Programming and Operation Manual

LM9872X 3 Channel, 16Bit Analog Front End with LVDS/CMOS Output, Integrated CCD/CIS Sensor Timing Generator and Spread Spectrum Clock Generation

General Description

The LM9872X is a fully integrated, high performance 16-Bit signal processing solution for digital color copiers, scanners, and other image processing applications. High-speed signal throughput is achieved with an innovative architecture utilizing Correlated Double Sampling (CDS), typically employed with CCD arrays, or Sample and Hold (S/H) inputs (for higher speed CCD or CMOS image sensors). The signal paths utilize 8 bit Programmable Gain Amplifiers (PGA), a +/-9-Bit offset correction DAC and independently controlled Digital Black Level correction loops for each input. The PGA and offset DAC are programmed independently allowing unique values of gain and offset for each of the three analog inputs. The signals are then routed to a 81 MHz high performance analog-to-digital converter (ADC). The fully differential processing channel shows exceptional noise immunity, having a very low noise floor of 74 dB . The 16-bit ADC has excellent dynamic performance making the LM9872X transparent in the image reproduction chain.
A very flexible integrated Spread Spectrum Clock Generation (SSCG) modulator is included to assist with EM compliance and reduce system costs.

Applications

- Multi-Function Peripherals
- High-speed Currency/Check Scanners
- Flatbed or Handheld Color Scanners
- High-speed Document Scanner

Features

- LVDS/CMOS Outputs
- LVDS/CMOS/Crystal Clock Source with PLL Multiplication
- Integrated Flexible Spread Spectrum Clock Generation
- CDS or S/H Processing for CCD or CIS sensors
- Independent Gain/Offset Correction for Each Channel
- Automatic per-Channel Gain and Offset Calibration
- Programmable Input Clamp Voltage
- Flexible CCD/CIS Sensor Timing Generator

Figure 1: Chip Block Diagram

Example Application Circuit

Figure 2: Example Application Schematic

System Overview

Introduction

The LM9872X is a 16-bit, three-input, complete Analog Front End (AFE) for digital color copier and Multi-Function Peripheral (MFP) applications. The system block diagram of the LM9872X, shown in Figure 1 highlights the main features of the device. Each input has its own Input Bias and Clamping Network which are routed through a selectable Sample/Hold (S/H) or Correlated Double Sampler (CDS) amplifier. A +/-9-Bit Offset DAC applies independent offset correction for each channel. A -3 to 17.9dB Programmable Gain Amplifier (PGA) applies independent gain correction for each channel. The LM9872X also provides independent Digital Black Level Correction Feedback Loops for each channel. The Black Level Correction Loop can be configured to run in Manual Mode (where the user inputs their own values of DAC offset) or in Automatic Mode where the LM9872X calculates each channel's Offset DAC value during optical black pixels and then adjusts the Offset register accordingly. The signals are routed to a single high performance 16-bit, 81MHz analog-to-digital converter.

Modes of Operation Introduction

The LM9872X can be configured to operate in several different operating modes. The following sections are a brief introduction to these modes of operation. A more rigorous explanation of the operating modes is contained in the "Modes of Operation" on page 10. including input sampling diagrams for each mode as well as a description of the operating conditions.

Mode 3 - Three Channel Input/Synchronous Pixel Sampling

$\mathrm{OS}_{\mathrm{B}}, \mathrm{OS}_{\mathrm{G}}$, and OS_{R} inputs are sampled synchronously at a pixel rate. The sampled signals are processed with each channel's offset and gain adjusted independently via the control registers. The order in which pixels are processed from the input to the ADC is fully programmable and is synchronized by the SH pulse. In this mode, the maximum channel speed is 27MSPS per channel with the ADC running at 81MSPS yielding a three color throughput of 81MSPS.

Mode 2 - Two Channel Input/Synchronous Pixel Sampling

Mode 2 is useful for CCD sensors with a Black and White mode with Even and Odd outputs. In its default configuration, Mode 2 samples the Even output via the OS_{B} channel input, and the Odd output via the OS_{G} channel input. Sampling of the Even and Odd pixels is performed synchronously at a maximum sample rate of 30MSPS per input with the ADC running at 60MSPS.

Mode 1 - One Channel Input

In Mode 1, all pixels are processed through a single input $\left(\mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}\right.$, or $\left.\mathrm{OS}_{\mathrm{B}}\right)$ chosen through the control register setup. This mode is useful in applications where only one input channel is used. The selected input is programmable through the control register.

