
NFC Forum Type 3 Tag Platform
Operations with the TRF7970A

NFC/RFID Training Module (2014)
S2 MCU NFC/RFID Applications Team

1

AGENDA
• Brief overview of FeliCa

– What is FeliCa?
– What markets does it serve?

• FeliCa Operational Details
– Command Set
– Anti-Collision
– Expected Responses

• NFC Forum Type 3 Tag Operation Specification Overview
– Introduction to T3T Platform
– State Diagram
– NDEF Access
– NDEF Detection
– Attribute Block
– NDEF message retrieval
– NDEF Formatting and Writing NDEF Message

• Using TRF7964A / -70A with FeliCa / NFC T3T Platform
– Configuring the TRF7964A / TRF7970A for FeliCa / T3T Platform Operations
– Command Issuance / Tag Response examples
– Overview of MSP430G2553 LaunchPad / TRF7970A BoosterPack Code
– Lab

• MSP430G2553 LaunchPad + TRF7970A BoosterPack + T3T Platform

2

What is FeliCa / NFC T3T Platform?
• FeliCa is from Sony Corporation and uses worldwide accepted

13.56MHz carrier frequency, ASK modulation method with a 10%
depth at either 212kbps or 424kbps data rates and bit coding is
Manchester, MSB first.

• It is listed as NFC Forum Type 3 Tag Platform, and there are four
main products that are offered from Sony for NFC applications.

1. FeliCa Standard is used throughout contactless smartcard and
mobile FeliCa products that can support various types of
applications, such as transportation, e-money, and employee
IDs.

2. FeliCa Lite and Lite-S are minimized contactless smartcard
products with an optimized file system and streamlined security
functions, they can be used for cards and various other form
factors, such as stickers.

3. FeliCa Link refers to the series of products with both wireless
and wired interfaces that combine the functions of FeliCa Lite-S
and FeliCa Plug.

4. FeliCa Plug (T3T NFC Dynamic Tag) is a wireless-interface
product, which can be embedded into electronic devices,
enabling the device to communicate with any NFC reader/writer
or with any NFC smartphone. 3

FeliCa target markets
(where you might find these being used)

4

FeliCa / NFC T3T Platform
Basic Operational Details

5

FeliCa Command Set
• Polling (0x00)

– This command is used to acquire and identify a card
– Returns response code 0x01, IDm, PMm of card and two more bytes of specific data, if requested. (i.e. System

Code or Communication Performance / Data Rate Capability)

This command is formatted in the following manner:

• System Code
– System Code can be wildcard for either of these bytes, using in both makes any FeliCa card respond, other

common ones to use are 0x12FC and 0x88B4.

• Request Code
– 0x00 (shown) is a no request to the card. If a 0x01 or 0x02 is used here, System Code and Communication

performance values are returned, respectively.

• Time Slot
– Time slots available are: 0x00, 0x01, 0x03, 0x07 and 0x0F, for respectively allowing responses in 1,2, 4, 8 or 16

time slots. When using the timeslot method, the card will select a time slot randomly and transmit its response
back. This approach is intended to reduce the probability of collisions between cards, not eliminate them as one
finds in other card protocols anti-collision approaches.

6

of bytes card will
be receiving,

including this one
Command Code

System Code
(SC)

(two bytes, wildcard values shown)

Request Code
(RC)

Time Slot
(one slot shown)

0x06 0x00 0xFF 0XFF 0x00 0x00

Anti-Collision with FeliCa
• FeliCa technology uses Time Slot method to reduce the probability of collisions between responses returned from

multiple cards in the field of the reader.

• The start of the first time slot is called “Response Time (A)” and the width of the time slot is called ‘Response Time (B)”
– Response Time (A) = 512 x 64/fc, where fc = 13.56MHz = 2.41652mSec
– Response Time (B) = 256 x 64/fc, where fc = 13.56MHz = 1.20826mSec

• The number of time slots to be shared between reader and cards is sent in the polling command string, as previously
mentioned, and can be either 1, 2, 4, 8 or 16 slots.

• In the diagram below is 4 slot example with two cards that selected slots 1 and 3 to respond in.

