
TI Information – Selective DisclosureTI Information – Selective Disclosure

Guideline for Integrated SmartAMP
Baremetal Driver & Factory Calibration Tool

TI Information – Selective Disclosure

Revision history

2/8/2025

2

Ver Date Author Description

1.0 2020/12/18 Initial

1.1 2021/5/4 Involve the factory calibration tool

TI Information – Selective Disclosure

PreWork

• Before porting, kindly check the size of code section and data section for

tas2563.

• Resource needed for tas2563 MCU projects(mono):

– the minimum size of prm optimized is 9184 Bytes

– each profile algo param is 1600 bytes

– MCU reference code including two-profile algo param (Music and Voice) will be about

10K bytes(K=1024).

3

TI Information – Selective Disclosure

Introduction I

• Reference Code used for MCU platform

– Driver code

– FCT code (kindly consult FAE for the code)

– Support multiple PAs application, especially the burn-in test for many speakers in

speaker vendor

• C files introduction:

4

File name Remark

OSL_wrapper.c

Platform-dependency file, should be

implemented by customers according to

defined interfaces

tasdevice.c Register R/W for all audio chips

tas2563_ftc.c
Factory test for calibration, f0, etc, kindly

consult FAE for the code

tas2563_interface.c External interfaces for MCU

TI Information – Selective Disclosure

Introduction II | makefile

File name Remark

makefile.i2c_mono Mono/i2c/32-bit

makefile.i2c_mono_RX16 Mono/i2c/16-bit

makefile.i2c_mono_RX16_prm_in_nv Mono/i2c/16-bit/PDM/prm_in_nv

makefile.i2c_pdm Mono/i2c/32-bit/pdm

makefile.i2c_stereo Stereo/i2c/32-bit

makefile.i2c_stereo_RX16 Stereo/i2c/16-bit

makefile.spi_4pas 4chan/spi/32-bit

makefile.spi_pdm Mono/spi/32-bit/PDM

makefile.spi_stereo Stereo/spi/32-bit

makefile.spi_woofer_RX16 2.1channel/spi/16-bit

5

TI Information – Selective Disclosure

Introduction III | Header files in inc/coef
File name Remark

cfg0_music_COEFF_prim.h Music acoustic params for channel 1

cfg0_music_COEFF_quat.h Music acoustic params for channel 4

cfg0_music_COEFF_sec.h Music acoustic params for channel 2

cfg0_music_COEFF_tert.h Music acoustic params for channel 3

cfg0_pdm_music_COEFF.h
Music acoustic params for channel 1 on

PDM project

cfg1_calibration_COEFF.h Calibration params for all channels

cfg1_pdm_calibration_COEFF.h Calibration params for PDM project

cfg2_Voice_COEFF_prim.h Voice acoustic params for channel 1

cfg2_Voice_COEFF_quat.h Voice acoustic params for channel 4

cfg2_Voice_COEFF_sec.h Voice acoustic params for channel 2

cfg2_Voice_COEFF_tert.h
Voice acoustic params for channel 3

• All these files are the

default ones, can be

substituted with new one

released by tuning

engineer.

6

TI Information – Selective Disclosure

Introduction IV

• Header files in inc/prm_reg

PS: all these files are the default ones, can be substituted

• TAS2563_ftcfg.h ---- store the speaker characterization, used for calibration, file

in different project should be different. Usually, tuning engineer or FAE will

release this file for the specific project. File in Release is the default values.

• Prm.bin ---- the binary file for prm_tuning_mode.h, normally save it into flash for

some limited storage projects. If this has been enabled, prm_tuning_mode.h will

be deactivated automatically

7

File name Remark

prm_pdm_tuning_mode.h DSP firmware for PDM project

prm_tuning_mode.h DSP firmware

register_setting.h Register setting

TI Information – Selective Disclosure

Introduction V ---- how to generate the header files

• prm_tunning_mode_registers[] in

prm_xxx.h, cfgxxxx[] in cfgxxx.h and

TAS2563_ftcfg[] in TAS2563_ftcfg.h in

this patch are all default settings. Kindly

replace them with the proper settings for

your project.