CIS Lamp and Coefficient Modes

In additional to Modes 3, 2, and 1 above, two different CIS sensor modes (CISa and CISb) can be enabled. These allow color sequential lamp control, as well as synchronized color sequential gain/offset coefficient usage for multi-output color sequential sensors.

Clock Sources

User Provided Clock Signal

When XTALEN $=0$ (Page 0, Register 0, Bit 2) the clock input to the LM9872X can be a differential LVDS clock on the INCLK+ and INCLK- pins or a CMOS level clock applied to the INCLK+ pin with the INCLK- pin connected to DGND. The external clock signal format is auto sensed internally.

Crystal Oscillator Driver On-Chip

When XTALEN $=1$ (Page 0, Register 0, Bit 2), an on-chip crystal oscillator driver circuit can be paired with an external crystal. Terminal 2 of the crystal should connect to INCLK+ and terminal 1 of the crystal should connect to INCLK-. 18 pF capacitors should connect from each terminal of the crystal to ground.

Clock Multiplication - Basic

For any of the available clock sources, the input clock can be applied at the Pixel frequency (PIXCLK) or at the ADC frequency (ADCCLK). The LM9872X can perform internal clock multiplication when a Pixel frequency clock is applied, or no multiplication when an ADC frequency clock is applied. The internal configuration registers need to be written to perform the proper setup of the input clock. The available input clock configurations for each operating mode is outlined in the following table.

AFE Mode	Input Clock Type	Internal Multiplier	INCLK Max Freq.	Configuration Register Settings
Mode 3	INCLK = Pixel Freq. (PIXCLK)	3 x	27 MHz	TBD
	INCLK = ADC Freq. (ADCCLK)	1 x	81 MHz	TBD
Mode 2	INCLK = Pixel Freq. (PIXCLK)	2 x	30 MHz	TBD
	INCLK = ADC Freq. (ADCCLK)	1 x	60 MHz	TBD
Mode 1	INCLK = Pixel Freq. = ADC Freq	1 x	30 MHz	TBD
	(ADCCLK = PIXCLK in Mode 1)			

Clock Multiplication - Flexible

There are a variety of situations where it is desirable to multiply the base frequency by a selected amount to achieve the proper pixel frequency for a given application and set of system conditions.

- Applications using the onchip Crystal Oscillator driver will have much more flexibility of pixel frequencies.
- Reducing the input MCLK frequency can significantly reduce the EMI generated by the MCLK signals being sent up the cable from the host board to the imaging board.
To ease this task a flexible multiplying PLL architecture is incorporated. When the 2 PLL architecture is enabled (Page 2, Register $0 \times 1 \mathrm{Bh}$, Bit $1=0$) the source clock frequency is multiplied by the ratio M / N. Two registers are used to set these values:
$M=$ Value(Page 2, Register $0 \times 1 \mathrm{Ch}$) +1
$\mathrm{N}=$ Value(Page 2, Register 0x1Dh) +1
$N(\max)=64$
$\mathrm{M} / \mathrm{N}(\max)=64$
$M / N(\min)=1 / 64$
Note: Since the 8 bit register values can be from 0 to 255, the resulting Numerator and Denominator values could be from 1 to 256 . However, the maximum recommended multiply or divide ratios are 64 x or $\mathrm{x} / 64$. In addition, the maximum recommended value for N is 64 .

Clock System Configuration Options

Source	PLL (Dual/Single)	Spreading (On/Off)	SpreadMode (LVDS/AII)
INCLK	Single	ON	ALL
INCLK	Single	OFF	N/A
INCLK	Dual (Use M/N)	ON	LVDS*
INCLK	Dual (Use M/N)	ON	ALL
INCLK	Dual (Use M/N)	OFF	N/A
XTAL	Single	ON	ALL
XTAL	Single	OFF	N/A
XTAL	Dual (Use M/N)	ON	LVDS*
XTAL	Dual (Use M/N)	ON	ALL
XTAL	Dual (Use M/N)	OFF	N/A

*If SpreadMode is LVDS, then FIFO is used to move data from CCDTG/AFE clock domain to LVDS clock domain.
Figure 3: Clock System Block Diagram

Clock Sources - Additional Settings and Flexibility

To support the new crystal oscillator feature, some additional flexibility was added. In Crystal Oscillator mode, the master clock source is now on the AFE (rather than in the system ASIC or main processor). If Slave Timing Mode (see "CCD Timing Generator Master/ Slave Modes" on page 40) is still needed (to synchronize the AFE to the line timing of the system) the external SH_R signal must now be captured with the internal clock source. The SH_R Capture Clock Select bit has been added to support this case.

