
RX Diagnostic Test Modes (version 1.1) 

Nomenclatures: 
R0: The DAC3xJ8x family uses two SERDES receiver blocks of R0 and R1, and each 

receiver block contains four receive lanes. R0 is the first SERDES RX block containing 

RX lanes lane0, lane1, lane2, and lane3. 

R1: the second SERDES RX block containing RX lanes lane4, lane5, lane6, and lane7. 

 

RX Basic Diagnostic Test Modes (RX BDTM): Provides basic pattern verification 

capability for the eight RX lanes. Program the test pattern selection such as 0/1 toggle 

pattern or PRBS patterns through SIF register. Read the error output through ALARM 

pin.  

 

RX Advanced Diagnostic Test Modes (RX ADTM): Provides advanced pattern 

verification capability such as error counter and eye scan for the eight RX lanes. Program 

the RX ADTM via the JTAG controller. The internal JTAG to IEEE1500 bridge provides 

instruction translation.  

 

JTAG Controller: IEEE1149.1 based controller. Primary function is to bridge the JTAG 

instructions to the internal IEEE1500 bridge for RX Advanced Diagnostic Test Modes 

access. 

JTAG Controller 
The DAC38J84 JTAG Controller is based on IEEE1149.1 standard. The primary function 

of the JTAG controller is to interface with the JTAG to IEEE1500 Bridge in order to 

program the RX ADTM. The test clock (TCLK) and test mode select (TMS) are the 

inputs to the JTAG controller logic, which is based on the state machine as shown in 

Figure 1. The sequence of these two inputs can lead to an instruction register scan (IR) or 

data register scan (DR). The TMS determines the transition of the state machine while the 

rising edge of TCLK latches the TMS signal to the state machine.  

 



 
Figure 1. JTAG Controller State Machine 

 

For instance, in order to access IR transaction, the desired state transitions are Run Test 

Idle (0x0002), Select DR (0x0004), Select IR (0x0200), Capture IR (0x0400), Shift IR 

(0x0800), performing the necessary input and output instructions for the IR transaction, 

Exit1 IR (0x1000), Update IR (0x8000), and then return to Run Test Idle (0x002). The 

corresponding TMS sequence would be 0 -> 1 -> 1 -> 0 -> loop input and output for 

transaction -> 1 -> 1 -> 0. The corresponding timing diagram and associated states for IR 

transaction are shown in Figure 2.  

 

 
Figure 2. JTAG IR Transaction 

 

When performing the necessary input and output instructions for the transaction, the TDI 

is the input to the controller and is sampled on the rising edge of TCLK, and the TDO is 

the output from the controller and transitions on the falling edge of TCLK. Thus TDO 

can be sampled on the next rising edge of TCLK.  

 

 



 
Figure 3. JTAG DR Transaction 

 

The access to DR transaction is similar to IR transaction as shown in Figure 3. For 

instance, in order to access DR transaction, the desired state transitions are Run Test Idle 

(0x0002), Select DR (0x0004), Capture DR (0x0008), Shift DR (0x0010), performing the 

necessary input and output instructions for the IR transaction, Exit1 DR (0x0020), Update 

DR (0x0100), and then return to Run Test Idle (0x002). The corresponding TMS 

sequence would be 0 -> 1 -> 0 -> loop input and output for transaction -> 1 -> 1 -> 0. 

TDI and TDO are sampled in the same fashion as mentioned above. 

JTAG Interface to IEEE1500 Instruction Registers 
 

The programming command for the RX ADTM is based on the IEEE 1500-2005 standard. 

The users can use the JTAG ports, which are based on IEEE 1149.1 standard, to program 

the RX ADTM with IEEE 1500 instructions through the build-in JTAG to IEEE 15000 

bridge. As shown in Figure 4, the logic used to translate signals from JTAG controller 

output to IEEE 1500 is based on Annex C of IEEE 1500 standard. 

 

 
Figure 4. JTAG to IEEE 15000 Bridge 

The IEEE 1500 standard signals WRCK, WRSTN, WSI, and WSO correspond to their 

counterparts in JTAG: TCK, TRSTN, TDI, and TDO, respectively. With the build-in 

JTAG to IEEE1500 bridge, the IEEE 1500 IR or DR transactions are transparent, and the 

user only need to interface with the JTAG controller IR or DR transactions instead of the 

IEEE 1500 IR or DR transactions directly. Refer to the JTAG Controller section for 

details of JTAG IR and DR transaction. 



