HSDCPro Automation DLL | User Guide Page | 4

[image: image1.png]I3 TEXAS
INSTRUMENTS

HSDCPro Automation DLL
User Guide

Contents

5Introduction

5HSDCPro Automation DLL Function Prototypes

5Utilities

51.
Get Automation DLL Version

52.
Connect Board

63.
Disconnect Board

64.
Download Firmware

65.
HSDC Ready?

76.
Reset Board

77.
Write Registers

78.
Read Registers

89.
Get Error Status

810.
Set Y Scale Unit

811.
Write Registers U32

812.
Minimize HSDC Pro

913.
Restore HSDC Pro

914.
Calibration

1015.
Save Calibrated Data

1016.
Load Calibrated Data

1017.
Reload Device INI

10ADC Functions

101.
Select ADC Device

112.
Pass ADC Output Data Rate

113.
Set ADC Input Target Frequency

114.
Set ADC 2nd Input Target Frequency

125.
Set Number of Samples

126.
ADC Average Settings

127.
FFT Window Notching

138.
ADC Test Selection

149.
ADC Analysis Window Length

1410.
ADC Plot Type

1411.
Active FFT Window

1412.
Select ADC Channel

1513.
Trigger Option

1514.
Capture

1515.
ADC Average Settings

1616.
Generate Software Trigger

1617.
Read DDR Memory

1618.
Save FFT as PNG

1719.
Save Raw Data as CSV

1720.
ADC Save Raw Data as Binary File

1721.
Set ADC BIM

1822.
Get FFT Data

1823.
Time Domain Parameters

1924.
Single Tone Parameters

1925.
Two Tone Parameters

2026.
ADC Channel Power Settings

2027.
ADC Channel Power Parameters

2028.
Get ADC Device

2129.
ADC Sample Offset

2130.
FFT Peak Analysis Settings

2131.
FFT Peak Analysis Results

2232.
ADC Import Data File

2233.
ADC Import Binary File

2334.
Get Active ADC Channel

2335.
Get Number of Samples per Channel

2336.
Set Additional Device Parameters for Single tone

2437.
Set Additional Device Parameters for two tone

2438.
Set Unit and Nyquist for Two Tone

2439.
Set Phase Unit

2440.
Fundamental Frequency Search

2541.
NCO Bits

2542.
Harmonic Frequency Search

2543.
Set Bin Search Percentage for Fundamental Frequency

2544.
Get Capture Data in 16 bits

2645.
Get Capture Data in 32 bits

2646.
Set Write Capture to File

2647.
Import Binary File with data in Floating Point Format

2748.
Import Data File with data in Floating Point Format

2749.
ADC Auto Re-Arm Trigger Settings

2850.
ADC Auto Re-Arm Get Max No of Triggers

2851.
ADC Auto Re-Arm Reset

2852.
ADC Auto Re-Arm Status

28DAC Functions

281.
Select DAC Device

292.
DAC Preamble

293.
DAC Data Rate

294.
DAC Option

295.
DAC Channel Enable Settings

306.
DAC Active Channel

307.
DAC Load File

308.
DAC Tone Generation

309.
DAC Trigger Option

3110.
DAC Send

3111.
DAC Generate Software Trigger

3112.
DAC Write DDR Memory

3213.
Get DAC Device

3214.
DAC Scaling Factor

3215.
Get DAC Tone Center

3216.
DAC Auto Re-Arm Trigger Settings

Introduction
HSDCPro Automation DLL uses the High Speed Data Converter Pro GUI to communicate with the board. Using the HSDCPro Automation DLL, user can programmatically pass values to the HSDCPro GUI from another application environment or receive values from HSDCPro GUI.
The user needs to open the HSDCPro GUI and ensure that no pop up dialogs (like board selection dialog) are open, before using these automation DLL functions. Please provide sufficient timeout (in milliseconds) for all the functions. A timeout of 30 seconds (30000ms) is recommended for most functions, while some specific functions like firmware download requires a larger timeout value.
HSDCPro Automation DLL Function Prototypes
Utilities
1. Get Automation DLL Version

double Automation_DLL_Version(void);
· Returns the HSDCPro Automation DLL Version.

2. Connect Board
int32_t Connect_Board(char BoardSerialNumber[], int32_t TimeoutInMs);
· BoardSerialNumber[] – String(Board serial number) which specifies the board to be connected. For example,if it is a TSW1400 board with serial number “TIVHIV9Z”,the string to be passed is “TIVHIV9Z “ or “TIVHIV9Z-TSW1400”
· TimeoutinMs – Specifies the timeout in milli-seconds. Please provide sufficient timeout for this function. A timeout of 30seconds is recommended.
This function is used to specify the board to which the HSDC Pro GUI needs to be connected. If the board is already connected, it is disconnected and connected again.
3. Disconnect Board
int32_t Disconnect_Board(int32_t TimeoutInMs);
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to disconnect the connected board. If no board is connected, it returns an error.
4. Download Firmware
int32_t Download_Firmware(char FirmwareFilePath[],int32_t WaitToCheck, int32_t TimeoutInMs);
· FirmwareFilePath[]- String(character array) which specifies the path of the firmware file to be downloaded to the board.

· WaitToCheck(0/1) – Parameter which specifies whether to wait and check(1) whether the firmware download was successful. If 0 is passed, the function returns before the actual firmware download begins. If enabled(1), a minimum timeout value of 120s(120000ms) needs to be passed.
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to download firmware to the board. Using “Select ADC/DAC Device” DLL function will itself automatically download the respective device’s firmware, so there is no need to call this function separately. This function is made available to the user if he wants to download a specific firmware to the board.
5. HSDC Ready?
int32_t HSDC_Ready(int32_t TimeoutInMs);
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function can be used to check whether the HSDC Pro has completed all its operations. For example, in ADC, this function can be used to check whether the capture event and signal processing of the data are completed before acquiring the FFT data.
6. Reset Board
int32_t Reset_Board(int32_t TimeoutInMs);
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to reset/reinitialize the firmware parameters, if the board supports this feature. Boards like TSW14J01 and TSW14J56 has this feature.
7. Write Registers
int32_t Write_Registers(int32_t RegisterAddress[],

int32_t NumberOfRegisters, uint8_t RegisterValues[], int32_t TimeoutInMs);
· RegisterAddress[]- An array of register addresses, whose value needs to be written.
· NumberOfRegisters – The size of the RegisterAddress[] array, which specifies the number of registers that needs to be written in the board.
· RegisterValues[]- The corresponding set of 8-bit register values for each register address specified in RegisterAddress[] array, that needs to be written to the board.
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to write an array of register values to the board connected.
8. Read Registers
int32_t Read_Registers(int32_t RegisterAddress[],

int32_t NumberOfRegisters, int32_t TimeoutInMs, int32_t RegisterValues[]);
· RegisterAddress[]- An array of register addresses, whose value needs to be read.

