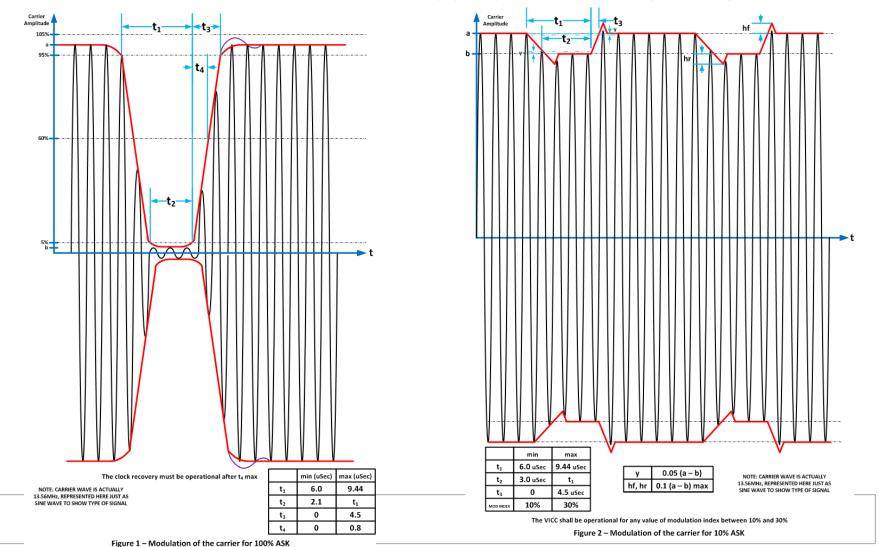
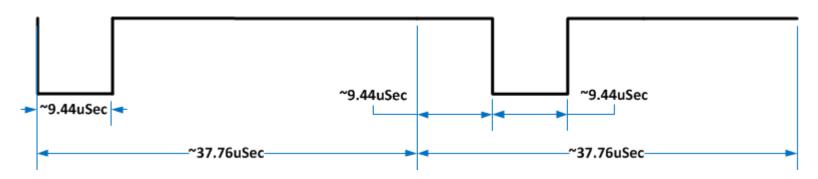
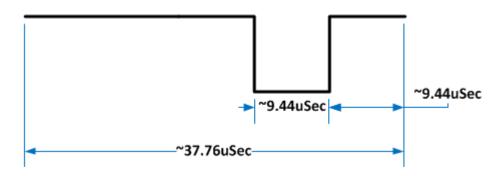


HF RFID ISO Standards Overview (cont.)


- ISO/IEC 15693 is primarily used for Vicinity Applications
 - Access Control, Asset Tracking, Portable Data Storage, etc.
 - ISO15693 is logically divided into 3 parts
 - ISO15693-1 : Physical Characteristics of Cards (VICCs)
 - ISO15693-2 : Air Interface and Initialization
 - ISO15693-3 : Anti-Collision and Transmission Protocol
 - NOTE: ISO/IEC 18000-3 is medical application version of ISO15693