IEEE1500 Instruction Registers 
 

The two SERDES receiver R0 and R1 blocks support the IEEE1500 as shown in Table 1. 

As described in JTAG Interface to IEEE1500 Instruction Registers, the JTAG interface 

provides transparent access to these registers.  

 
Table 1. IEEE1500 Instruction Codes 

The following steps describe the process of accessing the IEEE1500 instructions. Steps 

one and two describe the JTAG IR and DR transactions needed for setting up the 

appropriate R0 or R1 block and also the associated instruction code. Steps three and four 

describe the JTAG IR and DR transactions needed for writing or reading the data from 

the R0 or R1 instruction register.  

 

1. Set up an IEEE 1500 IR transaction by writing binary 2b’01101101 to the JTAG 

Controller (IEEE1149.1) IR transaction.  

2. Provide instruction code to the IEEE1500 instruction registers of either R0 or R1 

block. The IEEE1500 instruction registers are chained in series from the fuse 

block, through the R0 block, to the R1 block. The instruction register code should 

go through the JTAG DR transaction with the format of 0x00R0R1.  

 

NOTE:  

0xR0 is the two nibble instruction opcode for the R0 block, while 0xR1 is the two 

nibble instruction opcode for the R1 block. Refer to Table 1 for the instruction 

codes for each block. The instruction register code always starts with 0x00. Most 

importantly, the instruction register should address to one block at a time. This 

means either R0 or R1 should have valid instruction code at a time while another 

block’s instruction code set to 0x00. (i.e. ws_bypass) 

A. To provide instruction code to R0 block, write 0x00R000 to the JTAG 

Controller DR transaction.  

For example, to access ws_cfg  instruction, write 0x003500 to the JTAG 

Controller DR transaction. 

 

B. To provide instruction code to R1 block, write 0x0000R1 to the JTAG 

Controller DR transaction.  

For example, to access ws_cfg  instruction, write 0x000035 to the JTAG 

Controller DR transaction. 

 

 



3. Set up an IEEE 1500 DR transaction by writing binary b10011011 to the JTAG 

Controller IR transaction.  

4. Provide data code to the IEEE1500 data registers of the desired block. Step 2 sets 

up and addresses the desired block while this step provides the data to the block. 

The data register code should go through the JTAG DR transaction with the 

format described for each instruction.  

 

NOTE:  

The data for each instruction has the format of chained components of head, body, 

and tail. The body is consisted of the four receiver lanes for either the R0 or R1 

block. Therefore, the overall data format for the R0 or R1 block is head, receiver 

lane0, receiver lane1, receiver lane2, receiver lane3, and tail. 

 

All multi-bit registers in each chain are packed with bits reversed. For 

example, the head section of the ws_core chain is packed as {retime, enpll, 

mpy[0:7], vrange, endivclk, and lb[0:1]}, and the tail section of the ws_core chain 

is packed as {clkbyp[0:1], sleeppll, …, unlock, cfg_ovr, and retime}. 

 

The instruction chains are shifted in and out of the IEEE1500 data registers 

with the LSB leading. For example, shift the ws_core chain into the data register 

as {retime, cfg_ovr, unlock, …, sleeppll, clkbyp[1], clkbyp[0], …, lb[1], lb[0], 

endivclk, vrange, mpy[7], mpy[6], …, mpy[0], enpll, and retime}. Please note that 

the example above skipped register fields of the four receivers within a block.  

 

All data register reads from SerDes Block R0 should read 1 bit more than the 

desired number of bits and discard the first bit received on TDO. For instance, 

to read 40-bit data from R0 block, 41 bits should be read off from TDO and the 

first bit received should be discarded. Similarly, any data written to SerDes Block 

R0 Data Registers should be prefixed with an extra 0. 

 

These bit packing instructions are summarized in Table TBD to Table TBD. 

 



 



 



 

Receiver Basic Diagnostic Test Modes (RX BDTM - SIF Register 
Access Required) 
The SERDES receiver blocks support a number of basic pattern verification via SIF 

registers. The default test pattern selection includes an alternating 0/1 pattern, pseudo 

random bit stream (PRBS) sequences with three different pattern repeating lengths, and 



along with programmable custom pattern that can be accessed via the DAC3xJ84x 

JTAG/IEEE1500 port. The verification pattern selection is programmed via the 

TESTPATT fields of rw_cfgrx0[14:12], as shown in Table 18.  