• Apply for the PPC3 tool(
PUREPATHCONSOLE Application software &
framework | TI.com), all these settings

are generated via PPC3 tools.

8

https://www.ti.com/tool/PUREPATHCONSOLE
https://www.ti.com/tool/PUREPATHCONSOLE

TI Information – Selective Disclosure

Introduction VI ---- header files I

9

TI Information – Selective Disclosure

Introduction VII ---- header files II

• In the Header folder:

1. TAS2563_ftcfg[] is stored in .ftcfg file,

customer will input them into

TAS2563_ftcfg.h manually.

2. cfgxxxx[]is stored in

Configuration_xxxxx_COEFF.h

3. prm_tunning_mode_registers[] is stored

in program_0_Tuning Mode.h

10

TI Information – Selective Disclosure

Wrapper Layer I | Data Structure

• These interfaces defined in the

Wrapper data structure would be

implemented according to

different platforms by developer.

struct os_interface {

int (*dev_read)(void* dev_handle, int reg);

int (*dev_write)(void* dev_handle, int reg, unsigned int Value);

int (*dev_bulk_write)(void* dev_handle, int reg, int len, unsigned char *pData);

int (*dev_bulk_read)(void* dev_handle, int reg, int len, unsigned char* pData);

void (*GPIO_config)();

void (*msleep)(unsigned int msecs);

size_t (*nv_write)(const void *ptr, size_t size, size_t nmemb, void *nv_handle);

size_t (*nv_read)(void *ptr, size_t size, size_t nmemb, void *nv_handle);

#ifdef PRM_IN_NV

// in order to save the code section, store the prm into flash

unsigned char* (*prm_download)(void *handle, int chn, unsigned int *len);

void (*prm_remove)(unsigned char *pData);

#endif

};

11

TI Information – Selective Disclosure

Wrapper Layer II | Register operation Interface Introduction I

• int (* dev_read) (void *dev_handle, int
reg);

– Illustration: Single byteread

– Input arguments

✓ void *dev_handle: device context

✓ int reg: register number

– Return Value

✓ Failure: < 0

✓ Success: >= 0

• int (* dev_write) (void *dev_handle, int
reg, unsigned int Value);

– Illustration: Single byte write

– Input arguments

✓ void *dev_handle: device context

✓ int reg: register number

✓ unsigned int Value: the value to be written

– Return Value

✓ Failure: != 0

✓ Success: == 0

• int (* dev_bulk_write) (void *dev_handl e,
int reg, int len, unsigned char *pData);
– Illustration: Multiple bytes write

– Input arguments

✓ void *dev_handle: device context

✓ int reg: register number

✓ int len: the size of the pData

✓ unsigned char *pData: Pointer to data to be
written

– Return Value

✓ Failure: != 0

✓ Success: == 0

12

TI Information – Selective Disclosure

Wrapper Layer II | Register operation Interface Introduction II

• int (*dev_bulk_read)(void* dev_handle, int reg, int len, unsigned char* pData)

– Illustration: Multiple bytes write

– Input arguments

✓ void* dev_handle: device context

✓ int reg: register number

✓ int len: the size of the pData

✓ unsigned char *pData: Storage location for data

– Return Value

✓ Failure: != 0

✓ Success: == 0

13

TI Information – Selective Disclosure

Wrapper Layer III | Platform Interface Introduction I

• void (*GPIO_config)()

– Illustration: GPIO setting, including RESET-pin
and I2C_SPI-pin, called during initialization

– Return Value: None

• void (*msleep)(unsigned int msecs)

– Illustration: sleep safely

– Input arguments: unsigned int msecs: Time in
milliseconds to sleep for

– Return Value: None

• size_t (*nv_read)(void *ptr, size_t size,
size_t nmemb, void *nv_handle);

– Illustration: Reads data from a storage device.