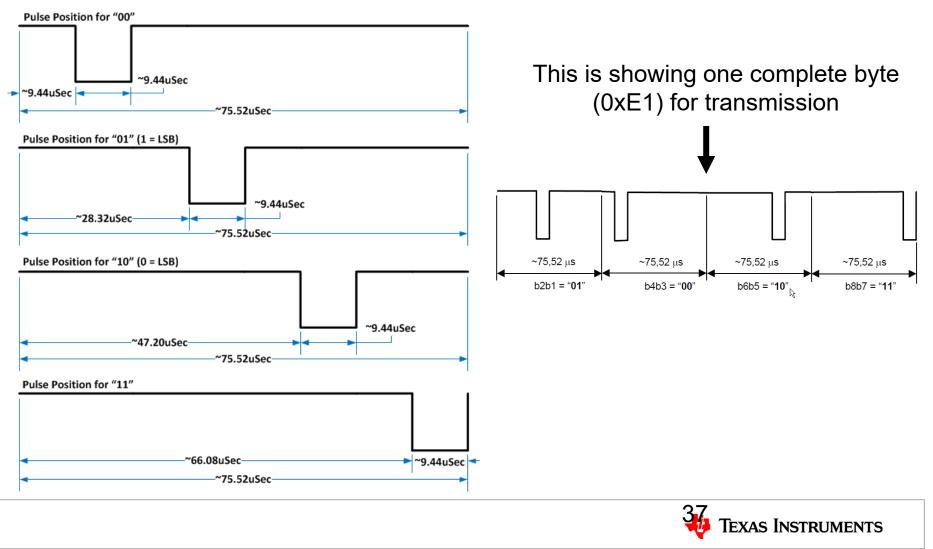

Air Interface Protocol – Downlink

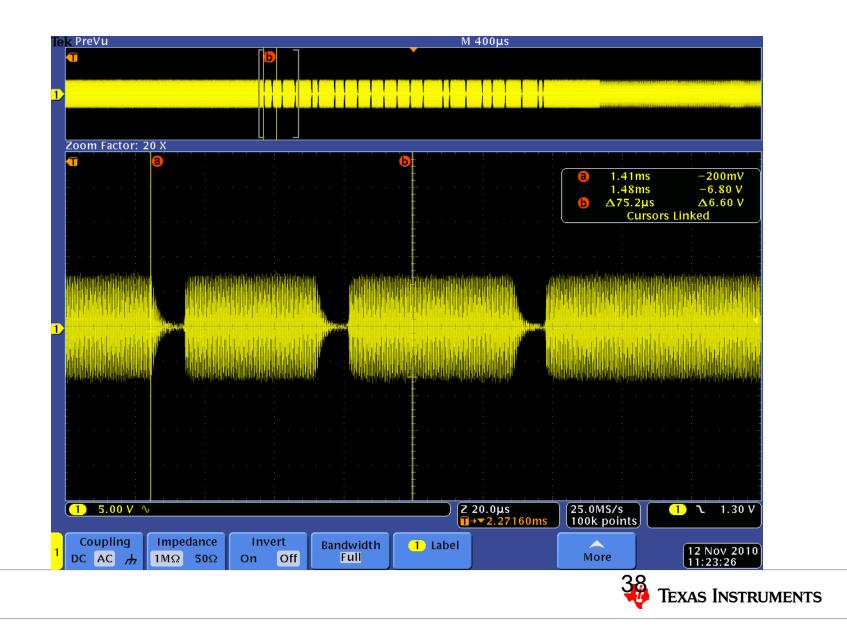
- Uses either 100% or 10-30% Amplitude Shift Key (ASK) for PCD to PICC (downlink)



ISO15693-2 Important Timings (Downlink)

• Start of Frame (SOF)


• End of Frame (EOF)



ISO15693-2 Important Downlink Timings (cont.)

- Symbols 00, 01, 10, 11
 - Pulse Position Modulation Technique is used here, where the position determines two bits at a time.

ISO15693 Downlink Start of Frame (SOF)

c PreVu		M 400µs
T		
Zoom Factor: 10 X		
		Θ Image: Constraint of Constraints Constand theres Constraints <t< td=""></t<>
	ne ter statistic statistics and statistic	ale dela sur l'arte del se del se del del periorit. Ale de la servicie de la compacte pilla de se deple. Ale de la compacte pilla de la compacte pilla de la compacte de la compacte de la compacte de la compacte de la
		Z 40.0μs 25.0MS/s 1 ጊ 1.30 V
Coupling Impedance	e Invert Bandwidth 1	Z 40.0µs 25.0MS/s 1 1.30 V I→▼2.27160ms 100k points 1 1.30 V Label More 12 Nov 2010 10:58:31 10:58:31

<mark>k</mark> PreVu		M 400µs		
T	a			
			Anthroponetics	eksentlisis terretari a sa sentensi dakilan di
200m Factor: 10 X				
			 ∂ 1.76ms 1.84ms (b ∆75.2µs Cursors 	6.60 V 3.20 V ∆3.40 V Linked
	Natara da alta bata bata anti da bata		vidence and a	atthe Branchart
				· · · · ·
1 5.00 V ∿		Z 40.0μs Ţ→▼2.27160m	S 100k points	$1 \ 1.30 \ V$
Coupling Impedance	Darrarrater		More	12 Nov 2010 10:58:31
			40 Te	xas Instrum

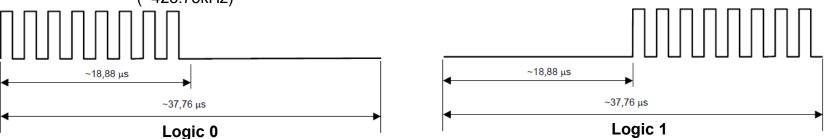
ISO15693 Downlink End of Frame (EOF)

k PreVu		M 400j	us	
			63	
				ananya di seria da ana di seria di seri
				a har i berlana han da ser kan da ser kan bar da sa kan binan kan a sa kalabadi n
Zoom Factor: 20 X				
			b	ns 6.20 V
	մ դեռկոնընդրոցինիստ, Ռիսստո, իսկիս կոնդիկինիստ։		a de tê tardî le firmînî de be haran mê kînê ter a tê tê di der.	L monte fundament strainde automatata da capada (di
а , , , , , , , , , , , , , , , , , , ,				
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
1 5.00 V ∿		Z 20.0	μs 27160ms 25.0MS/s 100k points	1 1 1.30 V
Coupling Impedance	Invert Bandwidth n Off Full	1 Label		12 Nov 2010 11:30:02