 

 
 

All the test pattern sequences can often be found programmed into standard test 

equipment, such as a Bit Error Rate Tester (BERT). With the selection of PRBS sequence, 

the pattern verifier in the receiver compares the received word with an expected value 

calculated using an LFSR (shift register). Three PRBS sequence lengths are available: 2
7
-

1, 2
23

-1, and 2
31

-1, and the user can select the desired PRBS length to ensure the 

sequences are not repeated within certain amount time.  

 

The received pattern on the RX port is serialized, and the DAC3xJ8x internal serial to 

parallel converter converts the serial data stream to parallel data stream. Afterwards, the 

pattern verification circuit compares the output of the internal serial to parallel converter 

with an expected pattern from the test pattern selection. When there is a mismatch, the 

TESTFAIL bit in ws_core chain is driven high, which can be programmed to come out 

the ALARM pin by setting dtest[3:0] to 2b’0011. 

 

To perform SERDES test pattern, refer to the following SIF register read and write 

sequences: 

 

1. config74, set bits 4:0 to 0x1E to disable JESD block 

2. config61, set bits 14:12 to 0x01 to enable the alternating 0/1 pattern, 0x02 to 

enable the 7-bit PRBS test pattern, 0x03 to enable the 23-bit PRBS test pattern, 

0x04 enable the 31-bit PRBS test pattern. Set bits 14:12 to 0x05 to enable user-

defined 20-bit pattern, and the value of the pattern needs to be programmed 

through JTAG/IEEE1500 port.  

3. config27, set bits 11:8 to 0x3 to output pattern verification TESTFAIL bit on 

ALARM pin.  

4. config27, set bits 14:12 to the lane to be tested (0 through 7).  

5. config62, make sure bits 12:11 are set to 0x0 to disable character alignment.  

 

Users should monitor the ALARM pin to see the results of the test. If the test is failing, 

ALARM will be high (or toggling if marginal). If the test is passing, the ALARM will be 

low. 



Receiver Advanced Test Modes (RX ADTM - JTAG/IEEE1500 Access 
Required) 
Each SERDES receiver block has advanced diagnostic capabilities that provides 

accumulation of pattern verification errors and the ability to map out the width and height 

of the receive eye, also known as eye scan. The following sections provide details of 

performing pattern verification and eye scan.  

Error Counter 
All receive channels include a 12-bit counter for accumulating pattern verification errors. 

This counter is accessible via the ECOUNTi IEEE1500 Char field, as shown in table 

TBD. It is an essential part of the eye scan capability (see next section), though can be 

used independently of this. 

 

The counter operates synchronously to rxbclk[i], and increments once for every cycle 

that the TESTFAIL bit of stsrxi[9:0] (stsrxi[0]) is high. The counter will not increment 

when at its maximum value (i.e. all 1s). 

 

When an IEEE1500 capture is performed, the count value is loaded into the ECOUNTi 

scan elements (so that it can be scanned out), and the counter is then reset, provided 

ENCORi is set high. 

 

ECOUNTi can be used to get a measure of the bit error rate. However, as the error rate 

increases, it will become less accurate due to limitations of the pattern verification 

capabilities. Specifically, the pattern verifier checks multiple bits in parallel (as 

determined by the Rx bus width, which should be set as 20bit for DAC3xJ8x family), and 

it is not possible to distinguish between 1 or more errors in this. 

 

Note that the RXDSELi IEEE1500 field can be used to mux other other functions onto 

the TESTFAILi output, in which case ECOUNTi can be used to count these as well as 

pattern verification errors. However, because it shares a clock domain with the pattern 

verifier, the pattern verifier must still be enabled (TESTPATTi  ≠ 000). 

 

Using the error counter to measure bit error rate requires the time interval over which 

errors are accumulated to be known. If an external time reference is not available, the 

counter can be configured as a timer, so that the time interval can be measured. To do this, 

select a suitable receiver PRBS pattern via TESTPATTi, set the PATT TIMERi 

IEEE1500 Tuning bit to 1, and configure the error counter to count PATTVSYNCi pulses 

via RXDSELi. By programming RXDSELi in the IEEE1500 Tuning chain filed to value 

of 4b’0010, the default TESTFAIL signal will now become PATTVSYNC signal. 

