The information shown in the yellow square holds the FW, BTPS and application versions for future use.

Demo Application

This section provides a description of how to use the demo application to connect smart phone over Bluetooth HSP profile, the same for the second smart phone. Bluetooth HSP is a
simple Client-Server connection process with one side, the Client, operating in the Audio-Gateway role and the other, the Server, operating in the Handsfree role. We will setup the
boards as a Handsfree Server and use an android phone as the Client. Once connected, we can use the STM3240G-EVAL board as headset, with audio connected to the earphone jack.

Headset role

Server setup on the demo application
a) After initialization of the application we need to choose our role, this section will describe the Headset role, issue the Headset command in order to choose this role.

After selecting the role you will be able to see the commands for this role.

EP COML4 - PuTTY

b) Optional: Give a name for the STM3240G-EVAL board issuing the SetLocalName command. In our example we give it a name of hspserver. The default application name is

HSPDemo.

¢) Open a HSPServer by isssuing the OpenServer command. Below we use OpenServer to open the port.

B COMILA - PUTTY
H3[Cpenferver

[[-50- f]

- Opened (Channel = 1).

Client setup and device discovery

d) Open the bluetooth settings menu on the android phone Settings->Bluetooth. The menu should look similar to the picture below in section e.

e) Hit on Search for devices. The phone should begin looking for other bluetooth devices.

o Bluetooth

Nexus S
Only visible to paired devices

PAIRED DEVICES

Vx680 BT AP

AVAILABLE TOUCH TO PAIR
DEVICES

SEARCH FOR DEVICES

) The Demo device should appear like shown below in the picture with the given name from section b. or the default name HSPDemo. Click on the device name to begin pairing.

than |

(5 Bluetooth

Nexus S
Only visible to paired devices

PAIRED DEVICES

Vx680 BT AP

V

AVAILABLE TOUCH TO PAIR
DEVICES

e
i ol hspserver

BlueRadios300048

BELKIN_d4f4d6[192.168.20.3]

SEARCH FOR DEVICES

g) After the devices are paired (In legacy pairing the Android will prompt for four digits code and then the terminal prompts for PINCodeResponse that should be answered with
PINCodeResponse <Four digit code>, the device should show connected on the phone side and print Open Service Level Connection Indication on the terminal .

“® Only visible to paired devices

PAIRED DEVICES

‘f“" hspserver
— Connected

Vx680 BT AP

AVAILABLE TOUCH TO PAIR
DEVICES

BlueRadios300048

BELKIN_d4f4d6[192.168.20.3]

SEARCH FOR DEVICES

£ COMI4 - PuTTY

ion, HDEETID: 0OxO0001

onnection Ind

ID: Ox0001.

1) To Close the HSPserver, issue the CloseServer <port number> command.

BB COMLY - PuTTY
SE-C1 r

Audio Gateway role

4 Note: The following instructions connect two boards running the HSP profile as a Headset and Audio Gateway.

. Server setup on the demo application
a) After initialization of the application on the first board, we need to choose our role, this section will describe the Headset role, issue the Headset command in order to choose this
role.

After selecting the role you will be able to see the commands for this role.

EF COML4 - PuTTY =
z Mo

b) Optional: Give a name for the STM3240G-EVAL board issuing the SetLocalName command. In our example we give it a name of hspserver. The default application name is
HSPDemo.

¢) Open a HSPServer by isssuing the OpenServer command. Below we use OpenServer to open the port.

P COM14 - PUTTY

Opened (Channel = 1).

Client setup and device discovery

d) After initialization of the application on the second board, we need to choose our role, this section will describe the Audio Gateway role. Issue the AudioGateway command in
order to choose this role.

After selecting the role you will be able to see the commands for this role.

i Command Options: Headset, AudioGateway. Help
IChoose Mode>audiogateway

Command Options: -
Ei KeyResponse,

= *
b x
e *
ol overahilityMode,. SetConnectabhilityMode.
= ahilityMode, b
i ChangeSimplePa; ngParameters. b
o GetLocalAddr: GetLoca |
e GetClassOfDevice, SetCl |
el GetRemoteMame, ServiceD **
ol OpenClient, CloseClient **
= RingIndication, GhangeSpeakerGain, b
il ChangeMicrophoneGain. b
ol ManagefAudio. *|
e Help, Quis *

GAP_Perform_Inguiry<> SUCCESS.
Resul BxDC53606AB62A .

Entry Resul BxESB1LFC?88B7E.

Entry Result: BxBBC255D1D645.

Entry Resul Bx244BA3IF712D3 .

Entry Result: BxBAB448F4883D.

_Result: Found.

Result: BxDC53606AR62A .

Result: AxESB1FC?8AE7VE.
AP Inguiry Result: BxB8C255D1 D645 .
AP Inguiry Result: Bx244BA3IF712D3 .
AP Inguiry Result: 5. BxBBB448F4883D.

f) After the Inquiry command has finished a list of found devices will be printed to the console. Note that we can retrieve the list again by issuing the DisplayInquiryList command.

g) After we found the device we need to issue the OpenClient command to open the Client port.

Gropenclient 3 1
DSET_Open_Remote_Headset Port() was successful.

G>
DSET Open Port Confirmation, HDSETID: @x88081,. Status @xB000.

h) You should receive an HDSET Open Remote Headset Port indication on the Client and Server consoles:

nG>
JHDSET Open Port Gon » Status Bx

The Server console also prints out the connected BD_ADDR.

HS >
HDSET Open Port Indication. HDSETID: 8x88@1
BD_ADDR: BxBAB448F47D74

i) You must now ring the Server device in order to begin the audio streaming process. This can be accomplished by issuing the RingIndication command on the Client.

AGrringindication
DSET_Ring_Indication<» Success.

j) The Server will receive a HDSET Ring Indication.

HE >
HDSET Ring Indication,. I1D: @x80881.
Anzwer with respond command: PresszButton

k) To Answer the Incoming Call or hang up an active call issue the PressButton command from the Server.

HS >presshutton
HDSET_Send_Button_Press(» Success.

HE >
HDSET Audio Connection Indication, ID: BxB8881.

1) The Client will receive both a HDSET Button Pressed and HDSET Audio Connection indications.

AG>
DSET Button Pressed Indication, ID: @x@B@1. Connection Present: BxB0@1.

G>
DSET Audio Connection Indication. ID: Bx@8@1.

m) To Close the HSPserver, issue the CloseServer <port number> command.

Example: Audio gateway with a commercial headset

This demonstrates setting up the client to connect to a commercial headset.

a) This section will describe the Audio Gateway role. Issue the AudioGateway command in order to choose this role.
After selecting the role you will be able to see the commands for this role.

OpenStack().

Stack Initialization on Port 1 115208 (UART) Successful.
Bluetooth Stack ID: 1

Device Chipset: 4.1

BTPS Version : 4.0.3.0

Project Type : 6

FW Version 1 7.26
App Name : HSPDemo
App Version 1 0.1

LOCAL BD_ADDR: ©xB@B448F49D74
GAP_Set_Connectability_Mode(cmConnectable).
GAP_Set_Discoverability_Mode(dmGeneralDiscoverable, 0).
GAP_Set_Pairability_Mode(pmPairableMode).
GAP_Register_Remote_Authentication() Success.

