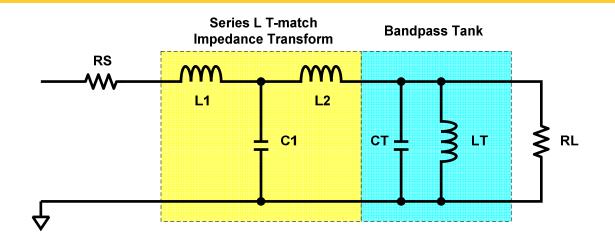

Tapped Inductor Bandpass Filter Design

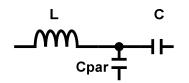
High Speed Signal Path Applications 7/21/2009 v1.6

Tapped Inductor BP Filter



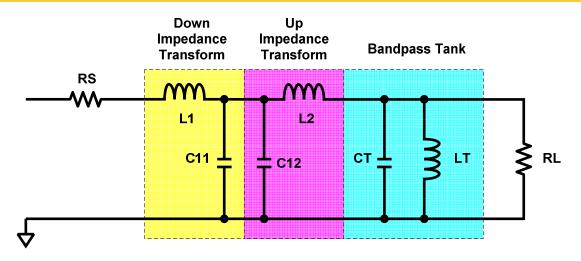
- 1st order (6 dB/oct) LOW frequency roll-off
 - Shunt LT
- 4th order (24 dB/oct) HIGH frequency roll-off
 - Series L1, L2 Shunt C1, CT
- Called "Tapped Inductor" because filter uses a series-L T-match impedance transform

Tapped Inductor BP Filter


- Tank provides 1st order Bandpass profile
- Impedance transform matches R_L to R_s at center frequency and increases high frequency roll-off to 4th order

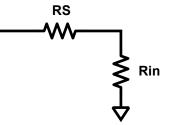
Pros / Cons

- Why is this architecture good?
 - Avoids capacitors in series branches which are very susceptible to shunt parasitics



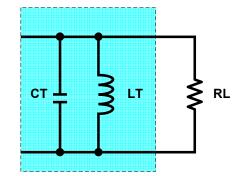
- Provides best harmonic tone rejection with lowest possible filter complexity
- Good noise rejection despite shallow roll-off at low frequencies
- Relatively easy to design filters up to 300 MHz with 3dB Q~5 (Q = Fo/BW)
- Design procedure provides flexible matching of R_L to R_S
- Drawbacks?
 - Shallow low frequency roll-off may limit noise performance
 - For large R_S, R_L, and large Q's → C1 becomes prohibitively small
 - Wider passband requires shallower stopband (tradeoff)

Theory


- Filter can be broken into parts for analysis
 - Bandpass Tank
 - T-match split into Up/Down impedance transforms
 - Each section characterized by Wo and Q
 - Design procedure works from load up to source

Theory: Filter Loss and Impedance Matching

- Impedance Matching
 - Power transfer maximized and reflections minimized when R_s = R_{in}
 - R_{in} is equivalent resistance looking into T-match
- Filter Loss
 - Related to R_s, R_L, and Q's used in design
 - Certain configurations can cause voltage gain

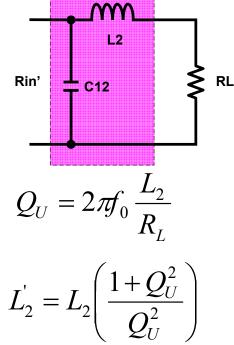


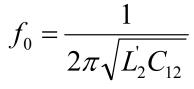
Theory: Bandpass Tank

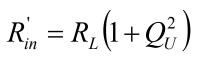
- LC Bandpass Tank
 - Impedance should equal R_L at center frequency due to parallel cancellation of L_T and C_T
 - Sets the center frequency and influences the BW
- Design procedure
 - Choose filter center frequency F₀
 - Choose suitable Q_T
 - Choose R_s and R_L based on source/driver requirements and passband loss
 - Solve for C_T using Q equation
 - Solve for L_T using F_0 equation