– Input arguments

✓ void* nv_handle: Pointer to storage structure

✓ const void *ptr: Storage location for data

✓ size_t size: Item size in bytes

✓ size_t nmemb: Maximum number of items to be
read

– Return Value: returns the number of full items
actually read, which may be less than nmemb if an
error occurs or if the end of the file is
encountered before reaching nmemb

• size_t (*nv_write)(const void *ptr, size_t
size, size_t nmemb, void *nv_handle);

– Illustration: Writes data to a storage device.

– Input arguments

✓ void* nv_handle: Pointer to storage structure

✓ const void *ptr: Point to data to be written

✓ size_t size: Item size, in bytes

✓ size_t nmemb: Maximum number of items to be
written

– Return Value: returns the number of full items
actually read, which may be less than nmemb if an
error occurs or if the end of the file is
encountered before reaching nmemb

14

TI Information – Selective Disclosure

Wrapper Layer III | Platform Interface Introduction II

• void (*GPIO_config)()

– Illustration: GPIO setting, including RESET-pin
and I2C_SPI-pin, called during initialization

– Return Value: None

• void (*msleep)(unsigned int msecs)

– Illustration: sleep safely

– Input arguments: unsigned int msecs: Time in
milliseconds to sleep for

– Return Value: None

• size_t (*nv_read)(void *ptr, size_t size,
size_t nmemb, void *nv_handle);

– Illustration: Reads data from a storage device.

– Input arguments

✓ void* nv_handle: Pointer to storage structure

✓ const void *ptr: Storage location for data

✓ size_t size: Item size in bytes

✓ size_t nmemb: Maximum number of items to be
read

– Return Value: returns the number of full items
actually read, which may be less than nmemb if an
error occurs or if the end of the file is
encountered before reaching nmemb

• size_t (*nv_write)(const void *ptr, size_t
size, size_t nmemb, void *nv_handle);

– Illustration: Writes data to a storage device.

– Input arguments

✓ void* nv_handle: Pointer to storage structure

✓ const void *ptr: Point to data to be written

✓ size_t size: Item size, in bytes

✓ size_t nmemb: Maximum number of items to be
written

– Return Value: returns the number of full items
actually read, which may be less than nmemb if an
error occurs or if the end of the file is
encountered before reaching nmemb

15

TI Information – Selective Disclosure

Wrapper Layer III| Platform Interface Introduction III

• This slide mainly introduce the interfaces specially for dsp program
stored in flash instead of array in the header file in order to save
code section
–unsigned char* (*prm_download)(void *handle, int chn, unsigned int *len);

➢Illustration: Reads dsp program from a storage device, such as flash or SD card.

➢Input arguments
✓ void* handle: a handle can store the smartamp info or anything else, it is defined by customers
✓ int chn: it is still defined by customers

➢Output arguments: unsigned int *len: the len of dsp program, it is the output param.

➢Return Value: returns the point of memory stored the dsp program. This interface support
different can download different dsp programs

–void (*prm_remove)(unsigned char *pData);

➢Illustration: release the memory allocated by prm_download.

➢Input arguments: unsigned char *pData: Pointer to the memory allocated by prm_download

➢Return Value: None
16

TI Information – Selective Disclosure

Interfaces for external use I | SmartAMP basic operation I

• int exTas256x_init(unsigned char

*prmData, int len)

– Illustration: Initialization

– Input arguments

✓unsigned char *prmData: Algorithm

Program Data

✓int len: the size of prmData

PS: both of the two arguments are used

for the solution that algorithm program are

stored into flash instead of array.

– Return Value

✓Failure: != 0

✓Success: == 0

• void exTas256x_deinit()

– Illustration: Destroy the context of

tas256x

– Input arguments: None

– Return Value: None

• void exTas256x_speakeroff()

– Illustration: power off tas256x

– Input arguments: None

– Return Value: None

17

TI Information – Selective Disclosure

Interfaces for external use II | SmartAMP basic operation II

• int exTas256x_speakeron(unsigned int profile)

– Illustration: Switch the profile, and power on tas256x

– Input arguments

✓unsigned int profile: supported profile id, customers can add their own profiles according to

the requirements

➢MUSIC

➢ VOICE

➢ CALIBRATION

➢ BYPASS

➢ INDEPENDANT_CAPTURE, program binary must support PDM

➢MIXTURE_CAPTURE, program binary must support PDM

– Return Value

✓Failure: != 0

✓Success: == 0
18

TI Information – Selective Disclosure

Interfaces for external use III | SmartAMP basic operation III

• void exTas256x_irq(void);

– Illustration: interrupt handling routine

– Input arguments: None

– Return Value: None

PS: This interface should be implemented by customers.