* Command Options: Headset, AudioGateway, Help *

Choose Mode>AudioGateway

2K e e ok o s ok sk ok ok sk ok ok e sk ok sk ok sk ke ok o ok s s ok sk ok sk ok s ok s s ok sk sk ok sk ok ok sk skl o skok sk ok ik ok ok skok k ko kok
* Command Options: Inquiry, DisplayInquirylList, Pair, *
* EndPairing, PINCodeResponse, PassKeyResponse, *
* UserConfirmationResponse, *
* SetDiscoverabilityMode, SetConnectabilityMode, *
* SetPairabilityMode, *
* ChangeSimplePairingParameters,

* GetLocalAddress, GetLocalName, SetLocalName,

* GetClassOfDevice, SetClassOfDevice,

* GetRemoteName, ServiceDiscovery,

* OpenClient, CloseClient,

* RingIndication, ChangeSpeakerGain,

* ChangeMicrophoneGain,

* ManageAudio,

* Help, Quit
B R ———

* Ok K K K K K K K

b) In order to open the Client port, we need to find the device we want to connect to, to do so we issue the Inquiry command to start scanning for nearby devices.

AG>Inquiry
‘Return Value is @ GAP_Perform_Inquiry() SUCCESS.

c¢) After the Inquiry command has finished a list of found devices will be printed to the console. ;* Note: We can retrieve the list again by issuing the DisplayInquiryList command.

&

AG>
GAP Inquiry Entry Result: ©x244B@3F712D3.

AG>
\GAP Inquiry Entry Result: ©x340286605044.

AG>
'GAP Inquiry Entry Result: ©x@00DFD4Q72EF.

AG>

GAP_Inquiry_Result: 3 Found.

GAP Inquiry Result: 1, @x244B@3F712D3.
IGAP Inquiry Result: 2, 0x340286605044.
iGAP Inquiry Result: 3, 0Ox0@00DFD4072EF.

AG>GetRemoteName 3
pAP_Query_Remote_Device_Name: Function Successful.

H
iAG>

(GAP Remote Name Result: BD_ADDR: ©x@@@DFD4072EF.
iGAP Remote Name Result: Motorola S10-HD.

e) Discover services of the remote HFP server by issuing the ServiceDiscovery 3 11, command to get the port number.

y Note: The port ID on the remote Hands free device is 0xo2 (The Unsigned int), from the Attribute ID 0x0004. This port ID is used in the following OpenAudioGatewayClient

command as its second parameter after being converted to its decimal equivilant (10).

'AG>ServiceDiscovery
Usage: SERVICEDISCOVERY [Inquiry Index] [Profile Index] [16/32 bit UUID (Manual only)].

Profile Index:
@) Manual (MUST specify 16/32 bit UUID)
1) L2CAP
2) Advanced Audio
3) A/V Remote Control
4) Basic Imaging
5) Basic Printing
6) Dial-up Networking
7) FAX
8) File Transfer
9) Hard Copy Cable Repl.
10) Health Device
11) Headset
12) Audio gateway
13) HID
14) LAN Access
15) Message Access
16) Object Push
17) Personal Area Network
18) Phonebook Access
19) SIM Access
20) Serial Port
21) IrSYNC

Function Error.

AG>ServiceDiscovery 3 11
SDP_Service_Search_Attribute_Request(Headset) Success.

AG>

ESDP Service Search Attribute Response Received (Size = 0x0010)
iService Record: 1:
Attribute ID 0x8000

Type: Unsigned Int = 0x00010001
Attribute ID 0x0001

Type: Data Element Sequence
Type: UUID_16 = 0x1108
Type: UUID_16 = 0x1203
Attribute ID 0x0004

Type: Data Element Sequence
Type: Data Element Sequence
Type: UUID_16 = 0x0100
iType: Data Element Sequence
iType: UUID_16 = 0x0003
Type: Unsigned Int = 0x02
Attribute ID @x0006

ﬁype: Data Element Sequence
Type: Unsigned Int = OX656E
iType: Unsigned Int = @x@06A
EType: Unsigned Int = 0x0100
Attribute ID ©x8009

pre: Data Element Sequence
;Type: Data Element Sequence
iType: UUID_16 = @x1108
pre: Unsigned Int = 0x0100
Attribute ID 0x0100

ﬁype: Text String = Headset
'

. iattribute ID ©x8302
iType: Boolean = TRUE
!

H
H

iAG>OpenClient

WUsage: Open [Inquiry Index] [RFCOMM Server Port].
EFunction Error.

h

hG>0penclient 32
HDSET_Open_Remote_Headset_Port() was successful.

IG>
atPINCodeRequest: ©x00@DFD4O72EF

Respond with the command: PINCodeResponse

AG>PINCodeResponse 0000
iGAP_Authentication_Response(), Pin Code Response Success.

AG>

atLinkKeyCreation: ©x@00DFD4072EF

Link Key: Ox19CDEF146AF8A709A1C93BAA99A6ESEE
Link Key Stored locally.

1AG>
HDSET Open Port Confirmation, HDSETID: ©x0001, Status ©x0000.

AG>
HDSET Speaker Gain Indication, ID: 0x0001, Gain: 0x0005.

AG>
EHDSET Microphone Gain Indication, ID: @x0001, Gain: ©x@00A.
h

iAG>RingIndication
HDSET_Ring_Indication() Success.
h

AG>ManageAudio
Usage: Audio [Release = 0, Setup = 1].
Function Error.

AG>ManageAudio 1
HDSET_Setup_Audio_Connection: Function Successful.

AG>
HDSET Audio Connection Indication, ID: ©x0001.

AG>ManageAudio @
HDSET_Release_Audio_Connection: Function Successful.

AG>RingIndication
HDSET_Ring_Indication() Success.

Application Commands

TT’s Bluetooth stack is implementation of the upper layers of the Bluetooth protocol stack. TI's Bluetooth stack provides a robust and flexible software development tool that implements
the Bluetooth Protocols and Profiles above the Host Controller Interface (HCI). TI's Bluetooth stack's Application Programming Interface (API) provides access to the upper-layer

protocols and profiles and can interface directly with the Bluetooth chips.

An overview of the application and other applications can be read at the Getting Started Guide (http://www.ti.com/lit/ug/swrugs3a/swru4s3a.pdf) for MSP432 and Getting Started
Guide (http://www.ti.com/lit/ug/swrug28/swrug28.pdf) for STM32F4.

This page describes the various commands that a user of the application can use. Each command is a wrapper over a TI's Bluetooth stack API which gets invoked with the parameters
selected by the user. This is a subset of the APIs available to the user. TI’s Bluetooth stack API documentation (TI_Bluetooth_Stack_Version-Number\Documentation or for
STM32F4, TI_Bluetooth_Stack_Version-Number\RTOS_VERSION\Documentation) describes all of the API's in detail.

" Generic Access Profile Commands

The Generic Access Profile defines standard procedures related to the discovery and connection of Bluetooth devices. It defines modes of operation that are generic to all devices and
allows for procedures which use those modes to decide how a device can be interacted with by other Bluetooth devices. Discoverability, Connectability, Pairability, Bondable Modes, and
Security Modes can all be changed using Generic Access Profile procedures. All of these modes affect the interaction two devices may have with one another. GAP also defines the
procedures for how bond two Bluetooth devices.

Help (DisplayHelp)
Description
The DisplayHelp command will display the Command Options menu. Depending on the UI_MODE of the device (Server or Client), different commands will be used in certain situations.

The Open and Close commands change their use depending on the mode the device is in.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Help Menu.

Possible Return Values

The return value is always o

Inquiry

Description

The Inquiry command is responsible for performing a General Inquiry for discovering Bluetooth Devices. The command requires that a valid Bluetooth Stack ID exists before running.
This command returns zero on a successful call or a negative value if an error occurred during execution. The inquiry will last 10 seconds unless 20 devices (MAX_INQUIRY_RESULTS)

are found before that time limit.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Inquiry.