7

FeliCa Polling Response Details
• IDm: Manufacturing ID, this is an 8 byte field the card will return in response to a Polling command,

includes Manufacturer Code (MC) and Card Identification Number (CIN)

• PMm: made up of the IC Code and the Manufacturing Parameters

• Inside the PMm are the maximum response time parameter bytes, which indicate the maximum time
the card could take to respond to either a Read Without Encryption Command or a Write Without
Encryption Command. (shown below as bytes D13 and D14)

8

Bit definitions

D14 - MAX WRITE TIME RESPONSE EXAMPLE:

Card returns 0x43 in this byte, then timeout time would
equal, based on the formula in the far left box,
4.8416mSec x n blocks

D13 - MAX READ TIME RESPONSE EXAMPLE:

Card returns 0x01 in this byte, then timeout time would
equal, based on the formula in the far left box,
0.6052mSec x n blocks

FeliCa Polling Response Details (cont.)
• Request Data Bytes

– System Code
• Common System Codes for FeliCa are: 0x12FC, 0x88B4

– Communication Performance Bit Definitions
• These bytes are indicating the data rate(s) the tag is capable of operating at:

9

D0 D1

0x00 B7 B6 B5 B4 B3 B2 B1 B0

--- --- --- --- --- --- --- X

--- --- --- --- --- --- X ---

--- --- --- --- --- 0 --- ---

--- --- --- --- 0 --- --- ---

--- 0 0 0 --- --- --- ---

X --- --- --- --- --- --- ---

0b: 212kbps not possible

1b: 212kbps possible

0b: 424kbps not possible

1b: 424kbps possible

0b: 848kbps not possible

1b: 848kbps possible (reserved)

0b: 1.6Mbps not possible

1b: 1.6Mbps possible (reserved)

Fixed value (all others RFU)

0b: communication rate auto detect non-compliant

1b: communication rate auto detect compliant

FeliCa Polling Response Example #1
(FeliCa Lite)

• Response Packet Data Format
– In the case when request data is not requested by setting RC = 0x00, in the Polling Command

OR
– In the case when request data is requested by using RC = 0x01 (for System Code) in the Polling Command

OR
– In the case when request data is requested by using RC = 0x02 (for Data Rate), in the Polling Command

10

of bytes reader
will be receiving,
including this one

Response
Code IDm PMm

0x12 0x01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

of bytes reader
will be receiving,
including this one

Response
Code Idm PMm Request Data

0x14 0x01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1

FOR EXAMPLE  0x01 0x27 0x00 0x62 0x99 0xE4 0x69 0xC6 0x00 0xF0 0x00 0x00 0x02 0x06 0x03 0x00 0x88 0xB4

of bytes reader
will be receiving,
including this one

Response
Code Idm PMm Request Data

0x14 0x01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1

FOR EXAMPLE  0x01 0x27 0x00 0x62 0x99 0xE4 0x69 0xC6 0x00 0xF0 0x00 0x00 0x02 0x06 0x03 0x00 0x00 0x01

Supported Data Rate = 212kbps

System CodeResponse Timings

FeliCa Polling Response Example #2
(FeliCa Lite-S)

• Response Packet Data Format
– In the case when request data is not requested by setting RC = 0x00, in the Polling Command

OR
– In the case when request data is requested by using RC = 0x01 (for System Code) in the Polling Command

OR
– In the case when request data is requested by using RC = 0x02 (for Data Rate), in the Polling Command

11

of bytes reader
will be receiving,
including this one

Response
Code IDm PMm

0x12 0x01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

of bytes reader
will be receiving,
including this one

Response
Code Idm PMm Request Data

0x14 0x01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1

FOR EXAMPLE  0x01 0x2E 0x30 0xC8 0x51 0x59 0x41 0x82 0x00 0xF1 0x00 0x00 0x00 0x01 0x43 0x00 0x88 0xB4

of bytes reader
will be receiving,
including this one

Response
Code Idm PMm Request Data

0x14 0x01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1

FOR EXAMPLE  0x01 0x2E 0x30 0xC8 0x51 0x59 0x41 0x82 0x00 0xF1 0x00 0x00 0x00 0x01 0x43 0x00 0x00 0x83

System Code

Supported Data Rates = 212kbps and 424kbps

Response Timings

FeliCa Polling Response Example #3
(FeliCa)

• Response Packet Data Format
– In the case when request data is not requested by setting RC = 0x00, in the Polling Command

OR
– In the case when request data is requested by using RC = 0x01 (for System Code) in the Polling Command