$$Q_T = 2\pi f_0 \cdot R_L C_T$$

$$f_0 = \frac{1}{2\pi\sqrt{L_T C_T}}$$




Theory: Up Impedance Transform


Up Impedance Transform

- When properly designed, impedance looking into network will be real and > R_L at center frequency
- Q_U must be high enough to isolate C₁₂ from the tank to preserve the tank center frequency
- Design procedure
 - Choose desired Q_U
 - Solve for L₂ using Q equation
 - Solve for L_2 '
 - Solve for C₁₂ using F₀ equation
 - Solve for R_{in}'

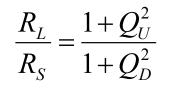
Theory: Down Impedance Transform

- Down Impedance Transform
 - When properly designed, impedance looking into network will be real and Rin < Rin' at center frequency
- Design procedure
 - Choose desired Q_D
 - Solve for C₁₁ using Q equation and R_{in}' from Up Transform design procedure
 - Solve for C₁₁'
 - Solve for L₁ using F₀ equation
 - Solve for R_{in}

m L1 C11 Rin Rin'

$$Q_D = 2\pi f_0 \cdot R_{in} C_{11}$$

$$C'_{11} = C_{11} \left(\frac{Q_D^2}{1 + Q_D^2} \right)$$
$$f_0 = \frac{1}{2\pi \sqrt{L_1 C'_{11}}}$$
$$R_1 = R'_1 \left(\frac{1}{1 + Q_D^2} \right)$$


 $\left(1+Q_{D}^{2}\right)$

Theory: Effect of Q

- Effect of Q
 - After load/source/frequency are set, Q's are the only design knobs
 - Closely related to Bandwidth of filter
 - Higher Q typically results in less loss and a narrower filter but makes filter more sensitive and harder to tune on the actual board
- Choosing Q_T
 - Intuitive trend is $Q_T \sim F_o/BW$ but the results are not simple
- Choosing Q_U
 - Set > 3 to prevent ripples in passband
- Choosing Q_D
 - Use equation for impedance matching:
 - OR Set Q_U<Q_D<12 for relaxed component values and possible voltage gain increase

- For $R_L=4R_S \rightarrow Q_T=5$, $Q_D=2.34$, $Q_U=5$
 - Impedance matched, Gain ~ 0 dB
- For $R_L=4R_S \rightarrow Q_T=6$, $Q_D=3$, $Q_U=10$
 - Gain > 0 dB
- For $R_L = R_S \rightarrow Q_T = 6$, $Q_D = 3$, $Q_U = 3$
 - Loss ~ 6dB
 - Can't increase Q_U much because R_{in} becomes too small (Avoid)
- Setting low Q_D or Q_U for wide BW can cause deep ripples in passband due to poor impedance transform.
- Increased gain can occur when R_L>2R_S. Set Q_D>1.5Q_U only under this condition.
- Very large R_L can cause prohibitively small C_1 and large L1, L2

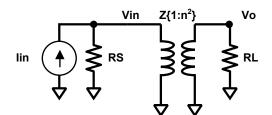
- Large Q_T allows for narrower and flatter bandpass but the quality is very sensitive to $(C_{11}+C_{12})$. Variations cause significant misshaping. Difficult to tune frequency.
- Small Q_T allows for easier tuning without misshaping by changing $C_T OR (C_{11}+C_{12})$. Easier to tune with C_T because it is usually much bigger.
- True bandwidth depends on both the tank and T-network.
- Filter voltage gain at center frequency:

$$\frac{V_{out}}{V_{in}}\Big|_{f=f_0} \sim 20\log\left(\frac{R_{in}}{R_S + R_{in}}\right) + 10\log\left(\frac{R_{in}}{R_S}\right) + 10\log\left(\frac{R_L}{R_{in}}\right) \qquad R_{in} = \left(\frac{1 + Q_U^2}{1 + Q_D^2}\right)R_L$$