Possible Return Values

(0) Successful Inquiry Procedure

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_ BLUETOOTH_STACK_ID
(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-58) BTPS_ERROR_INVALID_MODE

API Call
GAP_Perform_Inquiry(BluetoothStackID, itGenerallnquiry, o, 0, 10, MAX_INQUIRY_RESULTS, GAP_Event_Callback, (unsigned long) NULL);

API Prototype
int BTPSAPI GAP_Perform_Inquiry(unsigned int BluetoothStackID, GAP_Inquiry_Type_t GAP_Inquiry_Type, unsigned int MinimumPeriodLength, unsigned int
MaximumPeriodLength, unsigned int InquiryLength, unsigned int MaximumResponses, GAP_Event_Callback_t GAP_Event_Callback, unsigned long CallbackParameter);

Description of API

This function is provided to allow a mechanism for starting an Inquiry Scan Procedure. The first parameter to this function is the Bluetooth Protocol Stack of the Bluetooth Device that is
to perform the Inquiry. The second parameter is the type of Inquiry to perform. The third and fourth parameters are the Minimum and Maximum Period Lengths which are specified in
seconds (only valid in case a Periodic Inquiry is to be performed). The fifth parameter is the Length of Time to perform the Inquiry, specified in seconds. The sixth parameter is the
Number of Responses to wait for. The final two parameters represent the Callback Function (and parameter) that is to be called when the specified Inquiry has completed. This function
returns zero is successful, or a negative return error code if an Inquiry was unable to be performed. Only ONE Inquiry can be performed at any given time. Calling this function with an
outstanding Inquiry is in progress will fail. The caller can call the GAP_Cancel_Inquiry() function to cancel a currently executing Inquiry procedure. The Minimum and Maximum
Inquiry Parameters are optional and, if specified, represent the Minimum and Maximum Periodic Inquiry Periods. The called should set BOTH of these values to zero if a simple Inquiry
Procedure is to be used (Non-Periodic). If these two parameters are specified, then these two parameters must satisfy the following formula:

MaximumPeriodLength > MinimumPeriodLength > InquiryLength

Pair

Description

The Pair command is responsible for initiating bonding with a remote Bluetooth Device. The function returns zero on a successful execution and a negative value on all errors. A
Bluetooth Stack ID must exist before attempting to pair and the device must not already be connected to any device (including the one it tries to pair with). It is also important to note

that the use of the Inquiry command before calling Pair is necessary to connect to a remote device. Both General and Dedicated bonding are supported.

Parameters

The Pair command requires one or two parameters with specific values in order to work successfully. The first parameter is the Inquiry Index of the remote Bluetooth Device. This
parameter is always necessary. This can be found after an Inquiry or displayed when the command DisplayInquiryList is used. If the desired remote device does not appear in the list, it
cannot be paired with. The second parameter is the bonding type used for the pairing procedure. It is an optional parameter which is only required if General Bonding is desired for the

connection. This must be specified as either o (for Dedicated Bonding) or 1 (for General Bonding). If only one parameter is given, the Bonding Type will be Dedicated Bonding.

- Command Call Examples
"Pair 5 0" Attempts to pair with the remote device at the fifth Inquiry Index using Dedicated Bonding.
"Pair 5" Is the exact same as the above example. If no parameters, the Bonding Type will be Dedicated.
"Pair 8 1" Attempts to pair with the remote device at the eighth Inquiry Index using General Bonding.

Possible Return Values

(0) Successful Pairing

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-1) BTPS_ERROR_INVALID_PARAMETER

(-59) BTPS_ERROR_ADDING_CALLBACK_INFORMATION
(-8) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Initiate_Bonding(BluetoothStackID, InquiryResultList[(TempParam->Params[o].intParam — 1)], BondingType, GAP_Event_Callback, (unsigned long)o);

API Prototype
int BTPSAPI GAP_Initiate_Bonding(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Bonding_Type_t GAP_Bonding_Type, GAP_Event_Callback_t
GAP_Event_Callback, unsigned long CallbackParameter);

Description of API

This function is provided to allow a means to Initiate a Bonding Procedure. This function can perform both General and Dedicated Bonding based upon the type of Bonding requested.
This function accepts as input, the Bluetooth Protocol Stack ID of the Local Bluetooth device that is perform the Bonding, the Remote Bluetooth address of the Device to Bond with, the
type of bonding to perform, and the GAP Event Callback Information that will be used to handle Authentication Events that will follow if this function is successful. If this function is
successful, then all further information will be returned through the Registered GAP Event Callback. It should be noted that if this function returns success that it does NOT mean that
the Remote Device has successfully Bonded with the Local Device, ONLY that the Remote Device Bonding Process has been started. This function will only succeed if a Physical
Connection to the specified Remote Bluetooth device does NOT already exist. This function will connect to the Bluetooth device and begin the Bonding Process. If General Bonding is
specified, then the Link is maintained, and will NOT be terminated until the GAP_End_Bonding function has been called. This will allow any higher level initialization that is needed on
the same physical link. If Dedicated Bonding is performed, then the Link is terminated automatically when the Authentication Process has completed.Due to the asynchronous nature of
this process, the GAP Event Callback that is specified will inform the caller of any Events and/or Data that is part of the Authentication Process. The GAP_Cancel_Bonding function can
be called at any time to end the Bonding Process and terminate the link (regardless of which Bonding method is being performed).When using General Bonding, if an L2CAP Connection
is established over the Bluetooth Link that was initiated with this function, the Bluetooth Protocol Stack MAY or MAY NOT terminate the Physical Link when (and if) an L2CAP
Disconnect Request (or Response) is issued. If this occurs, then calling the GAP_End_ Bonding function will have no effect (the GAP_End_Bonding function will return an error code in

this case).

EndPairing

Description

The EndPairing command is responsible for ending a previously initiated bonding session with a remote device. The function returns zero on a successful execution and a negative value
on all errors. A Bluetooth Stack ID must exist before attempting to end pairing and the device must already be connected to a remote device. It is also important to note that the use of
the Pair and Inquiry commands before calling EndPairing are necessary to disconnect from a remote device.

Parameters

The EndPairing command requires one parameter which is the Inquiry Index of the Remote Bluetooth Device. This value can be found after an Inquiry or displayed when the command
DisplayInquiryList is used. It should be the same value as the first parameter used in the Pair command, unless a new Inquiry has been called after pairing. If this is the case, find the
Bluetooth Address of the device used in the Pair command.

Command Call Examples
"EndPairing 5" Attempts to end pairing with the remote device at the fifth Inquiry Index.
"EndPairing 8" Attempts to end pairing with the remote device at the eighth Inquiry Index.

Possible Return Values

(0) Successful End Pairing
(-2)BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-1)BTPS_ERROR_INVALID_PARAMETER
(-58)BTPS_ERROR_INVALID_MODE

(-4) FUNCTION_ERROR

(-6) INVALID_ PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

API Call

GAP_End_Bonding(BluetoothStackID, InquiryResultList[(TempParam->Params[o].intParam — 1)]);

API Prototype

int BTPSAPI GAP_Initiate_Bonding(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Bonding Type t GAP_Bonding_Type, GAP_Event Callback_t
GAP_Event_Callback, unsigned long CallbackParameter);

Description of API
This function is provided to allow a means to terminate a connection that was established via a call to the GAP_Initiate_Bonding function (that specified general bonding as the bonding

type to perform). This function has NO effect if the bonding procedure was initiated using dedicated bonding (or the device is already disconnected). This function accepts the Bluetooth

- device address of the remote Bluetooth device that was specified to be bonded with (general bonding). This function terminates the ACL connection that was established and it
guarantees that NO GAP Event Callbacks will be issued to the GAP Event Callback that was specified in the original GAP_Initiate_ Bonding function call (if this function returns success).