· NumberOfRegisters – The size of the RegisterAddress[] array, which specifies the number of registers that needs to be read.
· TimeoutinMs – Specifies the timeout in milli-seconds.
· RegisterValues[]- The corresponding set of 8-bit register values returned, for each register address specified in RegisterAddress[] array.
This function is used to write an array of register values to the board connected.

9. Get Error Status

int32_t Get_Error_Status(int32_t TimeoutInMs);
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function can be used to get the error status of an automation DLL function operation in HSDC Pro GUI.

10. Set Y Scale Unit

int32_t Set_Y_Scale_Unit(int32_t Volts, int32_t TimeoutInMs);

· Volts – Specifies the Y scale Unit (1 – Volts, 0 – Codes) of the Time domain graph in both ADC and DAC page
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to set the Y scale Unit (codes or volts) of the Time domain graph in both ADC and DAC page.
11. Write Registers U32

int32_t Write_Registers_U32(int32_t RegisterAddress[],int32_t NumberOfRegisters, uint32_t RegisterValues[], int32_t TimeoutInMs);
•
RegisterAddress[]- An array of register addresses, whose value needs to be written.

•
NumberOfRegisters – The size of the RegisterAddress[] array, which specifies the number of registers that needs to be written in the board.

•
RegisterValues[]- The corresponding set of 32-bit register values for each register address specified in RegisterAddress[] array, that needs to be written to the board.

•
TimeoutinMs – Specifies the timeout in milli-seconds.

This function is used to write an array of 32 bit register values to the board connected.
12. Minimize HSDC Pro

int32_t Minimize_HSDCPro(int32_t TimeoutInMs)
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function can be used to minimize HSDC Pro.

13. Restore HSDC Pro

int32_t Restore_HSDCPro(int32_t TimeoutInMs)
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function can be used to restore HSDC Pro to its original size.

14. Calibration

int32_t Calibration(char LanesToCalibrate[], int32_t Resolution, int32_t BitErrorValidationTimeInMs, int32_t NumberofLanestoCalibrate, uint32_t AlignDelays[], int32_t CalculatedDelays[], int32_t LanesCalibratedStringLen, char LanesCalibrated[], int32_t TimeoutInMs)
· LanesToCalibrate[] – The lanes to be calibrated needs to be passed separated by “;” in this string. This string is case insensitive. If “All” is passed, then all the lanes will be calibrated. Eg: Bank0_Bit0;Bank0_Bit1;Bank0_Bit2;Bank0_Bit3;Bank0_Bit4;Bank0_Bit5;Bank0_Bit6;Bank0_Bit7;Bank0_Bit8;Bank0_Bit9;Bank0_Bit10;Bank0_Bit11;Bank0_Strobe;Bank1_Bit0;Bank1_Bit1;Bank1_Bit2;Bank1_Bit3;Bank1_Bit4;Bank1_Bit5;Bank1_Bit6;Bank1_Bit7;Bank1_Bit8;Bank1_Bit9;Bank1_Bit10;Bank1_Bit11;Bank1_Strobe;Bank2_Bit0;Bank2_Bit1;Bank2_Bit2;Bank2_Bit3;Bank2_Bit4;Bank2_Bit5;Bank2_Bit6;Bank2_Bit7;Bank2_Bit8;Bank2_Bit9;Bank2_Bit10;Bank2_Bit11;Bank2_Strobe;Bank3_Bit0;Bank3_Bit1;Bank3_Bit2;Bank3_Bit3;Bank3_Bit4;Bank3_Bit5;Bank3_Bit6;Bank3_Bit7;Bank3_Bit8;Bank3_Bit9;Bank3_Bit10;Bank3_Bit11;Bank3_Strobe
· Resolution – Step size to be used for incrementing tap value for calibration [0-511]
· BitErrorValidationTimeInMs – Time to wait before checking the bit error at each tap value
· NumberofLanestoCalibrate – The number of Lanes that need to be calibrated

· AlignDelays[] – An array containing the align delay values of the lanes that are calibrated in the same order as returned by LanesCalibrated[].An array of sufficient size(memory) should be passed in.
· CalculatedDelays[] – An array containing the calculated delay values of the lanes that are calibrated in the same order as returned by LanesCalibrated[].An array of sufficient size(memory) should be passed in.

· LanesCalibratedStringLen- User needs to specify the string length allocated for “LanesCalibrated[]” character array.
· LanesCalibrated[] – This string returns a “;” separated values of the lanes calibrated in the same order they are calibrated.
· TimeoutinMs – Specify the timeout in milli-seconds.
This function can be used for calibration of different lanes.

15. Save Calibrated Data
int32_t Save_Calibrated_Data(char CalibratedDataCSVFilePathWithName[], int32_t TimeoutInMs)
CalibratedDataCSVFilePathWithName[]–String(character array) which specifies the path of the csv file (with name of the file and extension) where the calibrated data needs to be stored.
· TimeoutinMs – Specify the timeout in milli-seconds.
This function can be used to save the calibrated data.
16. Load Calibrated Data

int32_t Load_Calibrated_Data(char CalibratedDataCSVFilePathWithName[], int32_t TimeoutInMs)
CalibratedDataCSVFilePathWithName[]–String(character array) which specifies the path of the file which has the calibrated data.
· TimeoutinMs – Specify the timeout in milli-seconds.
This function can be used to load the calibrated data.
17. Reload Device INI

int32_t Reload_Device_INI(int32_t TimeoutInMs)

· TimeoutinMs – Specify the timeout in milli-seconds.
This function can be used to reload the Device INI that is currently selected.