- For gain > 0 dB: R_L/R_s >1 and R_s << R_{in}
- An impedance matched filter ($R_{in}=R_S$) has ~0 dB gain for $R_L=4R_S$

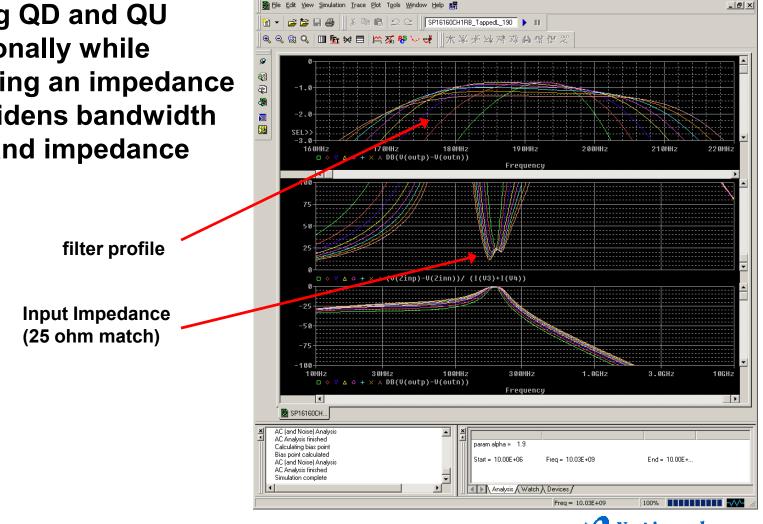
Voltage output Amplifier

 Filter impedance Xform modeled as Transformer with coil ratio of 1:n (therefore an impedance ration of 1:n²)


$$\frac{V_{out}}{V_{in}}\Big|_{f=f_0} = \frac{n \cdot R_L}{R_L + n^2 \cdot R_S} \qquad n^2 = \frac{1 + Q_U^2}{1 + Q_D^2}$$

- If $R_L = 4^*R_s$, n=2, then $G_V = 1$
 - Impedance is also matched because $R_s = R_L/n^2$
 - For a R_s,R_L voltage divider, G_v=0.8 (-2dB)
 - The LC network achieves a voltage gain of 2dB

Current output Amplifier


- No series R loss, $G_V = n$
- Amplifier requires large R_s, R_L for large amplifier gain
- If $R_L = R_s$, n=1, then $G_v = 1$
 - Impedance is matched, Q_U = Q_D
- If $R_L = R_S$, n=2, then $G_V = 2$
 - Impedance not matched, risk more ripple in passband

 Reducing QD and QU proportionally while maintaining an impedance match widens bandwidth of filter and impedance match

SP16160CH1R8 TappedL_190MHz - OrCAD PSpice A/D Demo - [SP16160CH1R8 TappedL_190MHz.dat (active)

