COMPONENT SPECIFICATION

Part should be	e fulfill the b	panned and restricted subst	ances requirement which sp	pecified in ESPP-3001		
MODEL NO.:		DESCRIPTION:				
		Lnductor SMD 10uH7*7*5m	Lnductor SMD 10uH7*7*5mm SHC0603-100M			
		PART NO.:				
ALMA02	2		E20-00349-01			
		Remark:		PR.		
Rev.No.: A1	History	:	第一次	2013-00-21 X* #fr - 2 * # #		
PlastoF	orm	吴学柱	刘日明	刘日明		
		PREPARED BY:	CHECKED BY:	APPROVED BY:		

SPECIFICATION FOR APPROVAL

E20-00349-01

ROHS CUSTOMER : 捷永广建电子(深圳)有限公司

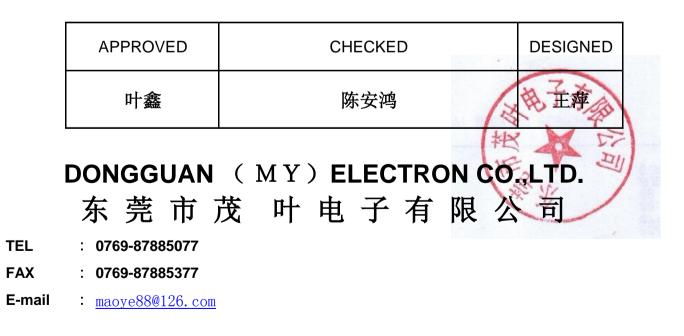
:

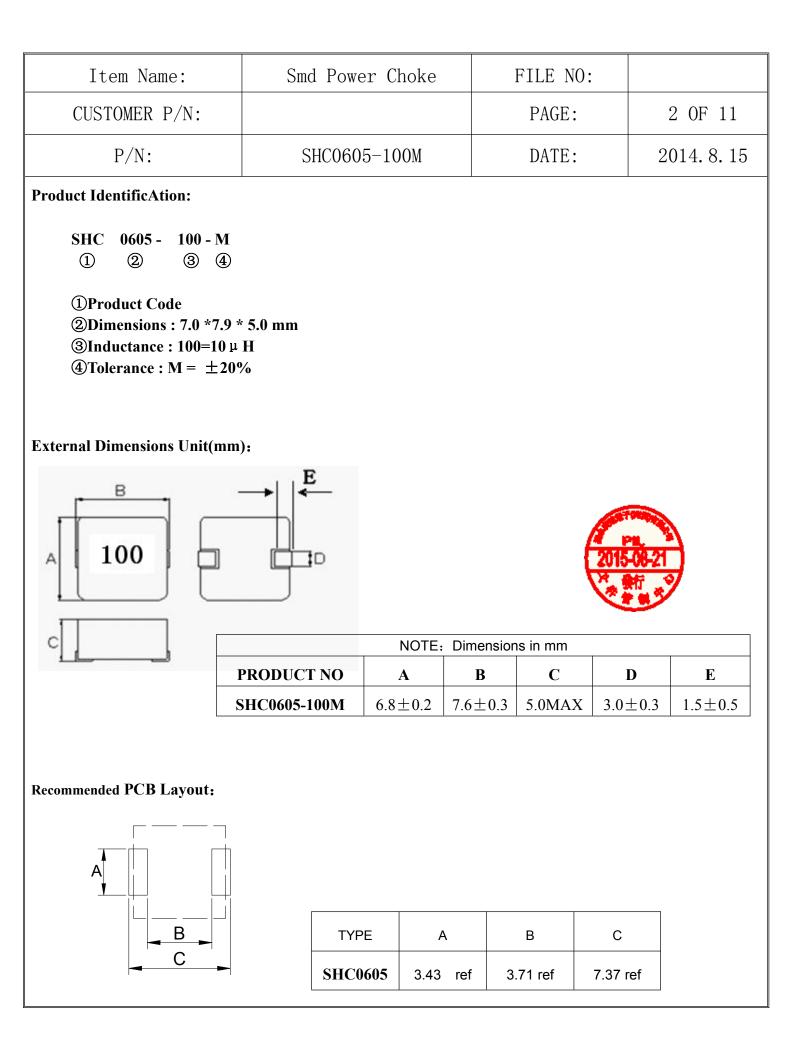
2

P/N. : SHC0605-100M

ITEM : 一体成型电感

ISSUED NO. (REV.) : 00


ISSUED DATE


CUSTOMER P/N.

: 2014.08.15

FILE NO.