ADC Functions

1. Select ADC Device
int32_t Select_ADC_Device(char ADCDevice[], int32_t TimeoutInMs);
· ADCDevice[] – String which is used to select the ADC Device to be selected. This string should be same as the text that is present in the HSDC Pro GUI device selection drop down box. This will also download the device’s firmware, if needed.
· TimeoutinMs – Specifies the timeout in milli-seconds. Please provide sufficient timeout for firmware download operation to complete. A timeout of 120seconds is recommended.
This function is used to select the ADC device in HSDC Pro GUI. The board needs to be connected before selecting the device. The selected ADC device’s firmware will automatically be downloaded to the board(if the same firmware is not already present in the board). The function will return immediately after the operations complete.
2. Pass ADC Output Data Rate
int32_t Pass_ADC_Output_Data_Rate(double ADCOutputDataRate, int32_t timeoutInMs);
· ADCOutputDataRate – Used to pass the Output data rate of the ADC to HSDCPro GUI.
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to pass/modify the ADC Output Data Rate (previously known as “ADC Sampling Rate” in HSDCPro GUI).
3. Set ADC Input Target Frequency
int32_t Set_ADC_Input_Target_Frequency(double ADCInputTargetFrequency, int32_t timeoutInMs);
· ADC Input Target Frequency – Input Target Frequency of the ADC
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to pass/modify the ADC Input Target Frequency.
4. Set ADC 2nd Input Target Frequency
int32_t Set_ADC_2nd_Input_Frequency(double ADC2ndInputFrequency,

 int32_t TimeoutInMs)
· ADC 2nd Input Frequency – Second Input Target Frequency of the ADC, which is used in the calculation of two tone parameters.

· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to pass/modify the ADC’s 2nd Input Target Frequency, which is used in the calculation of two tone parameters.
5. Set Number of Samples
int32_t Set_Number_of_Samples(uint64_t numberOfSamplesPerChannel, int32_t timeoutInMs);
· numberOfSamplesPerChannel – The number of samples to be acquired per channel
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to set the number of samples per channel. The GUI will automatically coerce it to be a multiple of 4096.
6. ADC Average Settings
int32_t ADC_Average_Settings(int32_t averageFFTOn, int32_t numberOfAverages, int32_t timeoutInMs)
· averageFFTOn – Sets Average FFT On(1) or Off(0).

· numberOfAverages – The number of captures, whose average needs to be considered.
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to select/unselect the ADC Averaging mode, and to set the number of captures, whose average needs to be considered.
7. FFT Window Notching
int32_t FFT_Window_Notching(uint16_t FFTSettingsType, uint32_t NumberOfHarmonics, uint32_t NoOfBinsToRemoveEitherSideOfHarmonics, uint32_t NoOfBinsToRemoveAfterDC, uint32_t NoOfBinsToRemoveEitherSideOfFundamental, double CustomNotchFrequencies[], uint32_t NoOfBinsToRemoveOnEitherSideOfCustomFrequencies[], uint32_t NumberOfCustomFreq, int32_t enableFsby2MinusFinNotching, int32_t binsToRemoveOnEitherSideOfFsby2, int32_t TimeoutInMs);
· FFT Settings Type – Specifies the FFT window type(Rectangular-0/Other windows-1) for which the notch frequency parameters are to be applied.
· NumberOfHarmonics – Specifies the number of harmonic frequencies to be considered.

· NoOfBinsToRemoveEitherSideOfHarmonic – Specifies the number of frequency bins to be removed on the either side of each harmonic frequency.

· NoOfBinsToRemoveAfterDC – Specifies the number of frequency bins to be removed after DC.

· NoOfBinsToRemoveEitherSideOfFundamental - Specifies the number of frequency bins to be removed on either side of the fundamental frequency.
· CustomNotchFrequencies[] – An array used to specify any custom frequencies that needs to be notched.

· NoOfBinsToRemoveOnEitherSideOfCustomFrequencies[] – An array used to specify the number of frequency bins to be removed on either side of each custom frequency.
· NoOfCustomFreq – Array length of “CustomNotchFrequencies” and “NoOfBinsToRemoveOnEitherSideOfCustomFrequencies”

· enableFsby2MinusFinNotching(0/1) – Enables notching of (Fs/2 – Fin) frequency. 0 – Disable, 1 – Enable. This frequency will automatically get updated when Fs/Fin is changed.
· binsToRemoveOnEitherSideOfFsby2- Number of Bins to be removed on either side of (Fs/2 – Fin)
· TimeoutinMs – Specifies the timeout in milli-seconds.
HSDCPro GUI maintains two separate sets of frequency notch parameters, one for “Rectangular” FFT and the second set is common for the other windowing techniques (Hamming, Hanning and Blackman). The number of harmonics and the custom frequencies are common for all FFT window types.
8. ADC Test Selection

int32_t ADC_Test_Selection(uint16_t TestSelection, int32_t TimeoutInMs);
· TestSelection –Specifies the Mode(Time Domain-0, Single Tone-1, Two Tone-2, Channel Power-3)
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to switch between the different Test Selection modes. Changing the Test Selection also affects the ADC Graph plot type.
9. ADC Analysis Window Length
int32_t ADC_Analysis_Window_Length(uint32_t NumberOfSamplesForAnalysis, int32_t TimeoutInMs);
· NumberOfSamplesForAnalysis – Analysis window length in terms of number of samples
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to change the number of samples to be considered for analysis. The analysis window length(number of samples) should be one of the following values : 4096, 8192, 16384, 32768, 65536, 131072, 262144, and 524288. If any other value is passed, it will be coerced to the next highest value in the above list.
10. ADC Plot Type

int32_t ADC_Plot_Type(uint16_t PlotType, int32_t TimeoutInMs);
· PlotType –ADC Graph plot Type (Codes-0, Bits-1, Real FFT-2, Complex FFT-3)
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to change the plot type (Time domain/Frequency domain) of the graph. Changing the ADC Plot type also changes the “Test Selection” by switching to Time/Frequency domain.

11. Active FFT Window
int32_t FFT_Window(uint16_t FFTWindow, int32_t TimeoutInMs);
· FFTWindow – The type of FFT window to be viewed in HSDCPro GUI. (Rectangular-0 ,Hamming-1, Hanning-2, Blackman-3)
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to change the FFT windowing technique to be applied to the active channel.
12. Select ADC Channel
int32_t Select_ADC_Channel(uint16_t ChannelIndex, int32_t TimeoutInMs);
· ChannelIndex(0-based) – Used to change the active channel in the GUI
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to change the active channel of the GUI. Channel Index is zero based.
13. Trigger Option
int32_t Trigger_Option(Trigger_Option(int32_t TriggerModeEnable, int32_t SoftwareTriggerEnable, int32_t ArmOnNextCaptureButtonPress, uint8_t TriggerCLKDelays, int32_t TimeoutInMs);
· TriggerModeEnable(1 or 0) – Enables(1) or disables(0) the trigger mode.

· SoftwareTriggerEnable(1 or 0) - Enables(1) or disables(0) the software trigger mode.