- U ×

Example

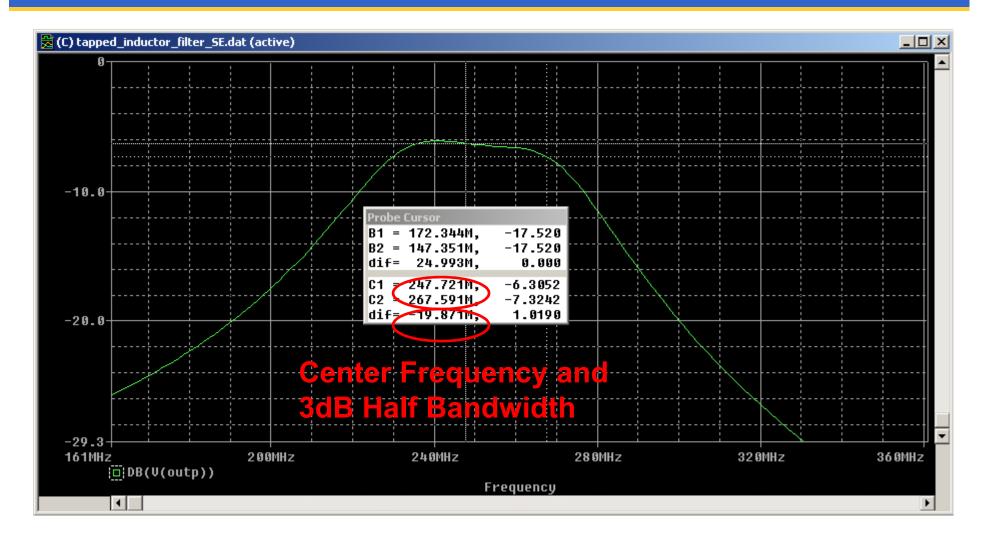

- F₀=190MHz, 30MHz -1dB Bandpass Filter
- R_s=50, R_L=150

																							<u>P</u> /	ARA	ME	TE	RS:	:	_
	4(DIN	1H	Z	Ņ	li	de	•	-3	sc	IB		3P	F	a	t	1	90) N	11-	z	•		asdf Isdf				8p 70 n l	H .
sre	р) R	16 16		•	•	j	ie V	18	i3n Ƴ∩	j.			ļ	.17	j V	37	7n			-	-	:	:		•		ou	tp
		: 5	0									-	Ī .								T								-
• •	•				•	•										•		•				•	•	•		•	•		
	Lv1										22	1								32			19	- (F
01/00	9						-	•	•	÷ē	5:6	P =	Ŀ	•			•		13	3.5	بليو	20.	9n	÷	• •			13	2
`	Ē.															÷								٢Č		÷		0	

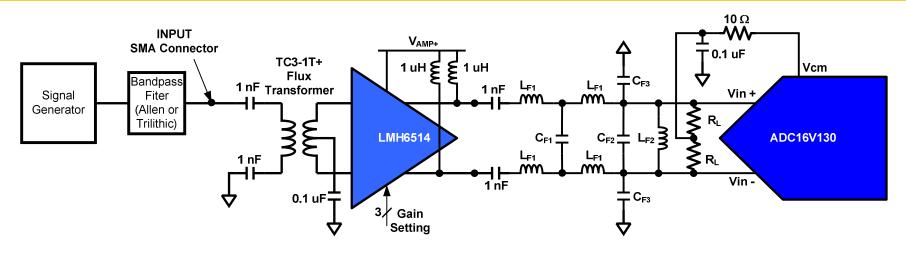
	A	В	С	D	E
		U	U	0	L
2	Filter Char	ootoriotioo			
3			0		
<u> </u>	Wo	BW	Q		
4	1.90E+08	3.00E+07	6.333333333		
5					
6	Source/Lo:	ad			
7	RS	RL			
8	50	150			
9					
10	Tuned Tan	k			
11	QT	L3	C3		
12	6	2.09E-08	3.35E-11		
13					
14	Upward Im	pedance Xf	orm		
15	Q2	Rin'	L2'	L2	C12
16	3	1500	4.18774E-07	3.77E-07	1.68E-12
17					
18	Downward	Impedance			
19	Q1	Rin	C11'	L1	C11
20	7	30	3.83039E-12	1.83E-07	3.91E-12
24					

Example

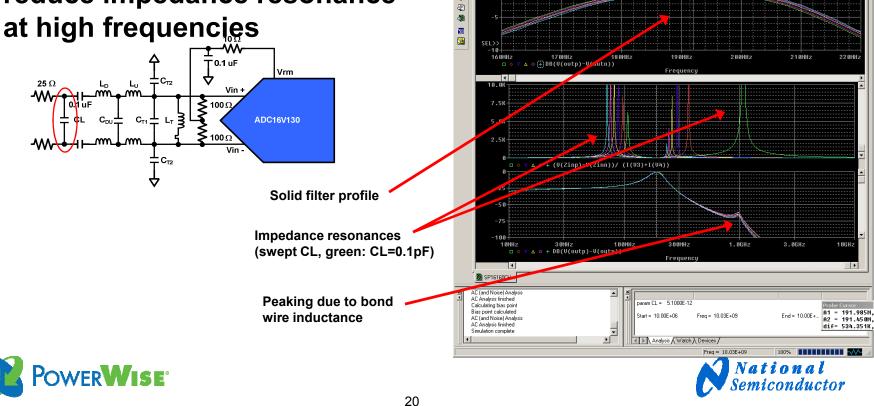
- F₀=250MHz, 40MHz -1dB Bandpass Filter
- R_s=50, R_L=50