OR
– In the case when request data is requested by using RC = 0x02 (for Data Rate), in the Polling Command

12

of bytes reader
will be receiving,
including this one

Response
Code IDm PMm

0x12 0x01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

of bytes reader
will be receiving,
including this one

Response
Code Idm PMm Request Data

0x14 0x01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1

FOR EXAMPLE  0x01 0x01 0x07 0x01 0x7E 0x0F 0x80 0x00 0x0F 0x0D 0x23 0x04 0x2F 0x77 0x83 0xFF 0x12 0xFC

of bytes reader
will be receiving,
including this one

Response
Code Idm PMm Request Data

0x14 0x01 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D0 D1

FOR EXAMPLE  0x01 0x01 0x07 0x01 0x7E 0x0F 0x80 0x00 0x0F 0x0D 0x23 0x04 0x2F 0x77 0x83 0xFF 0x00 0x83

System Code

Supported Data Rates = 212kbps and 424kbps

Response Timings

FeliCa Command Set (cont.)
• Read Without Encryption (0x06)

– This command is used to read block data from a service that does not require encryption (≤ 4 at one time)
– Returns response code 0x07, IDm, Status Flag bytes, # of Blocks and 16 byte wide data from each block
This command is formatted in the following manner:

• # of services: Equal to 0x01

• Service Code List: Little Endian oriented two byte field in which the lower byte can be 0x09 or 0x0B, where: 0x09 =
Random Service, R/W permission and 0x0B = Random Service, R/O and R/W permission

• # of Blocks to be read: Can be between 1 and 4. Each block to be read needs its own Block List Element and Block #
specified, here above is showing reading one block. For up to four blocks, the # of blocks to be read should be
incremented and followed by appropriate pairs of Block List Element + Block # to read. Also, if more bytes are sent out,
the # of bytes the card will be receiving value should be incremented to correct value, too.

• Block List Element: To specify a Service and Block Number to be targeted for access, use Block List. In the Block
List, the elements are enumerated.

• Block # to be read: Block # to read data from according to memory map

13

of bytes card
will be receiving,
including this one

Command
Code

IDm
(retrieved from Polling Command Response) # of Services

Service
Code List

(Little Endian)

of
Blocks to
be read

(1:4)

Block
List

Element

Block #
to be
read

0x10 0x06 D0 D1 D2 D3 D4 D5 D6 D7 0x01
0x09

0x00 0x01 0x80 0x00
0x0B

FeliCa Command Set (cont.)
• Write Without Encryption (0x08)

– This command is used to write block data to a service that does not require encryption (1 block allowed at a time)
– Returns response code 0x09, IDm and two status flag bytes
This command is formatted in the following manner:

• # of services: Equal to 0x01

• Service Code List: Little Endian oriented two byte field in which the lower byte shall be 0x09, where: 0x09 = Random
Service, R/W permission (check examples that show 0xC9, 0x0B also)

• # of Blocks to Write: shall be equal to 0x01

• Block List Element: To specify a Service and Block Number to be targeted for access, use Block List. In the Block
List, the elements are enumerated.

• Block # to write: Block # to write data to, according to memory map and access conditions

• Block Data: 16 bytes that are desired to be stored on the card at the block location

14

Length
of

Packet
CC IDm

(retrieved from Polling Command Response)
of
svcs

Service
Code List

(Little Endian)

of
Blocks

to
Write

Block
List

Element

Blk #
to

write

Block Data
(16 bytes)

0x20 0x08 D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7 0x01 0x09 0x00 0x01 0x80 0x00 X X X X X X X X X X X X X X X X

NFC Forum Type 3 Tag Operation
Specification Overview

15

Introduction to T3T Platform
• NFC Forum Specification for FeliCa tags is called NFC Forum Type 3 Tag

Operation Specification. This is a technical spec which outlines how these tags
are to be used in an NFC application.

• The NFC Forum also has Analog and Digital specifications for these tags, and
the content of those is same as what you will find in Sony specs regarding air
interface, framing, and transmission handling.

• The command set is same as what we have just reviewed in the preceding
slides, except NFC Forum changed two terms, so for clarification, a translation
is appropriate:

 FeliCa “Polling” command = NFC Forum “Polling” command or “SENSF_REQ”

 FeliCa “Read Without Encryption” command = NFC Forum “Check” command

 FeliCa “Write Without Encryption” = NFC Forum “Update” command

16

NFC Forum T3T State Diagram
• As defined by the NFC Forum, the T3T Platform has only one state,

called “Mode 0”. In this state the Polling, Check and Update commands
can be received. None of these commands change the state of the
Type 3 tag.