CUSTOMER APPROVAL

Item Name:	Smd Power Choke	FILE NO:	
CUSTOMER P/N:		PAGE:	3 OF 11
P/N:	SHC0605-100M	DATE:	2014. 8. 15

Electrical Specification :

PART NUMBER	INDUCTANCE Lo(µH)±20%	Rdc (mΩ)		HEAT RATING CURRENT(Idc)	SATURATION CURRENT(Isat)
	@0A	Тур.	Max	DC AMPS1	DC AMPS2
SHC0605-100M	10	54.8	60	4.5	5.3

TEST FREQUENCY:100KHz,0.25V

TESTING INSTRUMENT L : Agilent/4284A or Chroma /11300

Chroma /11300+3302+1320+1320S BIAS CURRENT SOURCE Rdc: Chroma /16502 or CH502BC, MICRO OHMMETER

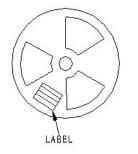
NOTES:

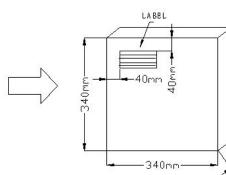
- 1.DC current (Idc) that will cause an approximate $\triangle T$ of 40 °C
- 2.DC current (Isat) that will cause Lo to drop approximately 35%
- 3.All test data is referenced to 25°C ambient
- 4.Operating Temperature Range -55℃ to +150℃
- 5. The part temperature (ambient + temp rise) should not exceed 150°C under worst case operating conditions. Circuit design, component placement, PWB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

	ILE NO:	FILE	ower Choke	Smd P	Item Name:		
4 OF	PAGE:	PA			P/N:	MER P	CUSTON
2014. 8	DATE:	DA)605-100M	SHCC		Ń:	P/
·			EST REPORT	T			
		tic	trical Characteris	Elec			
			Item				
I sat	rms	I rm	DCR	LOA			
5.3Amps	5Amps	4.5An	60m Ω	0uH	1	on	Specificatio
L≧65%	'≦40°C	$\triangle T \leq 4$	Max	20%	±	;	Tolerance
			54.98	9. 63			1
			54.29	9. 94			2
			54.84	9. 88	9		3
			54.97	0. 33	1		4
			54.46	9. 73	9		5
76.99%	5.3°C	25.3	54.62	9. 53	(6
			54.45	9. 70	Ģ		7
			54.90	0. 25	1		8
			55.21	0.04	1		9
A PROPERTY AND			55.27	0.35	10.35		10
A PR. 3	/ P		54.80	9.94	(ĪX
2015-08-21		ns	External Dimensio	E			
	· · · · ·		Item				
Е		D	С	В	А		
1.5	1.5	3.0	5.0	7.6	6.8		Specification
±0.5	±0.	± 0.3	MAX	± 0.3	±0.2	<u>+</u>	Tolerance
1.73	1.7	3.02	4.89	7.73	5.89	6	1
1.45	1.4	3.01	4.85	7.53	6. 87	6	2
1.46	1.4	2.98	4. 91	7.62	6.89	6	3
1.48	1.4	3.03	4. 92	7.63	6.88	6	4
1.76	1.7	3.02	4. 87	7.52	6.87	6	5
1.73	1.7	2.99	4.86	7.69	6.89	6	6
1.75	1.7	3.01	4.82	7.68	6.83		7
1.73	1.7	2.99	4. 92	7.62	6.90	6	8
1.75	1.7	3.03	4.82	7.68	6. 91		9
1.46		3.02	4.93	7.67	5.89		10
1.63	1.6	3.01	4.88	7.64	6.88	6	Ā

Item Na	Item Name: Smd Power C		ower Cho	oke	ke FILE NO:				
CUSTOMER	P/N:					PAGE:			5 OF 11
P/N:	P/N: SHC0605-1		605-100	М	Ľ	ATE:		2014. 8. 15	
			In du af			4			
Test Frequency: 10	0KHZ/0.2	5V	Induct	tance VS E	<i>i</i> curre	nı			
IDC			L		9	6L0A			
OA		1	9.17		10	00.00%			
1A			9.08		9	9.02%			
2A			8.79		9	5.86%			
3A			8.36		9	1.17%			
4A			7.91		8	6.26%			
4.5A			7.63		83.21%		_	_	
5A			7.48		8	81.57%		1 and the second	CHARTER STREET
5.3A			7.06		76.99%		201	5-08-21	
6A			6.85		74.70%		N.M.		
18 16 14 12 10 8 6 4	•			•				+	
16 14 12 10 8 6 4 2 0	•					· · · · · · · · · · · · · · · · · · ·		+	
16 14 12 10 8 6 4 2	1A 9.08	2A 8.79	3A 8. 36	4A 7.91	4.5A 7.63	5A 7.48	5. 3A 7. 06	6A 6.85	