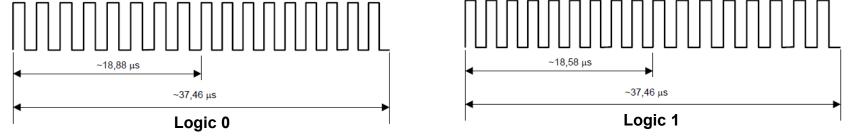
Air Interface Protocol –

- PICC to PCD communications uses load modulation and one or two subcarriers may be used as selected by the VCD using the first bit in the protocol header as defined in ISO/IEC 15693-3. The VICC shall support both modes.
- When one subcarrier is used, the frequency of the subcarrier load modulation will be fc/32 (423.75kHz).
- When two subcarriers are used, the frequency f_1 shall be fc/32 (423.75kHz), and the frequency f_2 shall be fc/28 (484.28kHz).
- If two subcarriers are present there shall be a continuous phase relationship between ٠ them.

Data rates – •


- A low or high data rate may be used. The selection of the data rate shall be made by the VCD using the second bit in the protocol header as defined in ISO/IEC 15693-3. The VICC shall support the data rates shown below.

Data Rate	Single Subcarrier	Dual Subcarrier
Low	6,62 kbits/s (<i>f</i> _c /2048)	6,67 kbits/s (<i>f</i> _c /2032)
High	26,48 kbits/s (<i>f</i> _c /512)	26,69 kbits/s (<i>f</i> _c /508)


• Data Encoding –

- Data shall be encoded using Manchester coding, according to the following schemes.
 All timings shown refer to the high data rate from the VICC to the VCD.
 - When using one subcarrier:
 - » A logic 0 starts with 8 pulses of *fc*/32 (~423.75kHz) followed by an unmodulated time of 256/*fc* (~18.88µSec)
 - » A logic 1 starts with an unmodulated time of 256/fc (~18.88µs) followed by 8 pulses of fc/32 (~423.75kHz)

- When using two subcarriers:
 - » A logic 0 starts with 8 pulses of fc/32 (~423.75kHz) followed by 9 pulses of fc/28 (~484.28kHz)

ISO15693 General Command Request Format:

SOF	Flags	Command code	Parameters	Data	CRC	EOF	
-----	-------	--------------	------------	------	-----	-----	--

The Request Flags are just as important as the command codes in ISO15693-3. The Request Flags are defined in Tables 3, 4 and 5 of the ISO15693-3 standard. Anyone who is using this standard will need to become familiar / friendly with these tables! Bit Flag name Value Description

Table 5

			Tabl	e 4
			Table 3	
t	Flag name	Value	Description	
	Sub-carrier flag	0	A single sub-carrier frequency shall be used by the VICC	
	Sub-camer_hay	1	Two sub-carriers shall be used by the VICC	
	Data_rate_flag 0 1		Low data rate shall be used	
			High data rate shall be used	
	Inventory flag	0	Flags 5 to 8 meaning is according to table 4	
	Inventory_flag 1		Flags 5 to 8 meaning is according to table 5	
	Protocol	0	No protocol format extension	
	Extension_flag	1	Protocol format is extended. Reserved for future use	

Bit

b1

b2

b3

b4

	Bit	Flag name	Value	Description			
			0	Request shall be executed by any VICC according to the setting of Address_flag			
	b5	Select_flag	1	Request shall be executed only by VICC in selected state. The Address_flag shall be set to 0 and the UID field shall not be included in the request.			
		Address_flag Option flag	0	Request is not addressed. UID field is not included. It shall be executed by any VICC.			
	b6		1	Request is addressed. UID field is included. It shall be executed only by the VICC whose UID matches the UID specified in the request.			
,	b7		0	Meaning is defined by the command description. It shall be set to 0 if not otherwise defined by the command.			
			1	Meaning is defined by the command description.			
	b8	RFU	0				

Bit	Flag name	Value	Description
b5			AFI field is not present
05	AFI_flag	1	AFI field is present
h.C.	Nik alata flari	0	16 slots
b6 Nb_slots_flag		1	1 slot
b7	Option_flag	0	Meaning is defined by the command description. It shall be set to 0 if not otherwise defined by the command.
		1	Meaning is defined by the command description.
b8	RFU	0	

ISO15693 Command Set:

Command code	Туре	Function
'01'	Mandatory	Inventory
'02'	Mandatory	Stay quiet
'03' – '1F'	Mandatory	RFU
'20'	Optional	Read single block
'21'	Optional	Write single block
'22'	Optional	Lock block
'23'	Optional	Read multiple blocks
'24'	Optional	Write multiple blocks
'25'	Optional	Select
'26'	Optional	Reset to ready
'27'	Optional	Write AFI
'28'	Optional	Lock AFI
'29'	Optional	Write DSFID
'2A'	Optional	Lock DSFID
'2B'	Optional	Get system information
'2C'	Optional	Get multiple block security status
'2D' – '9F'	Optional	RFU
'A0' – 'DF'	Custom	IC Mfg dependent
'E0' – 'FF'	Proprietary	IC Mfg dependent

Formulating ISO15693 Command	FLAGS	COMMAND CODE	E PARAMETER
Examples with Request Flags detail:	0x26	0x01	0x00
Implementing the Inventory Command,	0010 0110	Inventory	MASK LENGTH
which uses Tables 3 & 5		Table 5	Table 3
	1	B5 = 0 (no AFI)	B1 = 0 (single subcarr
	I	B6 = 1 (1 slot)	B2 = 1 (high tag DR)
	I	B7 = 0 (no option)	B3 = 1 (Table 5)
	1	B8 = 0 (RFU)	B4 = 0 (no protocol e

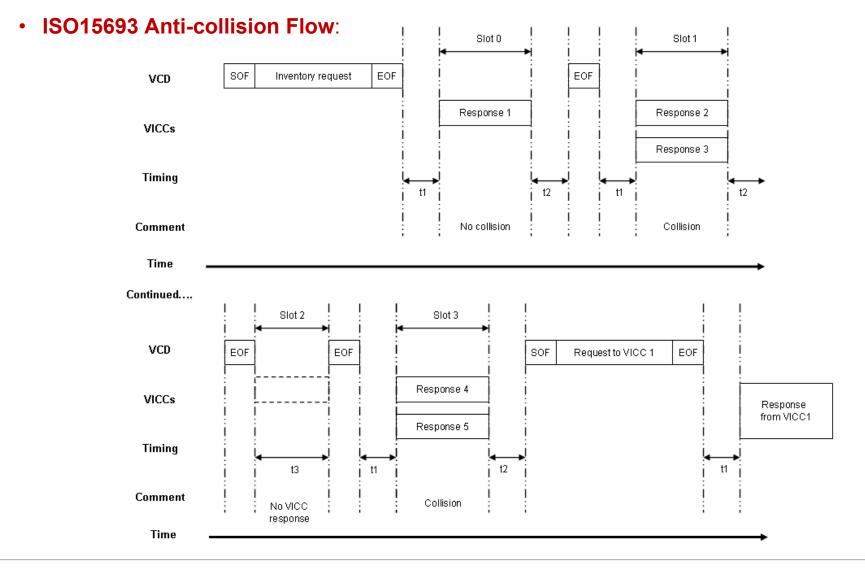
• Implementing the Read Single Block Command, which uses Tables 3 & 4

٠

٠

FLAGS	COMMAND CODE	PARAMETER	
0x02	0x20	0x00 : 0x3F	
00000010	Read Single Block	Block #	
	Table 4	Table 3	
	B5 = 0 (not selected)	B1 = 0 (single subca	rrier)
	B6 = 0 (unaddressed)	B2 = 1 (high tag DR)	
	B7 = 0 (no option)	B3 = 0 (Table 4)	
	B8 = 0 (RFU)	B4 = 0 (no protocol	ext.)

ISO15693-3 Anti-Collision


Explanation of an anti-collision sequence:

- The following text and figure summarizes the main cases that can occur during a typical anti-collision sequence where the number of slots is 16. The different steps are:
 - a) The VCD sends an inventory request, in a frame, terminated by an EOF. The number of slots is 16.
 - b) VICC 1 transmits its response in slot 0. It is the only one to do so, therefore no collision occurs and its UID is received and registered by the VCD
 - c) The VCD sends an EOF, meaning to switch to the next slot.
 - d) In slot 1, two VICCs 2 and 3 transmits their response, this generates a collision. The VCD detects it and remembers that a collision was detected in slot 1.
 - e) The VCD sends an EOF, meaning to switch to the next slot.
 - f) In slot 2, no VICC transmits a response. Therefore the VCD does not detect a VICC SOF and decides to switch to the next slot by sending a EOF.
 - g) In slot 3, there is another collision caused by responses from VICC 4 and 5
 - h) The VCD then decides to send an addressed request (for instance a Read Block) to VICC 1, which UID was already correctly received.
 - i) All VICCs detect a SOF and exit the anti-collision sequence. They process this request and since the request is addressed to VICC 1, only VICC1 transmit its response.
 - j) All VICCs are ready to receive another request. If it is an inventory command, the slot numbering sequence restarts from 0.

NOTE: The decision to interrupt the anti-collision sequence is up to the VCD. It could have continued to send EOF's till slot 15 and then send the request to VICC 1.

ISO15693-3 Anti-Collision