17

NDEF Access
• After detection, Check commands are used to determine the Attributes and

retrieve the NFC Data Exchange Format (NDEF) data from the tag, if it already
formatted and with content.

• Update commands would be used to NDEF format the tag or change the
content in the case it was not previously configured for NFC applications.

18

NDEF Detection
• The first step in detecting NDEF enabled T3 tags is to find the tags in

the RF field that have the System Code of 0x12FC. FeliCa Lite and Lite
S naturally have system code of 0x88B4, but they will respond to a
polling command which has 0x12FC specified in the command string.

• Here below is the simple flow:

19

NDEF Detection (cont.)
• The polling command would be executed

and the System Code checked in the
response.

• Then Block 0 would be read out to
determine the attributes of the card.

Reference: Section 6.1 in the NFC Forum T3T Platform
specification, entitled NDEF Management Data

20

Deciphering the Attribute Block
• According the flow, after the Polling Command response, the Attribute Block

must be read out.
• Below is Block 0 of an NDEF Formatted T3T Platform with contents of:

• To satisfy step 2 of the flow chart on the previous slide, this shows tag has
Mapping Version 1.0, Write Flag is set to 0x00, NDEF Length is 31 bytes (on
this particular card example), with a checksum of 0x42.

• With the Checksum in B14 and B15 being calculated using the formula:
– Checksum = B0+B1+…B13

NOTE: B14 and B15 need to be updated anytime any values in B0 to B13 are changed.

21

Mapping
Version

Max Blocks
to Read

Max Blocks to
Write

Blocks for NDEF
Storage Unused Write

Flag
NDEF Access

Read and Write Flag
Current NDEF

Message Length Checksum

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

10 04 01 00 0D 00 00 00 00 00 01 00 00 1F 00 42

Reading NDEF Data
• Now that polling and checks are complete, the reading of NDEF data can take place.

• In our example, from reading out the Attribute Block, Bytes B11 – B13, we know the NDEF message
length in 31 bytes long.

• Since the T3T platform blocks are 16 bytes wide, this means we only need to read two blocks to
retrieve the NDEF message content.

• Here below is showing the complete sequence of polling, reading out Block 0, then reading out two
blocks of hex data from blocks 0x01 to 0x02, and converting to ASCII for human readability.

22

Meaning of the Bytes in NDEF
Message Area (in this example)

• In the block 01 and 02 that were retrieved are bytes for:
– NDEF Record Header:

• SR=1, TNF=0x01(NFC Forum Well Known Type), ME=1, MB=1
– Length of Record Name: 0x01

• 1 byte
– Length of the Payload Data: 0x1B

• 27 bytes
– Record Name: 0x54

• “T” = RTD Type Text
– Status Byte: 0x02

• Length of language code in bytes = 2
– Language Code: 0x65, 0x6E

• “en” (hex to ASCII)
– NDEF message content: 0x4E, 0x46, 0x43, 0x20, 0x50, 0x6F, 0x77, 0x65, 0x72,

0x65, 0x64, 0x20, 0x62, 0x79, 0x20, 0x54, 0x49, 0x20, 0x53, 0x32, 0x20, 0x4D,
0x43, 0x55

• “NFC Powered by TI S2 MCU” (hex to ASCII)

23

Writing NDEF Data
• Writing NDEF data has a similar

flow as reading with the T3T
Platform.

• See Slide 14 for command
execution details.

24

Using the TRF7964A / TRF7970A
with FeliCa / NFC T3T Platforms

25

Configuring the TRF7964A / TRF7970A for
FeliCa / T3T Platform Operations

• Now that we know some relevant details about what the card is expecting from a protocol perspective, we can configure the
TRF79xxA device accordingly.