Program register config27, dtest field (bit11:8) to 4b’0011 to enable TESTFAIL signal 

routed to the CMOS ALARM terminal. The time interval can now be measured on the 

CMOS ALARM terminal.  

 



Eye Scan and Symbol Response Extraction 
 

All receive channels provide features which facilitate mapping the received data eye or 

extracting a symbol response. A number of fields accessible via the IEEE1500 Char scan 

chain allow the required low level data to be gathered. The process of transforming this 

data into a map of the eye or a symbol response must then be performed externally, 

typically in software. 

 

The basic principle used is as follows: 

• Enable dedicated eye scan input samplers, and generate an error when the value 

sampled differs from the normal data sample; 

• Apply a voltage offset to the dedicated eye scan input samplers, to effectively reduce 

their sensitivity; 

• Apply a phase offset to adjust the point in the eye that the dedicated eye scan data 

samples are taken; 

• Reset the error counter to remove any false errors accumulated as a result of the 

voltage or phase offset adjustments; 

• Run in this state for a period of time, periodically checking to see if any errors have 

occured; 

• Change voltage and/or phase offset, and repeat. 

 

Alternatively, the algorithm can be configured to optimize the voltage offset at a 

specified phase offset, over a specified time interval. 

 

 
 

Eye scan can be used in both synchronous and asynchronous systems, whilst receiving 

normal data traffic. 



The IEEE1500 Char fields used to directly control eyescan and symbol response 

extraction are ESi, ESWORDi, ES BIT SELECTi, ESLIMi, ESPOi, ESVOi, ESVO 

OVRi, ESRUNi, and ESDONEi. ESPOi and ESVOi. Eye scan errors are accumulated in 

ECOUNTi (see section 8.2.1). 

 

The required eyescan mode is selected via the ESi field, as shown in table 8.10.  

 

When enabled, only data from the bit position within rdi[19:0] specified via ES BIT 

SELECTi is analysed (see table 8.11). In other words, only eye scan errors associated 

with data output at this bit position will accumulate in ECOUNTi. The maximum legal 

ES BIT SELECTi value is 10011 (bit19) for 20-bit bus width is selected via 

BUSWIDTH. 

 

Data from all words is analyzed, provided ESWORDi is set to all 1’s. Other values are 

used for extracting a symbol response. 

 

All the eyescan options apart from setting 0x01 analyze only ones or zeroes. Note that the 

value of INVPAIR is applied before deciding whether a bit is a one or a zero. 

 

To build a complete eye, data from all positions within the word and of both polarities 

should be superimposed. Alternately, assembling eyes based on every second or fourth 

bit can establish whether there is any duty cycle or quadrature distortion present in the 

data stream. 

 

 
When ESi[3] = 0, the selected analysis runs continuously. However, when ESi[3] = 1, 

only the number of qualified samples specified by ESLENi, as shown in table TBD. In 

this case, analysis is started by writing a 1 to ESRUNi (it is not necessary to set it back to 

0). When analysis completes, ESDONEi will be set to 1. 

Applications of Voltage Offsets to Determine Eye Height 
When ESVO OVRi = 1, the ESVOi field determines the amount of offset voltage that is 

applied to the eye scan data samplers associated with rxpi and rxni. The amount of offset 

is variable between 0 and ±300mV in increments of ˜10mV, as shown in table TBD. 

 



 
When ESi[3] = 1, ESVO OVRi must be 0 to allow the optimized voltage offset to be read 

back via ESVOi. 

 
 

Increasing positive offsets make it progressively more difficult to correctly sample a 

logical 1, whereas negative offsets make it progressively more difficult to sample a 

logical 0. This means the number of errors counted for a given polarity will effectively be 

a factor of two too low because the offset is only affecting half the bits received. It is 

recommended that measurements be taken using both polarities and combined. 

 

The relationship between voltage offset and ESVOi is not entirely linear. For applications 

where high accuracy is required, the offset amount can be calibrated. This is achieved by 

selecting the rxpi and rxni offsets for voltage monitoring. The offset for each ESVOi 

value can be measured by taking half of the difference between the rxpi and rxni offsets. 

These voltage offsets should only be selected for monitoring during calibration. Whilst 

ESi 6= 0000, RXASELi should not be set to 1xx. 

Applications of Phase Offsets to Determine Eye Width 
The phase position of the samplers associated with rxpi and rxni, is controlled to a 

precision of 1/32UI. When ESi is not 00, the phase position can be adjusted forwards or 

backwards by more than one UI using the ESPOi field, as shown in table 8.14. 