· ArmOnNextCaptureButtonPress(1 or 0) – Arms the trigger after user presses the Capture Button. Similar to software trigger mode.
· TriggerCLKDelays – Specifies the number of Clock delays before trigger

· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to set the Trigger mode in ADC. For normal capture, trigger mode enable, software trigger enable and “Arm On Next Capture Button Press, has to be disabled(0). For external trigger, “TriggerModeEnable” has to be enabled(1) and “SoftwareTriggerEnable” and “ArmOnNextCaptureButtonPress” has to be disabled(0). For software trigger, “TriggerModeEnable” and “SoftwareTriggerEnable” has to be enabled(1) and “ArmOnNextCaptureButtonPress” has to be disabled(0).
14. Capture
int32_ Pass_Capture_Event(int32_t TimeoutInMs);
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is called to start a normal capture (“Trigger Mode Enable”, “Software Trigger” and “Arm On Next Capture Button Press” have to be disabled using “Trigger Option” function before using this function).
15. ADC Average Settings
int32_t ADC_Average_Settings(int32_t AverageFFTOn, int32_t NumberOfAverages, int32_t TimeoutInMs);
· AverageFFTOn – Average FFT Capture On(1) / Off(0)
· NumberOfAverages – Number of captures for which the average needs to be calculated.
· TimeoutinMs – Specifies the timeout in milli-seconds.

This function is used to set the number of captures to be considered for averaging, and to enable/disable the average FFT capture.
16. Generate Software Trigger
int32_t Generate_Software_Trigger(int32_t WaitToCheckTrigger, int32_t TimeoutInMs);
· WaitToCheckTrigger (1/0) – Controls whether to wait and check if the trigger has occurred. If “CheckForTrigger” is disabled(“0”)”, it will not check whether trigger has occurred.
· TimeoutinMs – Specifies the timeout in milli-seconds. If “CheckForTrigger” is enabled(“1”), the minimum timeout required is 30s (GUI waits for a maximum of 10sec for the trigger to occur).
This function is used to generate a software trigger in ADC. Before this function is called, software trigger mode needs to be set(“TriggerModeEnable” and “SoftwareTriggerEnable” should be “1” and “Arm On Next Capture Button Press” have to be “0”) by using “Trigger Option” function. This function is also used to start the capture in “Arm On Next Capture Button Press” mode (“TriggerModeEnable” is 1, “SoftwareTriggerEnable” is “0” and “Arm On Next Capture Button Press” is “1”).
17. Read DDR Memory
int32_t Read_DDR_Memory(int32_t WaitToCheckTrigger, int32_t TimeoutInMs);

· WaitToCheckTrigger (1/0) – Controls whether to wait and check if the trigger has occurred. If “CheckForTrigger” is disabled(“0”)”, it will not check whether trigger has occurred.
· TimeoutinMs – Specifies the timeout in milli-seconds. . If “CheckForTrigger” is enabled(“1”), the minimum timeout required is 30s (GUI waits for a maximum of 10sec for the trigger to occur).
This function is used to read the data present in the DDR memory captured after the external trigger. Before this function is called, “TriggerModeEnable” has to be enabled(1) while “SoftwareTriggerEnable” and “Arm On Next Capture Button Press” should be disabled(0) using “Trigger Option” function.

18. Save FFT as PNG
int32_t Save_FFT_As_PNG(uint16_t ChannelIndex, char PNGFilePathWithName[], int32_t TimeoutInMs);
· Channel Index (0-based) – Specifies the channel index whose FFT plot needs to be captured as an image.
· PNGFilePathWithName[] – Specifies the file path(with the file name and PNG extension) on where the FFT needs to be saved.

· TimeoutinMs – Specifies the timeout in milli-seconds.
This function takes a screen shot of the GUI in FFT mode for the channel number specified. “FFT Window” function can be called before this function to specify the FFT windowing technique of the FFT. If not, the last selected FFT windowing technique will be used.
19. Save Raw Data as CSV
int32_t Save_Raw_Data_As_CSV(char CSVFilePathWithName[], int32_t TimeoutInMs);
· CSVFilePathWithName[] – Specifies the file path(with the file name and CSV extension) on where the raw data(Time domain data) needs to be saved.
· TimeoutinMs – Specifies the timeout in milli-seconds.
The CSV file contains the time domain data of all channels with each channel as a separate column.
20. ADC Save Raw Data as Binary File

int32_t ADC_Save_Raw_Data_As_Binary_File(char BinaryFilePathWithName[], int32_t TimeoutInMs);
· BinaryFilePathWithName[] – Specifies the file path(with the file name and BIN extension) on where the raw data(Time domain data) needs to be saved.

· TimeoutinMs – Specifies the timeout in milli-seconds.
The binary file contains the time domain data of all channels in interleaved format.
21. Set ADC BIM

int32_t Set_ADC_BIM(int32_t EnableBIM, double BIM0, double BIM1,
int32_t TimeoutInMs);
· EnableBIM – Enable(1)/Disable(0) Bandwidth Integration Marker.

· BIM0 – The lower frequency limit for the Bandwidth Integration Marker.

· BIM1 – The higher frequency limit for the Bandwidth Integration Marker.
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to configure the Bandwidth Integration Markers to calculate FFT parameters within the specified frequency limits.

22. Get FFT Data
int32_t Get_FFT_Data(int32_t TimeoutInMs, double *f0, double *df, double ActiveChanenlFFT[], int32_t *FFTArrayLength);
· TimeoutinMs – Specifies the timeout in milli-seconds.

· f0 – Specifies the starting frequency value of the FFT plot(X-axis Initial)
· df– Specifies the interval between two consecutive frequencies of the FFT Plot.(X-axis Interval)
· ActiveChannelFFT[] – An array containing the magnitude values of the FFT of active channel
· FFTArrayLength – Specifies the above “FFT” array length passed by the user to the function.
This function is used to get the FFT data of the active channel. An array of sufficient memory needs to be initialized before using this function. For Real FFT, the array size should be half the number of samples. For Complex FFT, array size should be equal to the number of samples. The array can also be greater than the FFT Array sent out by the GUI, but it should not be lesser.
23. Time Domain Parameters

int32_t Time_Domain_Parameters(char ParametersIn[], int32_t TimeoutInMs, double ParameterValues[], int32_t ParameterValuesLength)

· ParametersIn – The required time domain parameters needs to be passed separated by “;” in this string. Eg: Min;Max;St Dev;Mean;Median;RMS;Peak to Peak;PAR
· TimeoutinMs – Specifies the timeout in milli-seconds.