40	MHz	ŻV	Vid	e -	1	dB	В	PI	1	ať	25	50	M	Hz	z .	C.	ARA asdf asdf		TER	5.8)p DnH	-
srop	R16	 		ii ~~	144	hn.			[L17		127	7n.									out	P.
	50			•			:		•••	•			•	:	•	•	:		:			•
t t Lvi t	· ·		· ·	•	· ·	C21			· ·	:	· ·		C3:	2	.1	.19	ξ.		•		ļ	RL
.ov(~)	· ·	· ·	· ·		· ·	6p	: +		· ·	:			80	2 =		5n	÷ζ		•	• •	Ş	50
· · · · ·	• •				· ·			:	· ·		• •					:	, N	1				:
: : <mark>0</mark> 1 - 1				•	• •	•	•	•	• •	•			•			•	÷	 	•			

	A	В	С	D	E
1					
2	Filter Char	acteristics			
3	Wo	BW	Q		
4	2.50E+08	4.00E+07	6.25		
5					
6	Source/Loa	ad			
7	RS	RL			
8	50	50			
9					
10	Tuned Tan	k			
11	QT	L3	C3		
12	6.25	5.09E-09	7.96E-11		
13					
14		pedance Xf	orm		
15	QU	Rin'	L2'	L2	C12
16	4	850	1.35264E-07	1.27E-07	3.00E-12
17					
18		Impedance			
19	QD	Rin	C11'	L1	C11
20	4	50	2.81927E-12	1.44E-07	3.00E-12
1.71					

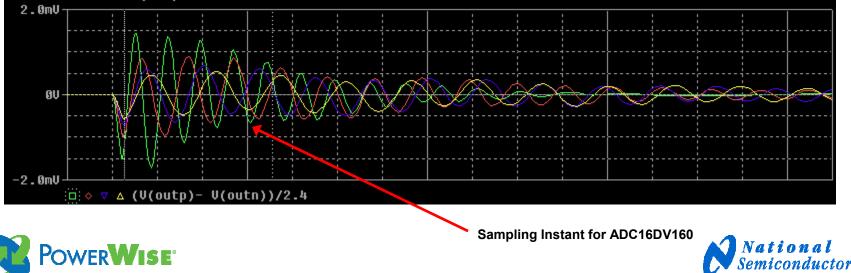

Example

Architecture Example


- Differential implementation
- Additional large series caps for AC coupling
- ADC sets input common mode through load resistors
- Tank caps separated into common mode and differential loads for better charge kickback suppression from ADC

Practical Issues

- Input impedance matching good in bandwidth, but has peaking at certain frequencies
- Insert a small cap (CL) after the series output R's of DVGA to reduce impedance resonance at high frequencies


Plot Tools Window Help

 - 🗆 🗵

<u>_ 8 ×</u>

Practical Issues

- Charge kickback from ADC resonates with bond wire inductance and LC tank (observed in simple model simulation)
 - Lower tank Q decays faster but bigger initial spike
 - Higher tank Q decays slower but smaller initial spike
- Differential and CM error depends on whether sampling instant lands on maximum or minimum of kickback ringing
 - Can create seemingly illogical SFDR variations across signal frequency, amplitude, sampling rate, common-mode capacitance, etc.

 T.H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits," Cambridge University Press, 2004, pp. 92-99. (Impedance matching)

