AFE7070 TEST PROCEDURE

Prepared by Girish O Chandan Choudhary

Contents

	List Of Figures	ii
1	AFE-TEST(Dual Input Clock Mode)	1
2	LED Status	6
3	AFE-TEST(Single Differential DDR Clock Mode)	7

List of Figures

1	EXT VCXO
2	LO Signal
3	RF_OUT
4	TSW-1400 Settings Screen shot
5	AFE7070 Settings Screen Shot
6	CDCM7005 Settings Screen Shot
7	RF-Out
8	TSW LED STATUS
9	AFE LED Status
10	CDCM7005 tab Screenshot for Single Differential DDR Clock Mode
11	RF-OUT for Single Differential DDR Clock Mode

1 AFE-TEST(Dual Input Clock Mode)

We followed the test procedure for AFE given on page 8 of user_guide_AFE_TSW .

- 1. Connect the AFE7071 EVM to the computer via USB cable.
- 2. Connect 6-V adapter to J9.
- 3. Launch the AFE7071EVM GUI and click Reset USB Port.
- 4. Connect the signal generator to the J4 connector (EXT VCXO) on the AFE7071 EVM. Set the frequency of the signal generator to 130 MHz and amplitude to 0 dBm.

Figure 1: EXT VCXO

5. Connect LO signal from the second signal generator to the J10 connector (LO IN). Set the frequency of the signal generator to 2.1 GHz and amplitude to 5 dBm.

Figure 2: LO Signal

6. Connect J3 (RFOUT) to the spectrum analyzer.

	OHDE&SC	HWARZ	FSL · SPE	CTRUM ANALYZER ·	9 kHz 3 GHz		
FILE	er1 GHZ Att 30 dB Ref 10.00 dBm	28W 100 kHz VBW 300 kHz * SWT 205ms	M1[1]	-3.12 dBm 2.000000000 GHz	Select		
SETUP 15	0 dBm				Peak		
PRINT	-10 dBm				Next Peak		
HELP	-20 dBm				Next Peak Mode		
	-30 dBm				< abs >		
MODE	-50 dBm				= Mkr Freq		
MENU	-60 dBm	vinasoa wa guny	minister	and the second street	Ref Lvl = Mkr Lvl		
	-80 dBm	++	\vdash		More &		
	CF 2.0 GHz			Span 54.3 MHz			
			the second				

Figure 3: RF_OUT

- 7. Connect the TSW1400 to the computer via USB cable.
- 8. Connect the J1 (CMOS_INTERFACE) connector on the TSW1400 to AFE7071 EVM's J8 connector. Make sure pin 1 of the J1 connector is aligned with pin 1 on the J8 connector before connecting.
- 9. Connect the J7 (CMOS_CLK) on TSW1400 to J5 (CDC OUT) connector on AFE7071 EVM.
- 10. Connect 5-V adapter to J12 on TSW1400.
- 11. Turn the switch (SW7) to the On position.

TSW1400 Quick-Start Operation

After launching HSDC PRO software we done the following settings as per the user manual.

- 1. Select the DAC tab.
- 2. Select CMOS_AFE7070 from the top left drop-down menu.
- 3. Set the Data rate to "65" MHz and DAC Option to Offset Bin.
- 4. Set I/Q Multitone Generator \rightarrow Tone BW to "1M", set (of tones) to "2", and Tone Center to "5M".
- 5. Under Tone selection, select Complex.
- 6. Click the Create Tones button.
- 7. Click Send.

Figure 4: TSW-1400 Settings Screen shot

AFE7070 Settings Contd..

- In the Clock Settings section, we set the clock mode to Dual Input Clock.
- Since we are not using LVDS we disabled it.

Figure 5: AFE7070 Settings Screen Shot

CDCM7005 Settings

- We done the following modifications in the Output Options section of CDCM7005 as per the user manual.
 - $\diamond~Y1~(AFE7070's~CLK_JO)$ must be LVCMOS, with Y1A set to active rather than 3-state.
 - ◊ Y3 (AFE7070's DACCLK) must be LVPECL, with both Y3A and Y3B set to active.
 - $\diamond\,$ Y4 (CDC Out) must be LVCMOS, with Y4A set to active.