 
In normal use, the range should be limited to +/-0.5UI (+15 to -16 phase steps). 

 

Symbol Response Extraction 
To extract a symbol response, data must be gathered for each bit in a known repetitive 

pattern, and then the response deconvolved from the known data pattern in software. 

 

The pattern verifier is used to generate synchronisation pulses which are used as a timing 

reference. The interval between pulses will be the length of the PRBS pattern selected via 

TESTPATT multiplied by the bus width selected via BUSWIDTH. For example, a 2
7
-1 

pattern with a bus width of 16 will result in a 2032-bit interval. 

 

The transmitting link partner must transmit a known data pattern with a length that 

corresponds to this interval, or an integer fraction thereof (in which case it must also be 

divisible by the bus width). Note that the pattern itself does not have to match the PRBS 

pattern used by the pattern verifier; it just has to be the same length. 

 

 
 

The ESWORDi field is used to specify a word offset with respect to the synchronization 

pulse, as shown in table TBD. In conjunction with ES BIT SELECTi, this defines a 

specific bit offset. Only eye scan errors for the selected bit in the selected word will be 

accumulated into ECOUNTi. Note that when using a 2
7
-1 PRBS as the timing reference, 

the maximum useful value of ESWORDi is 01111110 (126), and when using 2
23

-1 or 2
31

-

1, only the first 254 words of the pattern can be analysed. 

 

By also using ESPOi the pattern can be analysed in steps of as little as 1/32UI. 

 



Example Instructions for R0 Block RX ADTM  
To perform pattern verification on received data for R0 block, follow the steps below: 
 
Select read-only behavior:  
Instruction register access to select the ws_cfg instruction;  
1. Write B”01101101” to the JTAG Instruction Register to setup an IEEE1500 IR transaction  
2. Write X"00_35_00" to the JTAG Data Register. The data is passed as Instruction Codes to IEEE1500 Instruction 
Registers of R0 block and R1 block respectively. R1 blocks receive no instruction code whereas R0 block receives 
instruction code 0x35.  
 
Data register access to set all write enable bits to zero;  
3. Write B” 10011011” to the JTAG Instruction Register to setup an IEEE1500 DR transaction  
4. Write {0, ws_cfg_head, ws_cfg_rx, ws_cfg_rx, ws_cfg_rx, ws_cfg_rx, ws_cfg_tail} to the JTAG Data Register.  
 
Read out the value of the core-side inputs:  
Instruction register access to select the ws_core instruction;  
5. Write B”01101101” to the JTAG Instruction Register to setup an IEEE1500 IR transaction  
6. Write X"00_30_00" to the JTAG Data Register.  
 
Data register access to read out the value of all the core-side ports;  
7. Write B” 10011011” to the JTAG Instruction Register to setup an IEEE1500 DR transaction  
8. Read JTAG Data Register which contains ws_core data.  
 
Select read-write behaviour:  
Instruction register access to select the ws_cfg instruction;  
9. Write B”01101101” to the JTAG Instruction Register to setup an IEEE1500 IR transaction  
10. Write X"00_35_00" to the JTAG Data Register.  
 
Data register access to set all CORE WE bits and CHAR WEi to 1;  
11. Write B” 10011011” to the JTAG Instruction Register to setup an IEEE1500 DR transaction  
12. Write {0, ws_cfg_head, ws_cfg_rx, ws_cfg_rx, ws_cfg_rx, ws_cfg_rx, ws_cfg_tail} to the JTAG Data Register.  
 
Select PRBS patterns for all receive channels:  
Instruction register access to select the ws_core instruction;  
13. Write B”01101101” to the JTAG Instruction Register to setup an IEEE1500 IR transaction  
14. Write X"00_30_00" to the JTAG Data Register.  
 
Data register access to set CFG OVR to 1, TESTPATTi to 100, and all other bits to the values obtained in step 8;  
15. Write B” 10011011” to the JTAG Instruction Register to setup an IEEE1500 DR transaction  
16. Write {0, ws_core_head, ws_core_rx, ws_core_rx, ws_core_rx, ws_core_rx, ws_core_tail} to the JTAG Data 
Register. The data should contain CFG OVR and TESTPATT bits set to appropriate values.  
 
