
Post Filter Feedback (PFFB)

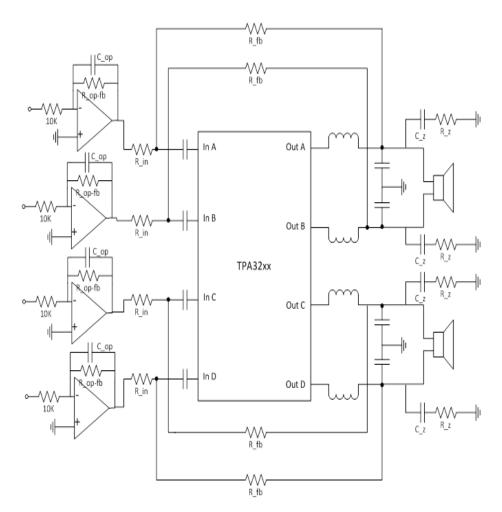
PFFB— What is it?

 PFFB is a secondary external feedback loop that feeds back a portion of the output signal after the LC filter to the input of the amplifier.

Improves system performance!

PFFB— TPA32xx EVM Implementation

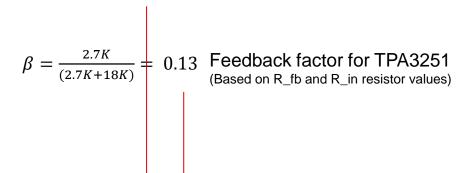
TPA32xx EVM family has component pads to implement PFFB.


R_fb: Feedback resistor

R_in: Input summing junction resistor

C_z: Zobel capacitorR_z: Zobel Resistor

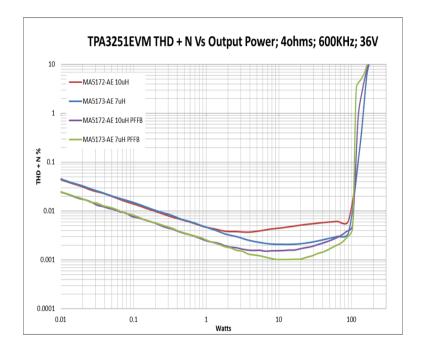
C_op: Op-Amp feedback capacitor
R_op-fb: Op-Amp feedback resistor


PFFB Designator	EVM Schematic Location/Designator	TPA3251 (PVDD=36V Fpwm=600KHz)	TPA3255 (PVDD=51V Fpwm=450KHz)
R_fb	R47 R49 R50 R51	18K	20K
R_in	R4 R12 R44 R46	2.7K	2.7K
C_z	C77 C78 C79 C80	1uF	1uF//.33uF
R_z	R54 R55 R56 R57	2.7R	3.3R
C_op	C18 C23 C57 C65	330pF	330pF
R_op-fb	R8 R41 R21 R25	10K	10K

PFFB- Calculating PFFB Gain

$$A_f = \frac{A_0}{(1 + A_0 \beta)}$$
 Closed Loop Gain

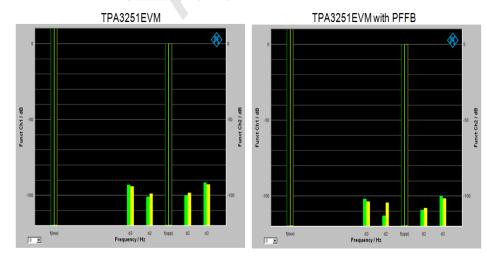
$$A_0 = 20dB = 10$$
 Standard Gain of TPA3251


	TPA3251	TPA3255
Feedback Parameters	(PVDD=36V	(PVDD=51V
	Fpwm=600KHz)	Fpwm=450KHz)
Gain Ao (dB)	20	21.5
Feedback Factor β	0.13	0.119
PFFB Gain Af (dB)	12.8	13.8
Negative Feedback (dB)	7.2	7.7

\bigvee	
$A_f = \frac{10}{(1 + (10 \times 0.1)^{-1})^{-1}}$	$\frac{1}{3}$ = 4.35 = 12.8 <i>dB</i>

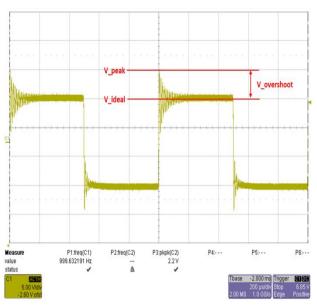
PFFB Gain for TPA3251

PFFB- Benefits

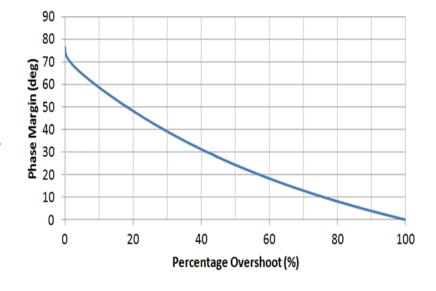

Lower Inductor distortion

Noise (uV) A-Weighted					
EVM Configuration	TPA3251 (PVDD=36V	TPA3255 (PVDD=51V			
	Fpwm=600KHz)	Fpwm=450KHz)			
Standard	60uV	86uV			
PFFB	35uV	40uV			

Lower Intermodulation distortion


Test: SMPTE (60Hz + 7KHz, Ratio 4:1) 1W 8Ω

PFFB– Assessing Stability


Since the TPA32xx family are internally closed loop devices without access to internal loop, **time domain transient response** analysis is used to assess stability.

Frequency domain gain and phase bode plots **Do Not** give accurate results.

$$Overshoot(\%) = \left(\frac{(V_peak) - V_ideal}{V_ideal}\right) \times 100$$

Phase margin vs Percentage Overshoot