AFE7070 CDCM70	05				Reset	USB Port			Exit	1 AFE70	70 Rec	irter Data
			CDCM7005 Operation	Buffer Mod	e		⊖ Se	nd All		x00	xB0	1011 0000
Advanced Options		Clock & PLL Options			Output Options				x02 x03 0000 0011 x03 x10 0001 0000 x04 x0F 0000 1111			
Progr. Delay M	0ps v	Lock Divised	Clock Settings			Y0 Outp	ut (Unus	ied)		x05 x06	x00 x80	1000 0000
		Digital	M & N Selection	Auto		1	×	3-state	V YOA	x07 x08	x13 x00	0001 0011 0000
Progr. Delay N	Ups V	Ref. Clk Manual	Ref. Freq (MHz)	10	¥ A	LVCM		3+state	YOB YOB	x09	x7A	0111 1010
Lock Detect Cycle	64 🗸	Ref.Detection on	VCXO Freq (IVIHZ)	905.04	¥.	1 Outp	ut (AFE/	0/U S CLK	10)	x0A x0B	XEA	1110 1010
Lock Window	±8ns 🗸		PLL Settings			IVCM		Sustate	V VIB	x0C x0D	x45 x1A	0100 0101
Fast Lock r	mode off	Status_Ref	M Divider	125		V2 Outer			V 110	XOE	x16	0001 0110
		Status_VCXO Me_Det_voxo	N Divider	1536		12 Outp	ut (onu:	3ustate	V2A	×0F ×10	xAA xC6	1010 1010
Charge Pump	2.0mA 🗸		-B_MOX	1	~	IVCM		2. state	V V2P	×11	x24	0010 0100
PFD Pulse	+1.5ns 🗸	CP Direction positive	Phase Shift	/16	\sim	LVCINI V2.Outro		070- 040	V 120	x12	x02 x00	0000 0000
			PLL Output			13 Outp		artive	V2A	CDCN	17005 F	Register Da
Hold (On)	ff)/ Powerl	Dwn Frequency Hold-Over Fcn	Output Freq (MHz)	983.0	4	LVREC		active	V V3R	Reg	Value 0x005F	: F1F0
Cycle Slip	Preset	CP Frequency				VAOuto			130	01	0x0202	A2A1
- Mode	to Vcc/	12 Hold-Over Fcn1				14 Odip		active	V44	02	0xD000	0027
Dividers	CP 3-S	itate Hold Fcn always activated				LVCM		3-state	V4B	Regist	er Cont	trols
											Send	·
											Read	All
										L	oad Re	:gs

Figure 6: CDCM7005 Settings Screenshot

- Press the Send All button in the Register Controls section.
- Monitor the RF output signal on a spectrum analyzer.
- Monitor the output signal at the RF output connector.

Figure 7: RF-Out

So here instead of SSB output we are getting only LO signal.

2 LED Status

Figure 8: TSW LED STATUS

Figure 9: AFE LED Status

3 AFE-TEST(Single Differential DDR Clock Mode)

For Single Differential DDR Clock Mode All Connections and LO setting are same as above. No Change in HSDC-pro Setup .

In AFE7070 GUI Clock setting in bottom left is changed to Single Differential DDR Clock and in CDCM7005 tab Y1A is set to tri-state(since CLK-IO is not used in this mode) and also the divider of DAC-CLK is made 2(since we are feeding 130 MHz signal to EXT VCXO).By doing the above modification we can ensure that clock of TSW-1400 is still working at 130Mhz and DAC-CLK (which is also used to latch the data in this mode) will work at 65MHz.

Figure 10: CDCM7005 tab Screenshot for Single Differential DDR Clock Mode

Still output on Spectrum Analyzer is same.

Figure 11: RF-OUT for Single Differential DDR Clock Mode