· ParameterValues[] – An array containing the values of the Time Domain Parameters in the same order as sent in the string. An array of sufficient size(memory) should be passed in.

· ParameterValuesLength – The length of the above Parameter Values array passed by the user to the function.
This function is used to get the values of the required single tone parameter values.

24. Single Tone Parameters
int32_t Single_Tone_Parameters(char ParametersIn[] ,int32_t Unit, int32_t TimeoutInMs, double ParameterValues[], int32_t ParameterValuesLength);
· ParametersIn – The required single tone parameters needs to be passed separated by “;” in this string. Eg: SNR;SFDR;THD;SINAD;ENOB;Fund.;Next Spur;HD2;HD3;HD4;HD5;NSD/Hz
· Unit – Specifies the required unit(dBc – 0, dBFs – 1, Hz – 2) for Single Tone Parameters – SNR, THD, SINAD, Next Spur and NSD/Hz.
· TimeoutinMs – Specifies the timeout in milli-seconds.

· ParameterValues[] – An array containing the values of the Single Tone Parameters in the same order as sent in the string. An array of sufficient size(memory) should be passed in.
· ParameterValuesLength – The length of the above Parameter Values array passed by the user to the function.
This function is used to get the values of the required single tone parameter values.
25. Two Tone Parameters

int32_t Two_Tone_Parameters(char ParametersIn[],int32_t TimeoutInMs,

double ParameterValues[], int32_t ParameterValuesLength);
· ParametersIn – The required two tone parameters needs to be passed separated by “;” in this string.
 Eg:
When Nyquist selection is Nyq1/Nyq2 - F1;F2;2F1+F2;2F2+F1;2F1-F2;2F2-F1;3F2-2F1;3F1-2F2;F1+F2;F1-F2;3F1;3F2;2F1+2F2
When Nyquist selection is ‘Both’ – N1F1;N1F2;N12F1+F2;N12F2+F1;N12F1-F2;N12F2-F1;N13F2-2F1;N13F1-2F2;N1F1+F2;N1F1-F2;N13F1;N13F2;N12F1+2F2;N2F1;N2F2;N22F1+F2;N22F2+F1;N22F1-F2;N22F2-F1;N23F2-2F1;N23F1-2F2;N2F1+F2;N2F1-F2;N23F1;N23F2;N22F1+2F2
· TimeoutinMs – Specifies the timeout in milli-seconds.

· ParameterValues[] – An array containing the values of the Two Tone Parameters in the same order as sent in the string. An array of sufficient size(memory) should be passed in.

· ParameterValuesLength – The length of the above Parameter Values array passed by the user to the function.
This function is used to get the values of the required two tone parameter values.

26. ADC Channel Power Settings
int32_t ADC_Channel_Power_Settings(double ADCCenterFrequency, int32_t NumberOfChannels, double SignalWidth, double ChannelSeparation, int32_t TimeoutInMs);
· ADCCenterFrequency – ADC Center Frequency for the channels in Hz.

· NumberOfChannels– Number of Channels to calculate the channel power.

· SignalWidth – Signal Width for the channel.

· ChannelSeparation – Separation length between channels.
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to configure the Channel Power Settings.

27. ADC Channel Power Parameters

int32_t ADC_Channel_Power_Parameters(char ParametersIn[], int32_t TimeoutInMs, double ParameterValues[], int32_t NumberOfParameters);
· ParametersIn – The required channel power parameters needs to be passed separated by “;” to this string(C1 PWR;C2 PWR;C3 PWR;C4 PWR;C5 PWR)

· TimeoutinMs – Specifies the timeout in milli-seconds.

· ParameterValues[] – An array containing the Channel Power values in the same order as sent in the string. An array of sufficient size(memory) should be passed in.

· NumberOfParameters – The number of parameters requested by the user, which will also be equal to the memory passed for the ParameterValues[] array.
This function is used to get the values of the required Channel power parameters.
28. Get ADC Device

int32_t Get_ADC_Device(int32_t StringLengthAllocated,int32_t TimeoutInMs, char CurrentADCDevice[])
· StringLengthAllocated – User needs to specify the string length allocated for “Current ADC Device” character array.

· TimeoutinMs – Specifies the timeout in milli-seconds.

· CurrentADCDevice[] – Returns the current ADC device selected in HSDC Pro GUI as a string. When no device is selected, it will return “Select ADC Device”.
This function can be used to find the selected ADC device in HSDC Pro GUI.
29. ADC Sample Offset
int32_t ADC_Sample_Offset(uint32_t ADCSampleStartingIndex, int32_t TimeoutInMs)
· ADCSampleStartingIndex – The starting sample position of the ADC Analysis window.

· TimeoutinMs – Specifies the timeout in milli-seconds.

This function can be used to set the starting position of the ADC Analysis Window. For Example, if there are 32K samples in a channel, and the ADC Analysis window is configured for 4096 samples, and the user wants to analyze 4096 samples between 1,000 and 5,096, the “ADC Sample Starting Index” needs to be provided as 1,000.

30. FFT Peak Analysis Settings

int32_t FFT_Peak_Analysis_Settings(int32_t EnablePeakAnalysis, double PeakAnalysisFactor, int32_t TimeoutInMs);

· EnablePeakAnalysis - Used to Enable (1) or Disable (0) Peak Analysis.
· PeakAnalysisFactor – PeakAnalysisFactor is a value used in finding the FFT Peaks whose amplitudes exceed a value of 'Noise Spectral Density' plus 'PeakAnalysisFactor' times the Standard Deviation of the noise.
· TimeoutInMs – Specifies the timeout in milli-seconds.