• Chip Status Control Register (0x00)
– Setting based on voltage in (VIN) to TRF79xxA

• +5VDC  0x21 (full power out), 0x31 (half power out)
• +3.3VDC  0x20 (full power out), 0x30 (half power out)

• ISO Control Register (0x01)
– Must be set to 0x1A for 212kpbs, 0x1B for 424kbps (recommend to start with 0x1A)

• SYS_CLK & Modulation Depth Register (0x09)
– Must be set to 0xY0, where Y= input clock frequency and desired SYS_CLK out

• In MSP430G2553 project that will be discussed in next section, this register is set for 0x00, since MSP430G2553 is not
using TRF7970A SYS_CLK Output

• Adjustable FIFO IRQ Levels Register (0x14)
– Should be set for 0x0F

26

SENSF_REQ / SENSF_RES
• Then we can issue SENSF_REQ Command and get back SENSF_RES.

27

SENSF_REQ

SENSF_RES

Following the NFC T3T Spec
for NDEF Detection

• From the SENSF_REQ (issued with RC = 0x01), we get SENSF_RES.

• Because we set the System Code to 0x12FC and the RC = 0x01 in the SENSF_REQ, and the card we
are using is responding to that System Code, at the end of the SENSF_RES response packet is the
System Code 0x12FC.

• Passing this check allows us to move on to reading out Block 0 for the Attributes of the card, which is
next step in implementing the NFC Spec Flow.

• NOTE: FeliCa Lite and Lite S cards will respond to 0x12FC with 0x12FC and respond with 0x88B4 to the wildcards.
Therefore, if wildcards are used for System Code in SENSF_REQ, the decision block above could be modified to
accept cards that respond with 0x12FC or 0x88B4. Suica (Japan Railpass) cards will respond with an SC of 0x0003 if
wildcards are used, indicating a proprietary FeliCa application, so there would be no disturbance or disruption to the
flow shown above, if wildcards in were used instead of hardcoding 0x12FC into the SENSF_REQ.

28

From SENSF_RES
(see previous slide for entire string)

Following the NFC T3T Spec
for NDEF Detection (cont.)

• Now we can issue a “Check” command on Block 0, to determine the attributes of the card.

• To review, here is the format of the command, which includes the IDm retrieved from SENSF_RES

• Here is the command actually being issued

• And the Check Response, for the Attributes Block of this card, to satisfy step 2 of the flow chart on
Slide 20 , this shows tag has Mapping Version 1.0, Write Flag is set to 0x00, NDEF Length is 31 bytes
(on this particular card example), with a checksum of 0x42.

29

of bytes card
will be receiving,
including this one

Command
Code

IDm
(retrieved from Polling Command Response) # of Services

Service
Code List

(Little Endian)

of
Blocks to
be read

(1:4)

Block
List

Element

Block #
to be
read

0x10 0x06 D0 D1 D2 D3 D4 D5 D6 D7 0x01
0x09

0x00 0x01 0x80 0x00
0x0B

CHECK

Following the NFC T3T Spec
for NDEF Detection (cont.)

• From what we have derived from the card by reading the attributes block, now we can proceed forth with doing a two
block read, since we know that the NDEF content is wholly contained inside of 31 bytes.

• To review, here is the format of the command, and in this case we will read two blocks, so we increment the length byte
to 0x12, the # of blocks to be read out byte to 0x02 and add the extra two bytes at the end to read out block #2 (in
comparison to the previous example on Slide 13)

• Here is the command actually being issued.

• The response is too long to show well in this presentation with the logic analyzer, but to review, please go to slide 23

• Presenter to show/capture actual LSA shot here.

• The data bytes captured are parsed out accordingly and converted to ASCII for human readability or just passed
directly to a host for that processing to take place.

• The next section discusses / reviews the standalone MSP430G2553 LaunchPad + TRF7970A BoosterPack code
project. (which was used to create this collateral). 30

of bytes card
will be

receiving,
including this

one

Command
Code

IDm
(retrieved from Polling Command Response)

of
Services

Service
Code List

(Little Endian)

of
Blocks
to be
read
(1:4)

Block
List

Element

Block
to be

read

Block
List

Element

Block #
to be
read

0x12 0x06 D0 D1 D2 D3 D4 D5 D6 D7 0x01 0x0B 0x00 0x02 0x80 0x01 0x80 0x02

MSP430G2553 LaunchPad + TRF7970A BoosterPack
Code Example for T3T Platform

31

Background on the code project
• Compiled in Code Composer Studio Version: 6.0.1.00040

• MSP430G2553 + TRF7970A specific functions use about 1.9kB of Flash

• FeliCa / NFC T3T specific functions (reviewed earlier), with UART output strings use
about 2.4kB of Flash.