Check data is PRBS:  
Instruction register access to select the ws_char instruction;  
17. Write B”01101101” to the JTAG Instruction Register to setup an IEEE1500 IR transaction  
18. Write X"00_33_00" to the JTAG Data Register.  
 
Data register access to clear false errors from ECOUNTi resulting from pattern verification initialization. Discard the value 
read out;  
19. Write B” 10011011” to the JTAG Instruction Register to setup an IEEE1500 DR transaction  

20. Read JTAG Data Register which contains ws_char data.  
 
Wait the desired gating time;  
Data register access to read ECOUNTi;  
21. Read JTAG Data Register which contains ws_char data.  
 

Pattern verification for R1 Block  
To perform pattern verification on received data for R1 block, follow the steps below: 
 
Select read-only behavior:  
Instruction register access to select the ws_cfg instruction;  
22. Write B”01101101” to the JTAG Instruction Register to setup an IEEE1500 IR transaction  
23. Write X"00_00_35" to the JTAG Data Register. The data is passed as Instruction Codes to IEEE1500 Instruction 
Registers of R0 block and R1 block respectively. R0 blocks receive the no instruction code whereas R1 block receives 
instruction code 0x35.  
 



Data register access to set all write enable bits to zero;  
24. Write B” 10011011” to the JTAG Instruction Register to setup an IEEE1500 DR transaction  
25. Write {00, ws_cfg_head, ws_cfg_rx, ws_cfg_rx, ws_cfg_rx, ws_cfg_rx, ws_cfg_tail} to the JTAG Data Register. 
ws_cfg_head, ws_cfg_rx and ws_cfg_tail contain the we bits that need to be set to zero.  
 
Read out the value of the core-side inputs:  
Instruction register access to select the ws_core instruction;  
26. Write B”01101101” to the JTAG Instruction Register to setup an IEEE1500 IR transaction  
27. Write X"00_00_30" to the JTAG Data Register.  
 
Data register access to read out the value of all the core-side ports;  
28. Write B” 10011011” to the JTAG Instruction Register to setup an IEEE1500 DR transaction  
29. Read JTAG Data Register which contains ws_core data.  
 
Select read-write behaviour:  
Instruction register access to select the ws_cfg instruction;  
30. Write B”01101101” to the JTAG Instruction Register to setup an IEEE1500 IR transaction  
31. Write X"00_00_35" to the JTAG Data Register.  
 
Data register access to set all CORE WE bits and CHAR WEi to 1;  
32. Write B” 10011011” to the JTAG Instruction Register to setup an IEEE1500 DR transaction  
33. Write {00, ws_cfg_head, ws_cfg_rx, ws_cfg_rx, ws_cfg_rx, ws_cfg_rx, ws_cfg_tail} to the JTAG Data Register. 
ws_cfg_head, ws_cfg_rx and ws_cfg_tail contain the we bits that need to be set to one.  
 
Select PRBS patterns for all receive channels:  
Instruction register access to select the ws_core instruction;  
34. Write B”01101101” to the JTAG Instruction Register to setup an IEEE1500 IR transaction  
35. Write X"00_00_30" to the JTAG Data Register.  
 
Data register access to set CFG OVR to 1, TESTPATTi to 100, and all other bits to the values obtained in step 8;  
36. Write B” 10011011” to the JTAG Instruction Register to setup an IEEE1500 DR transaction  
37. Write {00, ws_core_head, ws_core_rx, ws_core_rx, ws_core_rx, ws_core_rx, ws_core_tail} to the JTAG Data 
Register. The data should contain CFG OVR and TESTPATT bits set to appropriate values.  
 
Check data is PRBS:  
Instruction register access to select the ws_char instruction;  
38. Write B”01101101” to the JTAG Instruction Register to setup an IEEE1500 IR transaction  
39. Write X"00_00_33" to the JTAG Data Register.  
 
Data register access to clear false errors from ECOUNTi resulting from pattern verification initialization. Discard the value 
read out;  
40. Write B” 10011011” to the JTAG Instruction Register to setup an IEEE1500 DR transaction  
41. Read JTAG Data Register which contains ws_char data.  
 
Wait the desired gating time;  
Data register access to read ECOUNTi;  
42. Read JTAG Data Register which contains ws_char data.  
 

 

  



Revision History: 

Version 1.0 – initial draft by Kang Hsia. Reviewed by Bao Nguyen.  

Version 1.1 – added information regarding RXDSEL to TESTFAIL and PATTVSYNC. 