In addition, in these systems, it may be difficult to adjust the host SH_R timing to get the best Setup and Hold times with respect to the internal CLK. The SH_R, INCLK Monitor Override and SH_R Capture Edge Select controls have been added to support these needs. The INCLK Monitor Override allows the internal SH_R and CLK signals to be monitored, to aid in selected the best edge (rising or falling) of CLK to latch the SH_R signal.

SH_R Capture Clock Select (Page 0, Register 0x00, Bit 5)
0 - Use external INCLK source to latch SH_R
1 - Use internal CLK source to latch $\mathrm{SH}_{-} \mathrm{R}$
SH_R Capture Edge Select (Page 0, Register 0x00, Bit 4)
0 - Use rising edge of selected clock source
1 - Use falling edge of selected clock source
SH_R and INCLK Monitor Override (Page 0, Register 0x14, Bit 6)
0 - Timing monitor selections unaltered
1 - Timing monitors for CLAMPB and SAMPB are replaced with monitor of SH_R_Internal and SH_R Capture_Clock_Internal.

Spread Spectrum Clock Generation (SSCG)

Important Note: When using SSCG, ensure that INCLK = ADCCLK is selected at Page 0 , Register 0×02, Bit $2=0$. Then set the flexible clock multiplication PLL settings to achieve the desired internal clock frequency from the applied clock.
EMI is a problem faced by any system designer. In a typical imaging system, data must be sent over a relatively long cable to the main system board. To minimize the amount of measured EMI caused by system clocking and data transmission, a flexible Spread Spectrum Clock Generation system is included in the LM9872X.
The spread spectrum feature is configured by the registers at Page 2, Registers $0 \times 1 \mathrm{Ah}, 0 \times 1 \mathrm{Bh}$ and $0 \times 1 \mathrm{Eh}$.
The following key SSCG modes of operation and features are provided:

- Spread output data/clock only (Internal FIFO used to transfer data between clock domains) or spread internal system clock as well as output data/clock
- Spread synchronized to CCD line length (SH period or frequency) or unsychronized.
- \quad Spread widths of $0.625,1.25,2.5$ and 5% selectable
- Spread gain of $1 x$ to $2 x$ can double the selected spread widths
- 3 selectable modulation frequency multipliers to increase the spreading modulation frequency
- Spread "boost" provides a cleaner spread for 1 channel and 2 channel modes of AFE operation.
- Spread MaxRate allows the most effective spreading modulation for Output Only spreading. When this bit is set, the spreading waveform is NOT synchronized to the CCD line timing.
- Spreading modulation waveform and FIFO reset by SH_R event. (Page 8, Register 0x1Eh, Bit 7) This ensures that the spreading waveform is synchronized to the CCD line timing, even if SH _R to $\mathrm{SH}_{-} \mathrm{R}$ period is varied by system ASIC.
- Spreading SH_R Reset can be delayed from SH_R event by a "Holldoff" amount. (Page 8, Register 0x1Eh, Bits6:0)

Typical EMI Cases and Recommended SSCG Settings

Case 1: Majority of EMI coming from LVDS outputs

Usage: Spread output data/clock only. FIFO used to move data between non-spread and spread clock domains. If Slave Mode is also used, ensure that the Line Length and Line Length Multiplier settings correspond to the SH_R period. If the SH_R period may vary, then set FIFO Reset (Page 2, Register 0×1 Bh, Bit $6=1$) to ensure the FIFO counters are reset every SH Interval.

Case 2: EMI from LVDS outputs and CCD timing signals - Master Mode Application

Usage: Spread internal system clock as well as output data/clock. Synchronize spread waveform to SH Interval. Best to use Master mode timing to ensure spread waveform is always smoothly synchronized to the SH Interval timing.

Case 3: EMI from LVDS outputs and CCD timing signals - Slave Mode Application

Usage: Spread internal system clock as well as output data/clock. Use minimal amount of spreading to reduce CCD timing emissions, in combination with data scrambling to further reduce data cable emissions. The small amount of spreading minimizes effects on image data, therefore, spreading is not required to be synchronized with SH Intervals.