• Combined total = ~4.3kB of flash needed to run the standalone example which does
complete NDEF detection loop and returns data back to terminal program via UART.

NOTE: these values are from compiling with no optimizations still yet another improvement that can be made 

• The code project currently reads out Type 2, Type 3, Type 4A, Type 4B, Type 5 and HID
PicoPass cards. The basic idea/concept/motivation of the project is to demonstrate a cost
effective reader/writer solution which can be realized with the MSP430G series MCUs
and the TRF79xxA NFC/RFID transceivers.

• INSERT NOTE HERE: to set expectation correctly about firmware limitations of this
example.

• It (the code project) was implemented using the MSP-EXP430G2 LaunchPad and the
DLP Design TRF7970A BoosterPack and can also be loaded onto the TI Design TIDM-
NFC-EZ430-MODULE  http://www.ti.com/tool/TIDM-NFC-EZ430-MODULE, with
modification only needed to the trf7970BoosterPack.h file, for GPIO reassignments for
the LEDs. (project has this modification already done, labeled and commented out)

32

Hardware & Development
Environment Requirements

• MSP-EXP430G2 LaunchPad with MSP430G2553 installed
– http://www.ti.com/tool/msp-exp430g2

• DLP-7970ABP (TRF7970A BoosterPack)
– http://www.ti.com/tool/dlp-7970abp

• Code Composer Studio IDE for MSP430
– http://processors.wiki.ti.com/index.php/Download_CCS
– Latest recommended, code size limited free version will also work

• Terminal Program (for displaying UART output)
– Use one integrated into CCS (when not debugging)

• Or if debugging and you want to see UART output
– Docklight http://www.docklight.de/
– Termite  http://www.compuphase.com/software/termite-3.1.zip

• Logic Analyzer (for debugging, if you make changes)
– 8 or 16 channel  https://www.saleae.com/cart

33

Importance of the Terminal Display

• Here is example of using
TRF7970A BoosterPack with
MSP-EXPG2 Launchpad to
read out basic information
from 4 different variations of
Type 3 Tag platforms using
Docklight

• Here is example of using
TRF7970A BoosterPack with
MSP-EXPG2 Launchpad to
read out block data and also
display NDEF information
from FeliCa Lite-S card using
Termite

34

Logic Analyzer Connections
to TRF7970A BoosterPack

• Connecting a Logic Analyzer to the TRF7970A BoosterPack is
accomplished following the table below.

• This is handy tool to use when trying to quickly debug a new feature
you are trying to implement, without having to figure out where to set
breakpoints or watch windows.

• The connections in color (red, yellow, orange, green, brown, black and
grey) correspond to channels on the Saleae LSA.

35

value Outer
Header 1

Inner
Headers

TRF7970A
BoosterPack LSA

Pinout

Inner
Headers

Outer
Header 2 value

3VDC 1 9 20,11 20 GND
ANALOG IN 2 19 GPIO / PWM
UART RX 3 18 GPIO / CS
UART RX 4 17
GPIO 5 16 RST

ANALOG IN 6 13 15 MOSI
SPI_CLK 7 12 16 14 MISO
IRQ 8 17 13 ISO15693 LED

SLAVE_SELECT 9 14 12 ISO14443A LED
ENABLE 10 10 11 ISO14443B LED

main.c
• Key feature of this project is to ability to enable/disable protocols easily.

• #if def ENABLE statements are utilized and can be commented in/out to realize this.

• Below is screen capture from main.c file which illustrates all protocols except FeliCa being commented
out.

• A compile and download to the target at this point would yield system only looking for T3T tag types.

36

Declaration: FindFeliCa
• If we follow the declaration FindFeliCa from main.c, we can see that a simple flow was created which

writes the ISO Control Register (which triggers another function), the polling function, followed by a
single block read and a four block read.

• Next steps on this are to make the multiple block reads more dynamic, based on the content of Block
0, as previously discussed is required by NFC Forum.

37

#ifdef ENABLEFELICA
• As mentioned in previous slide, the writing of the ISO Control Register in the FindFeliCa

function triggers another function that checks ISO Control register and then configures
the TRF79xxA correctly for the given protocol, as shown below.

38

FeliCaPolling
• FeliCaPolling Command Function:

39

FeliCaRWE Function
• This function performs a read of Block 0 from a FeliCa / T3T platform

40

