1. Developement Environment Building

1 Download Contiki Source Code (under Linux):

Firstly, clone the Contiki repository:

git clone https://github.com/contiki-os/contiki .git

Secondly, use the following command to update the firmware and every dependency about
cc26xx(sensrortag):

Thirdly, Under the just downloaded Contiki repository file and give in the following command:

git sudmodule --init —recursive

2 Update the Debugger DevPack firmware (under windows):

Firstly, download the XDS Emulation Software Package and install it.

Secondly, under Windows using the bash command to get into the right path:

Thirdly, use the following command:
Axdsdfu -m
This command is used to see the firmware version of the Debugger.

Before upgrade the current version is:

2241

https://github.com/contiki-os/contiki%20.git

Fourthly, using the following command to upgrade it:
Axdsdfu -f firmware.bin -r
Axdsdfu -m

Now the current version is 2.2.5.1, the upgrade is done!
Note: When upgrade the debugger must be disconnected from sensortag!

3 Asimple RPL-UDP example:

In this example two ¢c2650 sensortag will build a UDP connection using RPL protocol. The client
will send ‘Hello’ to the server. We can see the result through the UART on the Debugger to see the
Result.

Firstly, we compile the source code under Linux. Go to the right path of the example:

cd /Desktop/contiki/example/ipv6/rpl-udp

Then we build the server code and the client code separately:
Take client for example:

sudo make TARGET=srf06-cc26xx BOARD=sensrotag/cc2650 udp-client.bin

Before we compile the server code, we must clean the middle files of the previous project:

sudo make TARGET=srf06-cc26xx BOARD=sensrotag/cc2650 udp-client.bin clean

Then we can compile the server code:

sudo make TARGET=srf06-cc26xx BOARD=sensrotag/cc2650 udp-server.bin

We can find the output files are:
udp-client.bin
udp-client.elf
udp-client.bin
udp-client.elf

Secondly, we need to flash it into our sensortag. It is recommended to flash it under Windows OS.
We need to download the Uniflash and install it. When open the Uniflash software, we create a
new file and set as following:

L2

File Window Help

Type your filter text here Quick Start Guide:

New Target Configuration : To start a session, you will need a target configuration
which specifies your connection and target device. You can create a new target
configuration following the link.

& New Configuration e
Target Setup
Connection: Texas Instruments XDS110 USB Debug Probe ~
Board or Device: CC2650F128 v
"'Click here to restore Tast unsaved session...
= Console ’ v[riw =0

No consoles to display at this time.

Select on Flash Setting menu and click on Erase Entire Flash. It'll tell you that you are not
running the latest version and it needs to be upgrade. Just click the upgrade and wait.

Vi e UEuuy Lwipuie
[22:55:59] Begin Erase Entire Flash operation.
[22:56:01] Cortex M3 ©: MassErase(): Initializing.

[22:56:02] Cortex M3 @: MassErase(): Issuing Board Reset.
[22:56:04] Cortex M3 @: MassErase(): Mass erase complete.

[22:56:04] Operation Erase Entire Flash returned.

The above console output tells you it is been upgraded.

Thirdly, flash it with your code: click programs table and add .elf file, click program.

&% CCS Uriflash - CUsers\VIELGL~1\AppData\LocalTEXASI~ 1\CCS\S\0\0\Aemptargetconfiguration.coxml - 0o x

File Program Session Window Help

Type your filter text here Programs < CC2650F128 - Texas Instruments XDS110 USB Debug Probe;
~ CC2650F128 - Texas Inst

File name Size Path
Flash Settings) o .
Programs E udp-client.elf 27... CAUsers\Viel Glueck\Desktop\udp-client.elf
Add Remove Check Uncheck Program Verify Erase
< > < >
& Console © LR

Uniflash Debug Console
Operation Launcl

ion returned. -~
tion from: C:\Users\VIELGL~1\AppData\Local\TEX !

4 Debugger results:

Firstly, it is recommended to use an open source software called Tera Term to monitor the

com port on your computer. Note: The Baud rate of the UART is 115200.

JTCPIP myhost.example.com l Port: COMS -
Hictory
History Baud rate:
Telnet : Data: 8 bit - Cancel
Al 35H2 Paritv: none |
Othe
Other UNSPE(Ston: 1bit - felp
Flow control. none |
)
9 Serial Port: COMS: XDS110 Class Applicatic - Transmit delay |
0 msecichar |0 mseciline |
Cancel Help

Secondly. We can see the client is sending hello to server:

COM52:115200baud - Tera Term VT C = A COM100:115200baud - Tera Term VT = | 1=
r File Edit Setup Control Window Help

Slaréing Contiki-3.x-3155-ga26eebd BlEStarting Contiki-3.x-3155-ga26eebs

With DriverLib v0.47020 Hith Driverlib v0.47020

TI CC2650 LaunchPad I C26§0 LaunchPad .

TEEE 802.15.4: Yes, Sub-GHz: No, BLE: VYes, Prop: Yes IEEE 802.15.4: Yes, Sub-GHz: No, BLE: Yes, Prop: Yes
Net: sicslowpan Net: sicslowpan

MAC: CSHA MAC MA

RDC: nullrdc RDC: nullrdc

RF: Channel 25 RF: Channel 25

Node ID: 40576 Node ID: 65413

UDP client process started nbr: UDP server started. nbr:10 routes:10

Client IPv6 addresses: fd :4b080: 7b1:9e80 created a new RPL dag

fe80::212:4b00:7b1:9e80

Created a connection with the server :: local/remote port 8765/5678

DATA send to 1 'Hello 1
DATA send to 1 'Hello 2°

erver connection with remote address :: local/remot

DATA recv 'Hello 1 from the client’ from 128+ ATA recv 'Hello
2 from the client’ from 128

2. Hardware AES:

According to the latest updated cc26xxware, there is a ROM AES API:
AES_ECB_EncryptData(uint8_t *text, uintl6_t textLen, uint8_t *aesKey);

which can be called by the user application. The discussion on the TI forum shows that, there is a
initial process before the above API is called, this initial process is allocating a absolute RAM
scratch area for the ROM AES stack remapping. This remapping is done at :
https://github.com/contiki-os/cc26xxware/tree/master/utils/rom_crypto

According the code document, it should be called before the API usage. So my code is like:

StandaloneRomCryptolnit();
AES_ECB_EncryptData(uint8_t *text, uint16_t textLen, uint8_t *aesKey);

and also there is a strange symbol in the standalone_rom_crypto.c :
commonROMScratchArea[53] @0x20004F2C;
i guess this is for specific compiler, so i change this to:

uint32_t __attribute__ ((section(".COMMENROMSCRATCHAREA™)))
commonROMScratchArea[531 ;

here the . COMMENROMSCRATCHAREA refers to the absolute address: 0x20004F2C
the according linkerfile has been added . COMMENROMSCRATCHAREA like followings:

.COMMENROMSCRATCHAREA 0x20000754:
{

KEEP(*(.COMMENROMSCRATCHAREA))
} > SRAM
after all this after compiling contiki ,the c2650 is stuck at the API:
AES_ECB_EncryptData(uint8_t *text, uint16_t textLen, uint8_t *aesKey);

The test application is rpl-udp in directory Contiki/example/ipv6/rpl-udp. One senortag uses the
ROM aes to send encrypted data to another sensortag.

However this AES part seems not working.