PINCodeResponse

Description

The PINCodeResponse command is responsible for issuing a GAP Authentication Response with a PIN Code value specified via the input parameter. This function returns zero on a
successful execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function. The device must also be in the middle of an on-going
Pairing operation that was started by the local device or a remote device.

Parameters

The PINCodeResponse command requires one parameter which is the PIN Code used for authenticating the connection. This is a string value which can be up to 16 digits long. The
initiator of the Pairing will see a message displayed during the Pairing Procedure to call this command. A responder will receive a message to call this command after the initiator has put
in the PIN Code.

Command Call Examples
"PINCodeResponse 1234" Attempts to set the PIN Code to "1234."
"PINCodeResponse 5921302312564542 Attempts to set the PIN Code to "5921302312564542." This value represents the longest PIN Code value of 16 digits.

Possible Return Values

(0) Successful PIN Code Response

(-4) FUNCTION_ERROR

(-6) INVALID_ PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Authentication_Response(BluetoothStackID, CurrentRemoteBD_ADDR, &GAP_Authentication_Information);

API Prototype
int BTPSAPI GAP_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Authentication_Information_t *GAP_Authentication_Information);

Description of API
This function is provided to allow a mechanism for the local device to respond to GAP authentication events. This function is used to specify the authentication information for the
specified Bluetooth device. This function accepts as input, the Bluetooth protocol stack ID of the Bluetooth device that has requested the authentication action, and the authentication

response information (specified by the caller).

PassKeyResponse

Description
The PassKeyResponse command is responsible for issuing a GAP Authentication Response with a Pass Key value via the input parameter. This function returns zero on a successful
execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function. The device must also be in the middle of an on-going Pairing

operation that was started by the local device or a remote device.

Parameters
The PassKeyResponse command requires one parameter which is the Pass Key used for authenticating the connection. This is a string value which can be up to 6 digits long (with a value
between 0 and 999999).

Command Call Examples
"PassKeyResponse 1234" Attempts to set the Pass Key to "1234."
"PassKeyResponse 999999" Attempts to set the Pass Key to "999999." This value represents the longest Pass Key value of 6 digits.

Possible Return Values

(0) Successful Pass Key Response

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Authentication_Response(BluetoothStackID, CurrentRemoteBD_ADDR, &GAP_Authentication_Information);

API Prototype
int BTPSAPI GAP_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Authentication_Information_t *GAP_Authentication_Information);

- Description of API
This function is provided to allow a mechanism for the local device to respond to GAP authentication events. This function is used to specify the authentication information for the
specified Bluetooth device. This function accepts as input, the Bluetooth protocol stack ID of the Bluetooth device that has requested the authentication action, and the authentication
response information (specified by the caller).

UserConfirmationResponse

Description

The UserConfirmationResponse command is responsible for issuing a GAP Authentication Response with a User Confirmation value via the input parameter. This function returns zero
on a successful execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function. The device must also be in the middle of an on-going
Pairing operation that was started by the local device or a remote device.

Parameters

The UserConfirmationResponse command requires one parameter which is the User Confirmation value used for authenticating the connection. This is an integer value that must be
either 1, to confirm the connection, or o to NOT confirm the Authentication and stop the Pairing Procedure.

Command Call Examples

"UserConfirmationResponse 0" Attempts to decline the connection made with a remote Bluetooth Device and cancels the Authentication Procedure.
"UserConfirmationResponse 1" Attempts to accept the connection made with a remote Bluetooth Device and confirm the Authentication Procedure.
Possible Return Values

(0) Successful User Confirmation Response

(-4) FUNCTION_ERROR

(-6) INVALID_ PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Authentication_Response(BluetoothStackID, CurrentRemoteBD_ADDR, &GAP_Authentication_Information);

API Prototype
int BTPSAPI GAP_Authentication_Response(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Authentication_Information_t *GAP_Authentication_Information);

Description of API

This function is provided to allow a mechanism for the local device to respond to GAP authentication events. This function is used to specify the authentication information for the
specified Bluetooth device. This function accepts as input, the Bluetooth protocol stack ID of the Bluetooth device that has requested the authentication action, and the authentication
response information (specified by the caller).

SetDiscoverabilityMode

Description

The SetDiscoverabilityMode command is responsible for setting the Discoverability Mode of the local device. This command returns zero on successful execution and a negative value on
all errors. A Bluetooth Stack ID must exist before attempting to call this function. If setting the device as Limited Discoverable, the device will be discoverable for 60 seconds; a General
Discoverable device will always be discoverable.

Parameters
This command requires only one parameter which is an integer value that represents a Discoverability Mode. This value must be specified as o (for Non-Discoverable Mode), 1 (for

Limited Discoverable Mode), or 2 (for General Discoverable Mode).

Command Call Examples

"SetDiscoverabilityMode 0" Attempts to change the Discoverability Mode of the Local Device to Non-Discoverable.
"SetDiscoverabilityMode 1" Attempts to change the Discoverability Mode of the Local Device to Limited Discoverable.
"SetDiscoverabilityMode 2" Attempts to change the Discoverability Mode of the Local Device to General Discoverable.

Possible Return Values

(0) Successfully Set Discoverability Mode

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-5) BTPS_ERROR_GAP_NOT_INITIALIZED
(-58) BTPS_ERROR_INVALID_MODE

(-57) BTPS_ERROR_DEVICE_HCI_ERROR
(-64) BTPS_ERROR_INTERNAL_ERROR
(-1) BTPS_ERROR_INVALID_PARAMETER

- API Call
GAP_Set_Discoverability Mode(BluetoothStackID, DiscoverabilityMode, (DiscoverabilityMode == dmLimitedDiscoverableMode)?60:0);

API Prototype
int BTPSAPI GAP_Set_Discoverability_Mode(unsigned int BluetoothStackID, GAP_Discoverability _Mode_t GAP_Discoverability_Mode, unsigned int Max_Discoverable_Time);

Description of API

This function is provided to set the discoverability mode of the local Bluetooth device specified by the Bluetooth Protocol Stack that is specified by the Bluetooth protocol stack ID. The
second parameter specifies the discoverability mode to place the local Bluetooth device into, and the third parameter species the length of time (in seconds) that the local Bluetooth
device is to be placed into the specified discoverable mode (if mode is not specified as non-discoverable). At the end of this time (provided the time is not infinite), the local Bluetooth
device will return to non-discoverable mode.

SetConnectabilityMode

Description
The SetConnectabilityMode command is responsible for setting the Connectability Mode of the local device. This command returns zero on successful execution and a negative value on
all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters
This command requires only one parameter which is an integer value that represents a Discoverability Mode. This value must be specified as o (for Non-Connectable) or 1 (for
Connectable).

Command Call Examples
"SetConnectabilityMode 0" Attempts to set the Local Device's Connectability Mode to Non-Connectable.
"SetConnectabilityMode 1" Attempts to set the Local Device's Connectability Mode to Connectable.