19

TI Information – Selective Disclosure

Interfaces for external use IV | SmartAMP Calibration I

• void exTas256x_calib_start(char *spk_vendor);

– Illustration: Start calibration during playing silence

– Input arguments: char *spk_vendor: the name of speaker vendor; inputing NULL or

mismatched speaker name will load default speaker setting

– Return Value: None

• void exTas256x_calib_stop(void);

– Illustration: Stop calibration started by exTas256x_calib_start. Usually, after calling

exTas256x_calib_start after 2~3 seconds, call this interface to stop. That is

exTas256x_calib_start and exTas256x_calib_stop should be called in pair.

➢This interface contain saving calibrated data into NV part, which would be implemented by

the customer. See nv_write introduction in Wrapper Layer III | Platform Interface

Introduction II

– Input arguments: None

– Return Value: None 20

TI Information – Selective Disclosure

Interfaces for external use V | SmartAMP Calibration II

• Calibration Calling procedure

1. exTas256x_init

2. exTas256x_speakeron(CALIBRATION)

3. Playing silence

4. exTas256x_calib_start

5. sleep 2~3 seconds

6. exTas256x_calib_stop

7. Stop playing

8. exTas256x_speakeroff

9. exTas256x_deinit

21

TI Information – Selective Disclosure

Interfaces for external use VI | SmartAMP f0 read

• int exTas256x_get_f0(unsigned int *f0_array);

– Illustration: Get the f0 to check whether the speaker is leakage or blocked

– Input arguments: pointer the array to save the f0 value

– Return Value: None

– Calling procedure

exTas256x_init

exTas256x_speakeron(CALIBRATION)

Playing -15db pink noise

exTas256x_get_f0

sleep 5 seconds

Stop playing

exTas256x_speakeroff

exTas256x_deinit

22

TI Information – Selective Disclosure

Macro definition I

• I2C_ENABLE ---- If defined, use I2C interface; If not, use SPI interface.

• PDM_ENABLE ---- If defined, PDM recording enable; If not, PDM recording

disable.

• RX_16BIT ---- If defined, rx channel is 16bit, else is 32bit

• FOUR_PAS ---- four Smartamps

• WOOFER_TWEETERS ---- 2.1 channel Smartamps

• Stereo ---- duel channel Smartamps

• PRM_IN_NV ---- If defined, algorithm program is stored into NV part, it won’t

take up any part of code section, widely used in small-code-section project; If

not, algorithm program is stored in an array, it will take up code section.

23

TI Information – Selective Disclosure

Macro definition II | frequently used macro settings

I2C_ENABLE
PDM_EN

ABLE
PRM_IN_NV RX_16BIT STEREO

WOOFER_T

WEETRS

FOUR_

PAS

Mono/i2c/32-

bit/prm_in_nv
      

Mono/spi/16-

bit/PDM
      

Mono/i2c/16-

bit/PDM
      

Mono/i2c/16-bit       

Stereo/i2c/32-

bit
      

2.1channel/spi/

16-

bit/prm_in_nv

      

4channel/spi/16

-bit/prm_in_nv       

24

TI Information – Selective Disclosure

Size of Code section and Data section (Verified on STM32-F429)

Conf Sum for

application

Dsp firmware

stored into

flash or not

Calibration

profile sum
Code section (byte)

Data section

(byte)