This function can be used for enabling the Peak Analysis and set the Peak Analysis factor. The FFT Peak analysis results can be obtained using the "FFT_Peak_Analysis_Results" function.
31. FFT Peak Analysis Results

int32_t FFT_Peak_Analysis_Results(int32_t dBFs, int32_t TimeoutInMs,
double PeakValues[], double PeakFrequencies[], int32_t NumberOfPeaks);
· dBFs – Specifies the required unit(dBc – 0, dBFs – 1) for the Peak Values
· TimeoutInMs – Specifies the timeout in milli-seconds.
· PeakValues[] – Returns an array of FFT Peak Values (Amplitudes).Allocate sufficient memory for the array, depending on the “Number of Peaks “required (passed below).
· PeakFrequencies[] – Returns an array of FFT Peak frequencies. Allocate sufficient memory for the array, depending on the “Number of Peaks “required (passed via below parameter).
· NumberOfPeaks – Pass the number of peaks to find(maximum is 26). This will also return the number of peaks found.
This function can be used to get the FFT Peak Values and Frequencies, after enabling and setting the threshold for the FFT Peak Analysis using the "FFT_Peak_Analysis_Settings" function. The maximum number of peaks returned by the function will be 26, in the order of the amplitude of the FFT peaks. Peak Analysis should be enabled before using this function, or else it returns an empty array.
32. ADC Import Data File

int32_t ADC_Import_Data_File(char DataFilePathWithName[], int32_t NumberOfBits, int32_t NumberOfChannels, int32_t TimeoutInMs);

· DataFilePathWithName[] – Specifies the data file path (with the file name and extension) that needs to be imported.
· NumberOfBits – Specifies the number of bits of each sample present in the file.
· NumberOfChannels – Specifies the number of channel data present in the file.
· TimeoutInMs – Specifies the timeout in milli-seconds.
This function is used to import the Data file with the extension .csv, .txt, .tsw, .gcin, .ssv, .tsv. Each column in the file corresponds to each Channel data. The data present in the file should be in signed format (I32).
33. ADC Import Binary File

int32_t ADC_Import_Binary_File(char BinaryFilePathWithName[], int32_t NumberOfChannels, int32_t TimeoutInMs);
· BinaryFilePathWithName[] – Specifies the file path (with the file name and BIN extension) that needs to be imported.
· NumberOfChannels – Specifies the number of channel data present in the file.
· TimeoutInMs – Specifies the timeout in milli-seconds.
This function is used to import the Binary file with the extension .bin. The samples present in the file should be in Channel interleaved format. E.g. If there are 4 channels, then the data should in the format 1,2,3,4,1,2,3,4,…
34. Get Active ADC Channel

int32_t Get_Active_ADC_Channel(uint16_t *ActiveChannelIndex, int32_t TimeoutInMs);

•
ActiveChannelIndex – Returns the Active channel of ADC.
•
TimeoutInMs – Specifies the timeout in milli-seconds.
This function can be used to get the Active Channel of ADC in HSDC Pro GUI.

35. Get Number of Samples per Channel

int32_t Get_Number_of_Samples_Per_Channel(uint64_t *NumberOfSamplesPerChannel, int32_t TimeoutInMs);

•
NumberOfSamplesPerChannel – Returns the number of samples per channel to be acquired in ADC.
•
TimeoutInMs – Specifies the timeout in milli-seconds.
This function can be used to get the number of samples to be acquired per channel in ADC in HSDC Pro GUI.

36. Set Additional Device Parameters for Single tone
int32_t Set_AdditionalFrequencyParameters(uint32_t AdditionalDeviceParameters, double ADCOutputDataRate, double ADCInputTargetFrequency, double NCOFrequency, double Decimation, int32_t TimeoutInMs)
•
AdditionalDeviceParameters – Enables(1) or disables(0) the Advance Device Parameters

•
ADCOutputDataRate – Used to pass the Output data rate of the ADC to HSDCPro GUI.
•
ADCInputTargetFrequency – Input Target Frequency of the ADC
•
NCOFrequency – Value to be set to the NCO frequency in HSDC Pro
•
Decimation – Value to be set to the Decimation in HSDC Pro
•
TimeoutInMs – Specifies the timeout in milli-seconds.
This function can be used to set the value of the Additional Device Parameters in HSDC Pro when the Test Selection is ‘Single Tone’.
37. Set Additional Device Parameters for two tone

int32_t Set_AdditionalFrequencyParametersForTwoTone(uint32_t AdditionalDeviceParameters, double ADCOutputDataRate, double ADCInputTargetFrequency, double ADC2ndInputFrequency, double NCOFrequency, double Decimation, int32_t TimeoutInMs)
•
AdditionalDeviceParameters – Enables(1) or disables(0) the Advance Device Parameters

•
ADCOutputDataRate – Used to pass the Output data rate of the ADC to HSDCPro GUI.

•
ADCInputTargetFrequency – Input Target Frequency of the ADC

•
ADC2ndInputFrequency – Second Input Target Frequency of the ADC, which is used in the calculation of two tone parameters.

•
NCOFrequency – Value to be set to the NCO frequency in HSDC Pro

•
Decimation – Value to be set to the Decimation in HSDC Pro
•
TimeoutInMs – Specifies the timeout in milli-seconds.
This function can be used to set the value of the Additional Device Parameters in HSDC Pro when the Test Selection is ‘Two Tone’.

38. Set Unit and Nyquist for Two Tone

int32_t Set_UnitAndNyquistForTwoTone(int32_t Unit, int32_t Nyquist, int32_t TimeoutInMs)
· Unit – Specifies the required unit(dBFs – 0, Hz – 1) for Two Tone Parameters
· Nyquist - Specifies the required Nyquist region(First Nyquist -0, Second Nyquist -1) for Two Tone Parameters.
· TimeoutInMs – Specifies the timeout in milli-seconds.
39. Set Phase Unit

int32_t Set_Phase_Unit(int32_t PhaseInDegree, int32_t TimeoutInMs)
· PhaseInDegree – Specifies the required unit(Radian – 0, Degree – 1) for Phase.

· TimeoutInMs – Specifies the timeout in milli-seconds.
40. Fundamental Frequency Search

int32_t Fundamental_Freq_Search(uint32_t FundamentalFreqSearch, int32_t TimeoutInMs)

· FundamentalFreqSearch – Specify 0 to disable or 1 to enable the fundamental frequency search.

· TimeoutInMs – Specifies the timeout in milli-seconds.
41. NCO Bits

int32_t Set_NCOBits(uint32_t UseNCOBits, int32_t NCOBits, int32_t TimeoutInMs)
· UseNCOBits – Specify 0 to disable or 1 to enable the NCOBits parameter.

· NCOBits – Specify the #NCO Bits to be used for NCO Frequency calculation.

· TimeoutInMs – Specifies the timeout in milli-seconds.
This function can be used to enable/disable and set the value of the #NCO Bits, when Additional Device Parameters and Auto Calculation of Coherent Frequencies are enabled.

42. Harmonic Frequency Search

int32_t Harmonic_Freq_Search(uint32_t HarmonicFreqSearch, int32_t TimeoutInMs)

· HarmonicFreqSearch – Specify 0 to disable or 1 to enable the harmonic frequency search.