Possible Return Values

(0) Successfully Set Connectability Mode

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ ERROR_INVALID_BLUETOOTH_STACK_ID
(-5) BTPS_ ERROR_GAP_NOT_INITIALIZED

(-58) BTPS_ERROR_INVALID_MODE

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Set_Connectability_Mode(BluetoothStackID, ConnectableMode);

API Prototype
int BTPSAPI GAP_Set_Connectability_Mode(unsigned int BluetoothStackID, GAP_Connectability_Mode_t GAP_Connectability_Mode);

Description of API
This function is provided to set the connectability mode of the local Bluetooth device specified by the Bluetooth protocol stack that is specified by the Bluetooth protocol stack ID. The
second parameter specifies the connectability mode to place the local Bluetooth device into.

SetPairabilityMode

Description
The SetPairabilityMode command is responsible for setting the Pairability Mode of the local device. This command returns zero on successful execution and a negative value on all

errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters
This command requires only one parameter which is an integer value that represents a Pairability Mode. This value must be specified as o (for Non-Pairable), 1 (for Pairable), or 2 (for
Secure Simple Pairing).

Command Call Examples

"SetPairabilityMode 0" Attempts to set the Pairability Mode of the Local Device to Non-Pairable.
"SetPairabilityMode 1" Attempts to set the Pairability Mode of the Local Device to Pairable.
"SetPairabilityMode 2" Attempts to set the Pairability Mode of the Local Device to Secure Simple Pairing.

Possible Return Values

(0) Successfully Set Pairability Mode
(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR
(-8) INVALID_STACK_ID_ERROR

- (-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-5) BTPS_ERROR_GAP_NOT_INITIALIZED
(-58) BTPS_ERROR_INVALID_MODE

API Call
GAP_Set_Pairability Mode(BluetoothStackID, PairabilityMode);

API Prototype
int BTPSAPI GAP_Set_Pairability_Mode(unsigned int BluetoothStackID, GAP_Pairability_Mode_t GAP_Pairability_Mode);

Description of API

This function is provided to set the pairability mode of the local Bluetooth device. The second parameter specifies the pairability mode to place the local Bluetooth device into. If secure
simple pairing (SSP) pairing mode is specified, then SSP *MUST* be used for all pairing operations. The device can be placed into non pairable mode after this, however, if pairing is re-
enabled, it *MUST* be set to pairable with SSP enabled.

ChangeSimplePairingParameters

Description

The ChangeSimplePairingParameters command is responsible for changing the Secure Simple Pairing Parameters that are exchanged during the Pairing procedure whenSecure Simple
Pairing (Security Level 4) is used. This function returns zero on a successful execution and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this
function. The IOCapability and MITMProtection values are stored in static global variables which are used for Secure Simple Pairing.

Parameters
This command requires two parameters which are the I/O Capability and the MITM Requirement. The first parameter must be specified as o (for Display Only), 1 (for Display Yes/No), 2
(for Keyboard Only), or 3 (for No Input/Output). The second parameter must be specified as 0 (for No MITM) or 1 (for MITM required).

Command Call Examples

"ChangeSimplePairingParameters 3 0" Attempts to set the I/O Capability to No Input/Output and turns off MITM Protection.
"ChangeSimplePairingParameters 2 1" Attempts to set the I/O Capability to Keyboard Only and activates MITM Protection.
"ChangeSimplePairingParameters 1 1" Attempts to set the I/O Capability to Display Yes/No and activates MITM Protection.

Possible Return Values

(0) Successfully Pairing Parameters Change
(-6) INVALID_PARAMETERS_ERROR
(-8) INVALID_STACK_ID_ERROR

GetLocalAddress

Description
The GetLocalAddress command is responsible for querying the Bluetooth Device Address of the local Bluetooth Device. This function returns zero on a successful execution and a
negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters
It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Query.

Possible Return Values

(0) Successfully Query Local Address

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

API Call
GAP_Query_Local BD_ADDR(BluetoothStackID, &BD_ADDR);

API Prototype
int BTPSAPI GAP_Query_Local_BD_ADDR(unsigned int BluetoothStackID, BD_ADDR_t *BD_ADDR);

Description of API

This function is responsible for querying (and reporting) the device address of the local Bluetooth device. The second parameter is a pointer to a buffer that is to receive the device
address of the local Bluetooth device. If this function is successful, the buffer that the BD_ADDR parameter points to will be filled with the device address read from the local Bluetooth
device. If this function returns a negative value, then the device address of the local Bluetooth device was NOT able to be queried (error condition).

SetLocalName

- Description
The SetLocalName command is responsible for setting the name of the local Bluetooth Device to a specified name. This function returns zero on a successful execution and a negative

value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters
One parameter is necessary for this command. The specified device name must be the only parameter (which means there should not be spaces in the name or only the first section of the
name will be set).

Command Call Examples

"SetLocalName New_Bluetooth_Device_ Name" Attempts to set the Local Device Name to "New_Bluetooth_Device_ Name."

"SetLocalName New Bluetooth Device Name" Attempts to set the Local Device Name to "New Bluetooth Device Name" but only sets the first parameter, which would make the Local
Device Name "New."

"SetLocalName STM32" Attempts to set the Local Device Name to "STM32."

Possible Return Values

(0) Successfully Set Local Device Name

(-1) BTPS_ERROR_INVALID_PARAMETER

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Set Local_Device_Name(BluetoothStackID, TempParam->Params[o].strParam);

API Prototype
int BTPSAPI GAP_Set_Local_Device_Name(unsigned int BluetoothStackID, char *Name);

Description of API
This function is provided to allow the changing of the device name of the local Bluetooth device. The Name parameter must be a pointer to a NULL terminated ASCII string of at most
MAX_NAME_LENGTH (not counting the trailing NULL terminator). This function will return zero if the local device name was successfully changed, or a negative return error code if

there was an error condition.

GetLocalName

Description
This function is responsible for querying the name of the local Bluetooth Device. This function returns zero on a successful execution and a negative value on all errors. A Bluetooth Stack
ID must exist before attempting to call this function.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Query.

Possible Return Values

(0) Successfully Queried Local Device Name

(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-1) BTPS_ERROR_INVALID_PARAMETER

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-65) BTPS_ ERROR_INSUFFICIENT_BUFFER_SPACE

API Call
GAP_Query_Local_Device_Name(BluetoothStackID, 257, (char *)LocalName);

API Prototype
int BTPSAPI GAP_Query_Local_Device_Name(unsigned int BluetoothStackID, unsigned int NameBufferLength, char *NameBuffer);

Description of API

This function is responsible for querying (and reporting) the user friendly name of the local Bluetooth device. The final parameters to this function specify the buffer and buffer length of
the buffer that is to receive the local device name. The NameBufferLength parameter should be at least (MAX_NAME_LENGTH+1) to hold the maximum allowable device name (plus a
single character to hold the NULL terminator). If this function is successful, this function returns zero, and the buffer that NameBuffer points to will be filled with a NULL terminated
ASCII representation of the local device name. If this function returns a negative value, then the local device name was NOT able to be queried (error condition).

SetClassOfDevice

- Description
The SetClassOfDevice command is responsible for setting the Class of Device of the local Bluetooth Device to a Class of Device value. This function returns zero on a successful execution

and a negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters
The only parameter needed is the new Class of Device value. It is preferred to start the value with “ox” and use a six digit value after that. Without doing this, the Class of Device written
will be assumed decimal and will be converted to hexadecimal format and change the values given.

Command Call Examples
"SetClassOfDevice 0x123456" Attempts to set the Class of Device for the local Bluetooth Device to "0x123456."
"SetClassOfDevice 123456" Attempts to set the Class of Device for the local Bluetooth Device to "0x01E240" which is equivalent to the decimal value of 123456.