Mono/i2c/32-

bit/prm_in_nv
2 Y 1 19142 5236

Mono/spi/16-

bit/PDM
3 N 1 20140 14056

Mono/i2c/16-

bit/PDM
3 N 1 19022 14052

Mono/i2c/16-bit 2 N 1 18878 14404

Stereo/i2c/32-bit 2*2slots=4 N 1 19029 17928

2.1channel/spi/16-

bit/prm_in_nv
2*3slots=6 Y 1 20479 11896

4channel/spi/16-

bit/prm_in_nv 2*4slots=8 N 1 19236 24376

25

TI Information – Selective Disclosure

Appendix I | suggestions on exTas256x_irq I

• Due to different requirements on irq handling with different mcu platform. Here

provide some basic procedures on irq handling:

1. First define which irq the project needed, suggest

• B0P0R0x1Abit2: TDM clock error mask bit, set 0 as unmask/enable; 1 as mask/disable

• B0P0R0x1Abit1: Over current error mask bit, set 0 as unmask/enable; 1 as mask/disable

2. For multiple-smartamp projects, confirm the connection of reset-pin on samrtamps. If

all the reset-pins share the same GPIO, hardware reset will cause all the amps reset;

If not, hardware reset can control the needed amp.

3. IRQ handling

I. Mask/Disable irq

II. Set following variable to initial value instead of exTas256x_deinit

III. pTAS256X->tasdevice[chn].mPrm = -1；

IV. pTAS256X->tasdevice[chn].mProfileId = -1；

26

TI Information – Selective Disclosure

Appendix I | suggestions on exTas256x_irq II

V. pTAS256X->tasdevice[chn].mnCurrentBook = -1;

VI. pTAS256X->tasdevice[chn].mnCurrentPage = -1;

VII. Hardware reset the chip if GPIO to reset-pin is available; Skip this step, if not.

VIII. Downloading the prm.

IX. Call exTas256x_speakeron

PS: If same interrupt triggers constantly. Constant resets are not a wise way, and

will cause not only a bad user experience, but also make the efficiency of the

whole system too poor. We suggest to set the max time of reset, and look into the

root cause of the interrupt issue.

27

TI Information – Selective Disclosure

Appendix II | How to add a new profile into the code

• Pls reference the MUSIC profile related code as example

– Define a new profile id into profileId_t

– Add the cfg header file into the MCU code studio

– Add code branch into tas256x_dspon/ tas256x_powerup

28

TI Information – Selective Disclosure

Thanks!

29

	默认节
	Slide 1: Guideline for Integrated SmartAMP Baremetal Driver & Factory Calibration Tool
	Slide 2: Revision history
	Slide 3: PreWork
	Slide 4: Introduction I
	Slide 5: Introduction II | makefile
	Slide 6: Introduction III | Header files in inc/coef
	Slide 7: Introduction IV
	Slide 8: Introduction V ---- how to generate the header files
	Slide 9: Introduction VI ---- header files I
	Slide 10: Introduction VII ---- header files II
	Slide 11: Wrapper Layer I | Data Structure
	Slide 12: Wrapper Layer II | Register operation Interface Introduction I
	Slide 13: Wrapper Layer II | Register operation Interface Introduction II
	Slide 14: Wrapper Layer III | Platform Interface Introduction I
	Slide 15: Wrapper Layer III | Platform Interface Introduction II
	Slide 16: Wrapper Layer III| Platform Interface Introduction III
	Slide 17: Interfaces for external use I | SmartAMP basic operation I
	Slide 18: Interfaces for external use II | SmartAMP basic operation II
	Slide 19: Interfaces for external use III | SmartAMP basic operation III
	Slide 20: Interfaces for external use IV | SmartAMP Calibration I
	Slide 21: Interfaces for external use V | SmartAMP Calibration II
	Slide 22: Interfaces for external use VI | SmartAMP f0 read
	Slide 23: Macro definition I
	Slide 24: Macro definition II | frequently used macro settings
	Slide 25: Size of Code section and Data section (Verified on STM32-F429)
	Slide 26: Appendix I | suggestions on exTas256x_irq I
	Slide 27: Appendix I | suggestions on exTas256x_irq II
	Slide 28: Appendix II | How to add a new profile into the code
	Slide 29: Thanks!