· TimeoutInMs – Specifies the timeout in milli-seconds.
43. Set Bin Search Percentage for Fundamental Frequency
int32_t Set_Bin_Search_Percentage_for_Fundamental(double PercentageFFTDataSearchedForFundamental, int32_t TimeoutInMs);
· Percentage FFT Data Searched For Fundamental – The percentage of FFT Data to be searched around the User entered Input Target Frequency for identifying the fundamental bin.
· TimeoutinMs – Specifies the timeout in milli-seconds.
44. Get Capture Data in 16 bits

int32_t Get_Capture_Data_16bits(int32_t NumberOfSamplesPerChannel, int32_t OffsetSamplePerChannel, uint16_t CaptureData[], int32_t ArrayLen, int32_t TimeoutInMs)
· NumberOfSamplesPerChannel – Number of Samples to be Captured Per Channel
· OffsetSamplePerChannel – Specify the Starting Sample position per channel
· CaptureData – Returns an array of Captured Data in U16 format
· ArrayLen – Specify the length of the CaptureData array
· TimeoutinMs – Specifies the timeout in milli-seconds.
45. Get Capture Data in 32 bits

int32_t Get_Capture_Data_32bits(int32_t NumberOfSamplesPerChannel, int32_t OffsetSamplePerChannel, uint32_t CaptureData[], int32_t ArrayLen, int32_t TimeoutInMs)
· NumberOfSamplesPerChannel – Number of Samples to be Captured Per Channel
· OffsetSamplePerChannel – Specify the Starting Sample position per channel
· CaptureData – Returns an array of Captured Data in U32 format
· ArrayLen – Specify the length of the CaptureData array
· TimeoutinMs – Specifies the timeout in milli-seconds.
46. Set Write Capture to File
int32_t Set_Write_Capture_to_File(uint8_t EnableCaptureToFileOption, int32_t TimeoutInMs)
· EnableCaptureToFileOption – Specify 0 to disable or 1 to enable the Capture to File option
· TimeoutinMs – Specifies the timeout in milli-seconds.
47. Import Binary File with data in Floating Point Format
int32_t Import_Binary_File_With_FP(char DataFilePathWithName[], int32_t NumberOfBits, int32_t NumberOfChannels, uint8_t EnableFloatingPointConversion, uint16_t FloatingPointMode, uint32_t NoOfExponentBits, int32_t TimeoutInMs)
· DataFilePathWithName[] – Specifies the data file path (with the file name and extension) that needs to be imported.
· NumberOfBits – Specifies the number of bits of each sample present in the file.

· NumberOfChannels – Specifies the number of channel data present in the file.
· EnableFloatingPointConversion – Specify 0 to disable or 1 to enable Floating Point Conversion
· FloatingPointMode – Specifies the mode of conversion (0 – FLOAT_PT_MODE_1, 1 – FLOAT_PT_MODE_2)
· NoOfExponentBits – Specifies the number of exponent bits in the Floating point format sample
· TimeoutInMs – Specifies the timeout in milli-seconds.
This function is used to import the Binary file with the extension .bin. The samples present in the file should be in Channel interleaved format. E.g. If there are 4 channels, then the data should in the format 1,2,3,4,1,2,3,4,…

48. Import Data File with data in Floating Point Format
int32_t Import_Data_File_With_FP(char DataFilePathWithName[], int32_t NumberOfBits, int32_t NumberOfChannels, uint8_t EnableFloatingPointConversion, uint16_t FloatingPointMode, uint32_t NoOfExponentBits, int32_t TimeoutInMs)
· DataFilePathWithName[] – Specifies the data file path (with the file name and extension) that needs to be imported.
· NumberOfBits – Specifies the number of bits of each sample present in the file.

· NumberOfChannels – Specifies the number of channel data present in the file.
· EnableFloatingPointConversion – Specify 0 to disable or 1 to enable Floating Point Conversion
· FloatingPointMode – Specifies the mode of conversion (0 – FLOAT_PT_MODE_1, 1 – FLOAT_PT_MODE_2)
· NoOfExponentBits – Specifies the number of exponent bits in the Floating point format sample
· TimeoutInMs – Specifies the timeout in milli-seconds.
This function is used to import the Data file with the extension .csv, .txt, .tsw, .gcin, .ssv, .tsv. Each column in the file corresponds to each Channel data. The data present in the file should be in signed format (I32).
49. ADC Auto Re-Arm Trigger Settings
int32_t ADC_Auto_ReArm_Trigger_Settings(uint32_t AutoReArmEnable, uint32_t NumberOfTriggers, uint32_t TriggerCLKDelays, int32_t TimeoutInMs)
· AutoReArmEnable (1 or 0) – Enables(1) or disables(0) the Auto Re-Arm trigger mode.

· NumberOfTriggers – Specifies the Number of Triggers to be captured in Auto Re-Arm Mode.

· TriggerCLKDelays – Specifies the number of Clock delays before trigger

· TimeoutinMs – Specifies the timeout in milli-seconds.
50. ADC Auto Re-Arm Get Max No of Triggers
int32_t ADC_Auto_ReArm_Get_Max_NoOfTriggers(uint32_t *MaxNoOfTriggers, int32_t TimeoutInMs)
· MaxNoOfTriggers – Pointer that gives the Maximum No of Triggers Possible based on the current Capture size
· TimeoutinMs – Specifies the timeout in milli-seconds.

51. ADC Auto Re-Arm Reset
int32_t ADC_Auto_ReArm_Reset(int32_t TimeoutInMs)
· TimeoutinMs – Specifies the timeout in milli-seconds.

This function is used to reset the Auto Re-Arm Mode
52. ADC Auto Re-Arm Status
int32_t ADC_Auto_ReArm_Status(uint32_t *NumberOfTriggersOccurred, double *PercentageOfDDRFilled, int32_t TimeoutInMs)
· NumberOfTriggersOccurred – Pointer that gives the No of Triggers occurred so far
· PercentageOfDDRFilled – Pointer that gives the Percentage of DDR filled
· TimeoutinMs – Specifies the timeout in milli-seconds.

DAC Functions

1. Select DAC Device
int32_t Select_DAC_Device(char DACDevice[], int32_t TimeoutInMs);
· DACDevice[] – String which is used to select the DAC Device to be selected. This string should be same as the text that is present in the HSDC Pro GUI device selection drop down box. This will also download the device’s firmware.
· TimeoutinMs – Specifies the timeout in milli-seconds. Please provide sufficient timeout for firmware download operation to complete. A timeout of 120 seconds is recommended.
This function is used to select the DAC device in HSDC Pro GUI. The board needs to be connected before selecting the device. The selected DAC device’s firmware will automatically be downloaded to the board(if the same firmware is not already present in the board). The function will return immediately after the operations complete.