Possible Return Values

(0) Successfully Set Local Class of Device

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-5) BTPS_ERROR_GAP_NOT_INITIALIZED

API Call
GAP_Set_Class_of Device(BluetoothStackID, Class_of Device);

API Prototype
int BTPSAPI GAP_Set Class_Of Device(unsigned int BluetoothStackID, Class_of Device_t Class_of Device);

Description of API
This function is provided to allow the changing of the class of device of the local Bluetooth device. The Class_of_Device parameter represents the class of device value that is to be written
to the local Bluetooth device. This function will return zero if the class of device was successfully changed, or a negative return error code if there was an error condition.

GetClassOfDevice

Description
The GetClassOfDevice command is responsible for querying the Bluetooth Class of Device of the local Bluetooth Device. This function returns zero on a successful execution and a

negative value on all errors. A Bluetooth Stack ID must exist before attempting to call this function.

Parameters

It is not necessary to include parameters when using this command. A parameter will have no effect on the outcome of the Query.

Possible Return Values

(0) Successfully Queried Local Class of Device

(-57) BTPS_ERROR_DEVICE_HCI_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-8) INVALID_STACK_ID_ERROR

(-4) FUNCTION_ERROR

(-1) BTPS_ERROR_INVALID_PARAMETER

API Call
GAP_Query_Class_Of _Device(BluetoothStackID, &Class_of Device);

API Prototype
int BTPSAPI GAP_Query_Class_Of_Device(unsigned int BluetoothStackID, Class_of Device_t *Class_of _Device);

Description of API

This function is responsible for querying (and reporting) the class of device of the local Bluetooth device. The second parameter is a pointer to a class of device buffer that is to receive the
Bluetooth class of device of the local device. If this function is successful, this function returns zero, and the buffer that Class_Of_Device points to will be filled with the Class of Device
read from the local Bluetooth device. If there is an error, this function returns a negative value, and the class of device of the local Bluetooth device is NOT copied into the specified input
buffer.

GetRemoteName

Description

The GetRemoteName command is responsible for querying the Bluetooth Device Name of a Remote Device. This function returns zero on a successful execution and a negative value on
all errors. The command requires that a valid Bluetooth Stack ID exists before running and it should be called after using the Inquiry command. The DisplayInquiryList command would
be useful in this situation to find which Remote Device goes with which Inquiry Index.

- Parameters
The GetRemoteName command requires one parameter which is the Inquiry Index of the Remote Bluetooth Device. This value can be found after an Inquiry or displayed when the

command DisplayInquiryList is used.

Command Call Examples
"GetRemoteName 5" Attempts to query the Device Name for the Remote Device that is at the fifth Inquiry Index.
"GetRemoteName 8" Attempts to query the Device Name for the Remote Device that is at the eighth Inquiry Index.

Possible Return Values

(0) Successfully Queried Remote Name

(-6) INVALID_PARAMETERS_ERROR

(-4) FUNCTION_ERROR

(-8) INVALID_STACK_ID_ERROR

(-2) BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID
(-1) BTPS_ERROR_INVALID_PARAMETER

(-59) BTPS_ERROR_ADDING_CALLBACK_INFORMATION
(-57) BTPS_ERROR_DEVICE_HCI_ERROR

API Call
GAP_Query_Remote_Device_Name(BluetoothStackID, InquiryResultList[(TempParam->Params[o].intParam — 1)], GAP_Event _Callback, (unsigned long)o);

API Prototype
int BTPSAPI GAP_Query_Remote_Device_Name(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, GAP_Event Callback_t GAP_Event_Callback, unsigned long
CallbackParameter);

Description of API

This function is provided to allow a mechanism to query the user-friendly Bluetooth device name of the specified remote Bluetooth device. This function accepts as input the Bluetooth
device address of the remote Bluetooth device to query the name of and the GAP event callback information that is to be used when the remote device name process has completed. This
function returns zero if successful, or a negative return error code if the remote name request was unable to be submitted. If this function returns success, then the caller will be notified
via the specified callback when the remote name information has been determined (or there was an error). This function cannot be used to determine the user-friendly name of the local
Bluetooth device. The GAP_Query_Local_Name function should be used to query the user-friendly name of the local Bluetooth device. Because this function is asynchronous in nature
(specifying a remote device address), this function will notify the caller of the result via the specified callback. The caller is free to cancel the remote name request at any time by issuing
the GAP_Cancel_Query_Remote_Name function and specifying the Bluetooth device address of the Bluetooth device that was specified in the original call to this function. It should be
noted that when the callback is cancelled, the operation is attempted to be cancelled and the callback is cancelled (i.e. the GAP module still might perform the remote name request, but
no callback is ever issued).

HeadSet Profile Commands

OpenServer

Description

The following function is responsible for opening a Serial Port Server on the Local Device. This function opens the Serial Port Server on the specified RFCOMM Channel. This function
returns the opened port number (1-31) if successful, or a negative return value if an error occurred.

Parameters

None.

Possible Return Values

(1-32) HSP port opened successfully

(-8) INVALID_STACK_ID_ERROR

(-9) UNABLE_TO_REGISTER_SERVER

(-103) BTPS_ERROR_FEATURE_NOT_AVAILABLE

(-1000) BTHDSET_ERROR_INVALID_PARAMETER

(-1001) BTHDSET_ERROR_NOT_INITIALIZED

(-1002) BTHDSET_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1004) BTHDSET_ERROR_INSUFFICIENT_RESOURCES

API Call

HDSET_Open_Audio_Gateway_Server_Port(BluetoothStackID, LOCAL_SERVER_CHANNEL_ID, HDSET_ Event_Callback, (unsigned long)o)

API Prototype

int BTPSAPI HDSET_Open_Audio_Gateway_Server_Port(unsigned int BluetoothStackID, unsigned int ServerPort, HDSET Event Callback_t EventCallback, unsigned long
CallbackParameter)

Description of API

The following function is responsible for Opening an Audio Gateway Server on the specified Bluetooth SPP Serial Port. This function accepts as input the Bluetooth Stack ID of the
Bluetooth Stack Instance to use for the Audio Gateway Server, the Local Serial Port Server Number to use, and the HDSET Event Callback function (and parameter) to associate with the
specified Headset Port. The ServerPort parameter *“MUST* be between SPP_PORT_NUMBER_MINIMUM and SPP_PORT_NUMBER_MAXIMUM. This function returns a positive,
non-zero, value if successful or a negative return error code if an error occurs. A successful return code will be a HDSET Port ID that can be used to reference the Opened HDSET Port in
ALL other functions in this module except for the HDSET_Register_Headset_SDP_Record() function which is specific to a Headset Server NOT an Audio Gateway. Once a Server
HDSET Port is opened, it can only be Un-Registered via a call to the HDSET_Close_Server_Port() function (passing the return value from this function). The HDSET_Close_Port()
function can be used to Disconnect a Client from the Server Port (if one is connected, it will NOT Un-Register the Server Port however).

CloseServer

Description

The following function is responsible for closing a Serial Port Server that was previously opened via a successful call to the OpenServer() function. If the last Server is closed, the function
also unregisters the SDP record. This function returns zero if successful or a negative return error code if there was an error.
Parameters

It is not necessary to include parameters when using this command.