Item Name:	Name: Smd Power Choke		FILE NO:			
CUSTOMER P/N:			PAGE:		6 OF 11	
P/N:	P/N: SHC0605-10		DATE:		2014. 8. 15	
	DC current	/S Tempera	ture			
Test Frequency: 100KHZ/0.2	25V					
Time	L(µH)		T(°C)		$\Delta T(^{\circ}C)$	
0h	7.64		30. 1		0	
0.1h	7.63		41.6		11.5	
0.2h	7.63		45.8		15.7	
0.3h	7.63		47.9		17.8	
0.4h	7.63		50. 3		20.2	
0.5h	7.63		53. 6		23.5	
0.6h	7.63		54.8		24.7	
0.7h	7.63		55.2		25.1	
0.8h	7.63		55.3		25.2	
0.9h	7.63		55.4		25.3	
1h	7.63		55.4		25.3	
14 12 10 35 25 10 4 5 25 15 5 4 4 -5 -15 -25						
2 OH 0.1H		5H 0.6H	0.7H 0.8H 0.9			
→ L (µH) 7.64 7.63 T (℃) 30.1 41.6 → ΔT(℃) 0 11.5	45.8 47.9 50.3 5	7.63 7.63 33.6 54.8 33.5 24.7	55.2 55.3 55	63 7.63 5.4 55.4 5.3 25.3	L	
				(2015-08-21	

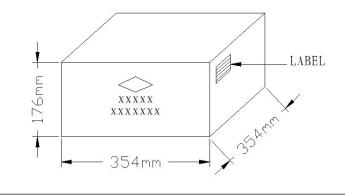

Item Name:	Smd Powe	er Chok	xe	FII	LE NO:		
CUSTOMER P/N:				Р	AGE:	7	0F 11
P/N:	P/N: SHC0605-100M			D	ATE:	20	14. 8. 15
PACKAGING:							
Peel-off Force:							
THICKNESS (t) 0.10(0.004)MAX. EMBOSSED CAVITY MBOSSED CARRIER TOP COVER TAPE 165¢XTO 180¢X BASE TAPE							
The force for peeling off co Dimension (Unit: mm):	over tape is 10 to12	20 grams i	n the ar	row direction	on.		
F +++							
	TYPE	A	В	С	D	E	F
	16mm	330	100	21.0±0.8	13.0 ±1.0	16.0 ±0.5	20.0 ±2.0
						A	THE REAL
F.0 +1 SZ. +1 SZ. +1 +1 SZ. +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1				φ1.	5±0.1	20	15-08-21
4.0±0.1	2.0±0.0	5	/	/+	→ T±0	. 02	-
$P \pm 0.1$							
	-+ - <mark>+</mark> -		2	B±0.1			
TYPE A	В КО	W	P	Т			
SHC0605 7.4	8.2 5.1	16.0	12.	0 0.	4		


Item Name:	Smd Power Choke	FILE NO:	
CUSTOMER P/N:		PAGE:	8 OF 11
P/N:	SHC0605-100M	DATE:	2014. 8. 15

Taping Quantity:

SERIES	SHC0605
PCS/Reel	1000

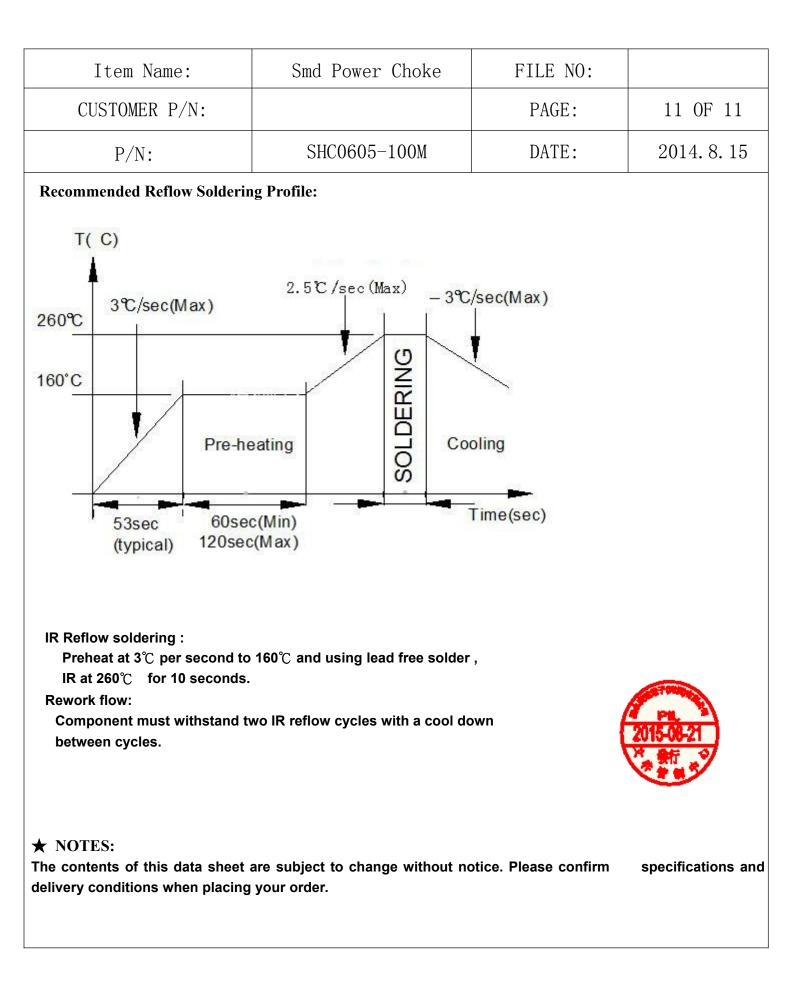
CARTON: MIDDLE PACKAGING : 2 Reel /BOX



,52mm

EXTERNAL PACKAGING : 3 BOX / CARTON

Item Name:	Smd Power Choke	FILE NO:	
CUSTOMER P/N:		PAGE:	9 OF 11
P/N:	SHC0605-100M	DATE:	2014. 8. 15


RELIABILTY TEST

*Electrical perform	mance test	
Item	Specification	Test method
Inductance		Measured with a LCR meter Agilent4284A,CH3302G
DC Resistance		Micro-ohm meter CH11025
Saturation current	specifications.	DC current (A) that will cause L0 to drop approximately 35% (environment temperature of 25° C)
Heat rating current		DC current (A) that will cause an approximate \triangle To 40 $^{\circ}$ C (environment temperature of 25 $^{\circ}$ C)
*Mechanical perfo	ormance test	
bending	Change from an initial value Inductance: within ± 10%	Apply pressure gradually in the direction of the arrow at a rate of about 0.5mm/s until bent depth reaches 2mm and hold for 30 sec. Boad : 40*100mm , thickness: 1mm
	Change from an initial value	A static load using a R0.5 pressing tool shall be applied to the

	Inductance: within ± 10%	body of the specimen in the direction of the arrow and shall be hold for 60±5 sec. Mesure after removing pressure.
	Inductance: within ± 10%	The specimen shall be subjected to a vibration of 1.5mm amplitude, sweep frequency 10~55Hz(10Hz to 55Hz to 10Hz in aperiod of one minute) for 2hr in each of 3(X,Y,Z) axes.
Machanical check	Change from an initial value	Dropped onto printed circuit board from 100cm height three times in x, y, z directions. The terminals shall be protected.
		No and a second se

Item Name:	Smd Power Choke	FILE NO:	
CUSTOMER P/N:		PAGE:	10 OF 11
P/N:	SHC0605-100M	DATE:	2014. 8. 15

ltem	Specification	Test method
	New solder shall cover 90%	Electrode shall be immersed in flux at room temperature
	minimum of the surface	and then shall be immersed in solder bath after preheat.
solderability	immersed.	Preheat 160±10°C , 90 sec
		Soldering 245±5℃ , 3±1 sec
Resistance to solldering heat		Reflow soldering method
		Preheat 150~180℃ , 90~120sec
		Peak temp. 260℃(230℃ over 30~40 Sec.)
		The specimen shall be subjected to the reflow process
		under the above condition 2 times. Test board shall be
	Change from an initial value	0.8mm thick. Base material shall be glass epoxy resin.
	Inductance: within ± 10%	Soldering iron method
		Bit temperature 230± 7℃
		Period of soldering 3sec
		Measurement
		The specimen shall be stored at standard atmospheric
		conditions for 1 hr in prior to the measurement.
*Climatic test		
Low temperature	Change from an initial value Inductance: within ± 10%	The specimen shall be stored at a temperature of -40±3°C
		for 96hr. then it shall be stabilized under standard
		atmospheric conditions for 1hr before measurement
		measurement shall be made within 1hr.
Dry heat		The specimen shall be stored at a temperature of 85±3°C
	Change from an initial value	for 96hr. then it shall be stabilized under standard
	Inductance: within ± 10%	atmospheric conditions for 1hr before measurement
		measurement shall be made within 1hr.
Dump heat		The specimen shall be stored at a temperature of 60±3°C
		with relative humidity of 90~95% for 96h. Then it shall be
	Change from an initial value	stabilized under standard atmospheric conditions for 1h
	Inductance: within ± 10%	before measurement. Measurement shall be made withir
		1hr.
Temperature cycle		The specimen shall be subjected to 10 continuous cycles o
		temperature change of -40 $^\circ C$ for 30 min and 85 $^\circ C$ for 30
	Change from an initial value Inductance: within ± 10%	min with the transit period of 2 min or less.
		Then it shall be stabilized under standard atmospheric
		conditions for 1hr before measurement. Measurement
		be made within 1hr.