2. DAC Preamble

int32_t DAC_Preamble(double DACPreamble, int32_t TimeoutInMs);
· DACPreamble –
· TimeoutinMs – Specifies the timeout in milli-seconds.
Sets the DAC Preamble value.

3. DAC Data Rate
int32_t DAC_Data_Rate(double DACDataRate, int32_t TimeoutInMs);
· DACDataRate – Data Rate of the DAC in SPS(Samples per Second)
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function passes the DAC Data Rate to the HSDCPro GUI.
4. DAC Option
int32_t DAC_Option(uint16_t DACOption, int32_t TimeoutInMs);
· DACOption(0/1) – Specifies the DAC setting. (0 - 2's Complement, 1 - Offset Binary)
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to specify whether the data has to be in 2's Complement or Offset Binary mode.
5. DAC Channel Enable Settings
int32_t DAC_Channel_Enable_Settings(int32_t ChannelEnableSettings[], int32_t NumberOfChannels, int32_t TimeoutInMs);
· ChannelEnableSettings[] – An array(containing 0 – Disable / 1 - Enable) specifies the Enable/Disable setting for each channel. The array index(starts from 0) corresponds to the channel index. The size of the array should be equal to the number of channels available for the DAC.
· NumberOfChannels – The number of Channels available for the DAC.
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to enable/disable each of the DAC Channels.
6. DAC Active Channel
int32_t DAC_Active_Channel(int32_t ActiveChannelIndex, int32_t TimeoutInMs);
· ActiveChannelIndex – Used to set the active DAC channel. Channel Index starts from 0.
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function sets the provided channel index as the active channel.
7. DAC Load File
int32_t DAC_Load_File(char DACFilePath[], int32_t TimeoutInMs);
· DACFilePath[] – The File Path whose data needs to be sent to the DAC.
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to specify the data file path which needs to be loaded to the DAC.
8. DAC Tone Generation
int32_t DAC_Tone_Generation(double ToneBandwidth,int32_t NumberOfTones, double ToneCenter, int32_t NumberOfSamples, uint16_t ToneSelection, double ScalingFactor, int32_t TimeoutInMs);
· ToneBandwidth – The Frequency bandwidth within which the tones needs to be generated.
· NumberOfTones – The number of tones to be generated within the above bandwidth.
· ToneCenter – The center frequency around which the tones needs to be generated.
· NumberOfSamples – The number of Samples required.
· ToneSelection – Tone Type (0 – Real, 1 – Complex)
· ScalingFactor – The Scaling Factor (1x)
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function generates tones as per the given requirements and the data generated is ready to be sent to DAC using “DAC Send”.
9. DAC Trigger Option

int32_t DAC_Trigger_Option(int32_t TriggerModeEnable,

int32_t SoftwareTriggerEnable, uint8_t TriggerCLKDelays, int32_t TimeoutInMs);
· TriggerModeEnable(1 or 0) – Enables(1) or disables(0) the trigger mode.

· SoftwareTriggerEnable(1 or 0) - Enables(1) or disables(0) the software trigger mode.

· TriggerCLKDelays – Specifies the number of Clock delays before trigger

· TimeoutinMs – Specifies the timeout in milli-seconds.
This function is used to set the Trigger mode for DAC. For normal send, trigger mode enable and software trigger enable, has to be disabled(0). For external trigger, “TriggerModeEnable” has to be enabled(1) and “SoftwareTriggerEnable” has to be disabled(0). For software trigger, “TriggerModeEnable” and “SoftwareTriggerEnable” has to be enabled(1).
10. DAC Send
int32_t DAC_Send(int32_t TimeoutInMs);
· TimeoutinMs – Specifies the timeout in milli-seconds.
This function sends the data loaded to DAC(from File provided by user or generated using DAC Tone Generation). In Trigger Option, “Trigger Mode Enable” and “Software Trigger Enable” has to be disabled(0) for normal send.
11. DAC Generate Software Trigger

 int32_t DAC_Generate_Software_Trigger(int32_t TimeoutInMs);

· TimeoutInMs – Specifies the timeout in milli-seconds.

This function is used to generate a software trigger and send data to DAC. Before this function is called, software trigger mode needs to be set(“TriggerModeEnable” and “SoftwareTriggerEnable” should be “1”) by using “Trigger Option” function.
12. DAC Write DDR Memory

 int32_t DAC_Write_DDR_Memory(int32_t TimeoutInMs);

· TimeoutInMs – Specifies the timeout in milli-seconds.

This function is used to write the data to the DDR memory. The data will not be sent to the DAC device, till the board receives a trigger. Before this function is called, “TriggerModeEnable” has to be enabled(1), while “SoftwareTriggerEnable” should be disabled(0) using “Trigger Option” function.
13. Get DAC Device

int32_t Get_DAC_Device(int32_t StringLengthAllocated, int32_t TimeoutInMs, char CurrentDACDevice[])
· StringLengthAllocated – User needs to specify the string length allocated for “Current DAC Device” character array.

· TimeoutinMs – Specifies the timeout in milli-seconds.

· CurrentDACDevice[] – Returns the current DAC device selected in HSDC Pro GUI as a string. When no device is selected, it will return “Select DAC Device”.
This function can be used to find the selected DAC device in HSDC Pro GUI.
14. DAC Scaling Factor

int32_t DAC_Scaling_Factor(double DACScalingFactor,int32_t TimeoutInMs);

· DACScalingFactor – Scaling Factor will be multiplied with the DAC data (File data or Tone data) and the resultant data will be sent to DAC. (The Scaling factor value should be greater than 0 and less than or equal to 1)

· TimeoutinMs – Specifies the timeout in milli-seconds.

15. Get DAC Tone Center
int32_t Get_DAC_Tone_Center (int32_t TimeoutInMs, double *ToneCenter)
· TimeoutinMs – Specifies the timeout in milli-seconds.

· ToneCenter – Returns the DAC Tone Center value present in HSDC Pro.

16. DAC Auto Re-Arm Trigger Settings
int32_t DAC_Auto_ReArm_Trigger_Settings(uint32_t AutoReArmEnable, uint32_t TriggerCLKDelays, int32_t TimeoutInMs)
· AutoReArmEnable (1 or 0) – Enables(1) or disables(0) the Auto Re-Arm trigger mode.

· TriggerCLKDelays – Specifies the number of Clock delays before trigger

· TimeoutinMs – Specifies the timeout in milli-seconds.
[image: image2.png]Technology for Innovators® = Wi TeExas INSTRUMENTS

[image: image2.png]