Possible Return Values

(0) HSP Server closed successfully

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000)

(-1001) BTHDSET_ERROR_NOT_INITIALIZED

(-1002) BTHDSET_ERROR_INVALID_BLUETOOTH_STACK_ID

API Call

HDSET_Close_Server_Port(BluetoothStackID, HDSServerID)

API Prototype

int BTPSAPI HDSET_Close_Server_Port(unsigned int BluetoothStackID, unsigned int HDSETPortID)

Description of AP1

The following function is responsible for Un-Registering a HDSET Port Server (which was Registered by a successful call to either the HDSET Open_Headset_Server_Port() or the
HDSET_Open_Audio_Gateway_Server_Port() function). This function accepts as input the Bluetooth Stack ID of the Bluetooth Protocol Stack that the HDSET Port specified by the
Second Parameter is valid for. This function returns zero if successful, or a negative return error code if an error occurred (see BTERRORS.H). Note that this function does NOT delete
any SDP Service Record Handles.

PressButton

Description

The following function is responsible for issuing a Press Button Command for a Headset (either Accept or End a Call). This function returns zero if successful or a negative return error
code if an error occurs.

Parameters

It is not necessary to include parameters when using this command.

Possible Return Values

(0) command sent successfully

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-103) BTPS_ERROR_FEATURE_NOT_AVAILABLE

(-1001) BTHDSET_ERROR_NOT_INITIALIZED

(-1002) BTHDSET ERROR_INVALID_BLUETOOTH_STACK_ID

(-1005) BTHDSET_ERROR_INVALID_OPERATION

API Call

HDSET_Send_ Button_ Press(BluetoothStackID, ((ServerConnected)?HDSServerID: HDSClientID))
API Prototype

int BTPSAPI HDSET_Send_Button_ Press(unsigned int BluetoothStackID, unsigned int HDSETPortID)

Description of AP1
The following function is responsible for sending a Button Press to a remote Audio Gateway. This function accepts the Bluetooth Stack ID of the Bluetooth Stack which has received the
HDSET Connection Request and the HDSET Port ID of the Headset to send the request on. This function returns a zero if successful, or a negative return error code if there was an error.

= NOTE * This function should be used instead of the:
HDSET_Accept_Incoming_Call()

functions. The reason is that the above two functions imply a call state. Since the actual call state is handled via the Audio Gateway, the Headset does not have any mechanism to actually
determine the call state. Because of this, this function will simply issue the Button Press and let the Audio Gateway decide how to process the request.

ChangeSpeakerGain

Description
The following function is responsible for sending a Speaker gain (Volume) Change Command to the Remote Connection. This function returns zero if successful or a negative return error

code if an error occurs.

- Parameters

One Parameter - Number Between 0-15

Possible Return Values

(0) command sent successfully

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHDSET_ERROR_INVALID_PARAMETER

(-1001) BTHDSET_ERROR_NOT_INITIALIZED

(-1002) BTHDSET_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1005) BTHDSET_ERROR_INVALID_OPERATION

API Call

HDSET_Set_Speaker_Gain(BluetoothStackID, ((ServerConnected)?HDSServerID:HDSClientID), TempParam->Params[0].intParam)

API Prototype

int BTPSAPI HDSET_Set_Speaker_Gain(unsigned int BluetoothStackID, unsigned int HDSETPortID, unsigned int SpeakerGain)

Description of API

The following function is provided to allow the local entity a mechanism of notifying the Remote entity (either Headset OR Audio Gateway) that the Speaker Gain has changed. This
function accepts as input the Bluetooth Stack ID of the Bluetooth Stack which the HDSET Port ID (second parameter) is valid for, the HDSET Port ID, and the new Speaker Gain Setting.
This function returns zero if successful or a negative return error code if there was an error. The Speaker Gain Parameter *MUST* be between the values of
HDSET_SPEAKER_GAIN_MINIMUM and HDSET SPEAKER_GAIN_MAXIMUM.

ChangeMicrophoneGain

Description

The following function is responsible for sending a Change Microphone Gain Command to the Remote Connection. This function returns zero if successful or a negative return error code
if an error occurs.

Parameters

One Parameter - Number Between 0-15

Possible Return Values

(0) Command sent successfully

(-4) FUNCTION_ERROR

(-6) INVALID_ PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000) BTHDSET_ERROR_INVALID_PARAMETER

(-1001) BTHDSET_ERROR_NOT _INITIALIZED

(-1002) BTHDSET_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1005) BTHDSET_ERROR_INVALID_OPERATION

API Call

HDSET_Set_Microphone_Gain(BluetoothStackID, ((ServerConnected)?HDSServerID:HDSClientID), TempParam->Params[0].intParam)

API Prototype

int BTPSAPI HDSET_Set_Microphone_Gain(unsigned int BluetoothStackID, unsigned int HDSETPortID, unsigned int MicrophoneGain)

Description of API

The following function is provided to allow the local entity a mechanism of notifying the Remote entity (either Headset OR Audio Gateway) that the Microphone Gain has changed. This
function accepts as input the Bluetooth Stack ID of the Bluetooth Stack which the HDSET Port ID (second parameter) is valid for, the HDSET Port ID, and the new Microphone Gain
Setting. This function returns zero if successful or a negative return error code if there was an error. The Microphone Gain Parameter *MUST* be between the values of
HDSET_MICROPHONE_GAIN_MINIMUM and HDSET_MICROPHONE_GAIN_MAXIMUM.

OpenClient

Description

The following function is responsible for initiating a connection with a Remote Headset or Audio Gateway Server. This function returns zero if successful and a negative value if an error
occurred.

Parameters

Two Parameters, First one is the Inquiry index, the Second is the RFCOMM Server Port.

- Possible Return Values
(0) Command sent successfully
(-6) INVALID_PARAMETERS_ERROR
(-8) INVALID_STACK_ID_ERROR
(-103) BTPS_ERROR_FEATURE_NOT_AVAILABLE
(-1000) BTHDSET_ERROR_INVALID_PARAMETER
(-1001) BTHDSET_ERROR_NOT _INITIALIZED
(-1002) BTHDSET_ERROR_INVALID_BLUETOOTH_STACK_ID
(-1004) BTHDSET_ERROR_INSUFFICIENT_RESOURCES

API Call

HDSET_Open_Remote_Headset_Port(BluetoothStackID, InquiryResultList[(TempParam->Params[0].intParam - 1], TempParam->Params[1].intParam, FALSE,
HDSET_Event_Callback, (unsigned long)o)

API Prototype

int BTPSAPI HDSET_Open_Remote_Headset_Port(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, unsigned int RemoteServerPort, Boolean_t SupportInBandRinging,
HDSET_Event_Callback_t EventCallback, unsigned long CallbackParameter)

Description of API

The following function is responsible for Opening a Remote Headset Port on the specified Remote Device. This function accepts the Bluetooth Stack ID of the Bluetooth Stack which is to
open the HDSET Connection as the first parameter. The second parameter specifies the Board Address (NON NULL) of the Remote Bluetooth Device to connect with. The next
parameter specifies whether or not the Local Audio Gateway (the entity that is connecting to the Remote Headset) supports In Band Ringing or not (TRUE if supported). The final two
parameters specify the HDSET Event Callback function, and callback parameter, respectively, of the HDSET Event Callback that is to process any further interaction with the specified
Remote Port (Opening Status, Close Status, etc). This function returns a non-zero, positive, value if successful, or a negative return error code if this function is unsuccessful. If this
function is successful, the return value will represent the HDSET Port ID that can be passed to all other functions that require it. Once a Remote Headset opened, it can only be closed via
a call to the HDSET_Close_Port() function (passing the return value from this function).

CloseClient

Description

The following function is responsible for terminating a connection with a Remote Headset or Audio Gateway Server. This function returns zero if successful and a negative value if an
error occurred.

Parameters

It is not necessary to include parameters when using this command.
Possible Return Values

(0) HSP Server closed successfully

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-1000)

(-1001) BTHDSET_ERROR_NOT_INITIALIZED

(-1002) BTHDSET_ERROR_INVALID_BLUETOOTH_STACK_ID

API Call

HDSET_Close_Port(BluetoothStackID, HDSClientID

API Prototype

int BTPSAPI HDSET_Close_ Port(unsigned int BluetoothStackID, unsigned int HDSETPortID)

Description of API

The following function exists to close a HDSET Port that was previously opened by any of the following mechanisms:

- Successful call to HDSET_Open_Remote_Headset_Port() function.

- Successful call to HDSET_Open_Remote_Audio_Gateway_Port() function.

- Incoming call request (Headset or Audio Gateway) which the Server was opened with either the HDSET_Open_Headset_Server_Port() or the HDSET_Open_Audio_Gateway_Server_Port()
ifunctions.

This function accepts as input the Bluetooth Stack ID of the Bluetooth Stack which the Open HDSET Port resides and the HDSET Port ID (return value from one of the above mentioned
Open functions) of the Port to Close. This function returns zero if successful, or a negative return value if there was an error. This function does NOT Un-Register a HDSET Server Port
from the system, it ONLY disconnects any connection that is currently active on the Server Port. The HDSET_Close_Server_Port() function can be used to Un-Register the HDSET
Server Port. .

RinglIndication

Description

The following function is responsible for sending a Ring Indication to the Remote connected Headset. This function returns zero if successful or a negative return error code if an error
occurs.

Parameters

It is not necessary to include parameters when using this command.

Possible Return Values

(0) command sent successfully

(-4) FUNCTION_ERROR

(-6) INVALID_PARAMETERS_ERROR

- (-8) INVALID_STACK_ID_ERROR
(-103) BTPS_ERROR_FEATURE_NOT_AVAILABLE
(-1001) BTHDSET_ERROR_NOT _INITIALIZED
(-1002) BTHDSET_ERROR_INVALID_BLUETOOTH_STACK_ID
(-1005) BTHDSET_ERROR_INVALID_OPERATION
API Call
HDSET_Ring_Indication(BluetoothStackID, ((ServerConnected)?HDSServerID:HDSClientID))
API Prototype
int BTPSAPI HDSET_Ring Indication(unsigned int BluetoothStackID, unsigned int HDSETPortID)

Description of API

The following function is responsible for Sending a Ring Indication to the remote side. The function accepts the Bluetooth Stack ID of the Bluetooth Stack which has received the HDSET

Connection Request and the HDSET Port ID for which the Connection has been established. This function returns a zero if successful, or a negative return error code if there was an

error. .

ManageAudio

Description

The following function is responsible for setting up or releasing an audio connection. This function returns zero on successful execution and a negative value on all errors.

Parameters

The Manage Audio command requires only one parameter for the ManageAudio mode. This value must be specified as o (for Release) or 1 (for Setup).
Command Call Examples

"ManageAudio 0" Attempts to Release the Audio Connection from Server with port index 1.
"ManageAudio 1" Attempts to Setup the Audio Connection with Server port index 2.
Possible Return Values

(0) command sent successfully

(-6) INVALID_PARAMETERS_ERROR

(-8) INVALID_STACK_ID_ERROR

(-103) BTPS_ERROR_FEATURE_NOT_AVAILABLE

(-1000) BTHDSET_ERROR_INVALID_PARAMETER

(-1001) BTHDSET_ERROR_NOT _INITIALIZED

(-1002) BTHDSET_ERROR_INVALID_BLUETOOTH_STACK_ID

(-1005) BTHDSET_ERROR_INVALID_OPERATION

API Call

HDSET_Setup_Audio_Connection(BluetoothStackID, ((ServerConnected)?HDSServerID:HDSClientID), FALSE)
or HDSET_Release_Audio_Connection(BluetoothStackID, ((ServerConnected)?HDSServerID:HDSClientID))
API Prototype

int BTPSAPI HFRE_Setup_Audio_Connection(unsigned int BluetoothStackID, unsigned int HFREPortID)

or int BTPSAPI HDSET_Release_Audio_Connection(unsigned int BluetoothStackID, unsigned int HDSETPortID)

Description of API

This function is responsible for Setting Up an Audio Connection between the Local Audio Gateway and Remote Headset Device. This function may ONLY be used by an Audio Gateway.
This function accepts as its input parameters the Bluetooth Stack ID for which the HDSET Port ID is valid as well as the HDSET Port ID (of the Audio Gateway). The final parameter
specifies whether this is In-Band ringing (TRUE) or not (FALSE). If In-Band Ringing is specified then the remote Headset is required to accept the call. This function returns zero if

successful or a negative return error code if there was an error.

(or) This function is responsible for Releasing an Audio Connection which was previously established by the local Audio Gateway or by a call to the HDSET_Setup_Audio_Connection()
function. This function may ONLY be used by an Audio Gateway. This function accepts as its input parameters the Bluetooth Stack ID for which the HDSET Port ID is valid as well as the

HDSET Port ID. This function returns zero if successful or a negative return error code if there was an error.

{ Keystone= C2000=For DaVinci=For =~ MSP430=For OMAP35x=For OMAPL1=For MAVRK=For
.) . B . technical technical technical technical technical technical
1. switchcategory:MultiCore= = :Sgéif'fthg'ncal support on support on supporton support on supporton support on
MultiCore devices, please | t b post p p post post ¥ p P
please post your
post your questions in the ; > post your questions on your questions on questions on your
C6000 MultiGore Forum questionsinthe o 0stions The DaVinci questions on The OMAP The OMAP questions
. C€6000 MultiCore on The Forum. Please The MSP430 Forum. Please Forum. on The
» For questions related to Forum C2000 post only Forum. post only Please post MAVRK
the BIOS MultiCore SDK 4 For questions Forum. comments Please post comments only Toolbox
(MCSDK), please use the related to the Please about the only about the comments Forum.
BIOS Forum BIOS MultiCore postonly article CC256x comments article CC256x about the Please post
Please post only comments related ~ SDK (MCSDK), comments TI Bluetooth about the Tl Bluetooth article only
to the article CC256x Tl Bluetooth please use the abc_)ut the Stack article Stack CC256x TI comments
Stack HSPDemo App here BIOS Forum article HSPDemo CC256x TI HSPDemo Bluetooth about the
PP ’ Please post only CC256x Tl App here. Bluetooth App here. Stack article
lated h Bluetooth Stack HSPDemo CC256x TI
comments related to the gyq o App here. Bluetooth
article CC256x Tl

For technical s
please post yoi
questions at

http://e2e.ti.cor
Please post on
comments abo
article CC256x
Bluetooth Sta:
HSPDemo Apj

B

Bluetooth Stack HSPDemo HSPDemo Stack
HSPDemo App here. App here. App here. HSPDemo
App here.
Links
Amplifiers & Linear DLP & MEMS Processors Switches & Multiplexers
\\ Audio High-Reliability Temperature Sensors & Control ICs
— . Broadband RF/IF & Digital Radio Interface " ARM Prqcessors Wireless Connectivity
' Clocks & Timers Logic = Digital Signal Processors (DSP)
Data Converters Power Management = Microcontrollers (MCU)
= OMAP Applications Processors

Retrieved from "https://processors.wiki.ti.com/index.php?titte=CC256x_TI_Bluetooth_Stack_HSPDemo_App&oldid=225546"

This page was last edited on 14 March 2017, at 15:43.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.