Recommended Master/Slave, Clock Source and SSCG Combinations and Settings

Master Mode Operation (LM9872X controls line timing)
(These are easiest cases to implement SSCG)
Clock from host board

1. Use SSCG - Spread All
2. Use SSCG - Spread LVDS Only
3. No SSCG

Clock from local crystal

1. Use SSCG - Spread All
2. Use SSCG - Spread LVDS Only
3. No SSCG

Slave Mode Operation (Host FPGA or ASIC controls line timing)

(These SSCG cases are more challenging as received LVDS data timing will not be synchronous with the clock of the FPGA/ASIC.
Clock from host board. If a local clock is present on the FPGA/ASIC, an internal FIFO must be implemented to transfer the received data from the spread LVDS clock domain, to the internal FPGA/ASIC clock domain. If the AFE LVDS clock is used as the system clock, care must be taken to ensure that settings are not loaded which disable this clock, and therefore lock up the system.)

1. Use SSCG - Spread All - Need spreading start to be SH gated, and SH period to be consistent to ensure consistent capture of SH_R by the spread INCLK.
2. Use SSCG - Spread LVDS Only - In this case ensure that Line Length Register is set to same number of pixels as that or SH_R period. In addition, if SH_R period will vary, set FIFO Reset (Page 2, Register 0x1Bh, Bit $6=1$) to reset FIFO at SH Interval.
3. No SSCG

Clock from local crystal (Not recommended, difficult to meet CLK to SH_R setup and hold times. Use Master Mode instead)

1. Use SSCG - Spread All
2. Use SSCG - Spread LVDS Only
3. No SSCG

SSCG Configuration/Usage Flow

- Unlock Registers (Page 0, Register 0, Bit $0=0$)
- Ensure PIXCLK/ADCCLK Configuration is set to ADCCLK. Page 0, Register 0x02, Bit $2=0$.
- \quad Set Override PLL2 Lock Detector (Page 2, Register 0x1B, Bit 4) $=1$
- Set PLL2 Charge Pump Current Control (Page 2, Register 0x19, Bits 4:3) $=00$
- Set PLL2 Filter Bandwidth Control (Page 2, Register 0x19, Bits 2:0) = 111
- Set SSCG Spread Boost (Page 2, Register 0x1A, Bit 5) = 0 or 1 ($0=$ default, recommended for most applications)
- Set SSCG Spread Gain (Page 2, Register 0x1A, Bit 4) $=0$ or 1 ($0=$ default, recommended for most applications)
- Set SSCG Spread Width (Page 2, Register 0x1A, Bits 3:2) = 0.625\% to 2.5% (Beyond 2.5% most LVDS deserializers will not track the clock properly)
- Set SSCG SH Sync Enable (Page 2, Register 0x1A, Bit 1) = 0 or 1 (Set to 1 for Spread All)
- Set PLL Mode Select (Page 2, Register 0x1B, Bits 1:0) = 00, 01 or 11. Spread Output Only or Spread All Clocks
- If PLL Clock Multiplication Enabled, Set Clock Mult M (Page 2, Register 0x1C) and N (Page 2, Register 0x1D) to desired values. If a pixel rate clock is applied, set the PLL multiplication to the same factor as the AFE Mode selected at Page 0, Register 0x03, Bits 7:6. ie. The multiplication factor should be $3 x$ for Mode $3,2 x$ for Mode 2 and $1 x$ for Mode 1.
- Set SSCG Enable (Page 2, Register 0x1A, Bit 0) $=1$ (enable spreading, load spreading state machines)
- Lock Registers (Page 0, Register 0, Bit $0=1$)
- If spreading is synchronized to SH interval, the spreading function will wait until the next SH Interval before beginning.
- To change SSCG settings:
- Un-Lock Registers ((Page 0, Register 0, Bit $0=0$)
- \quad Set SSCG Enable $=0$ (disable spreading)
- Change desired SSCG settings.
- \quad Set SSCG Enable = 1 (enable spreading, reload spreading state machines)
- Lock Registers (Page 0, Register 0, Bit $0=1$)

SSCG and Clock Multiplication Register Settings

Page	Register		Default	Bits	Name	Description
2	24	18	11111000	$[7: 5]$		Master PLL Range Setting for PLL1 and PLL2 when Autorange is off. Set to 111.
2						

2	27	1B	00000010	[7] [6] [5] [4] [3] [2] [1:0]	$\begin{aligned} & \text { SSCG Control } \\ & 2 \end{aligned}$	Load SSCG state machine (SSCG Enable 0->1 also performs this function) 0 Normal 1 Load state machine (self clearing) FIFO Reset at SH_R 0 FIFO is only reset when SSCG started 1 FIFO is reset at SH_R. Only useful in Slave Mode with Spread LVDS Only set. Ensures that FIFO counters are centered if SH_R period is consistenly shorter or longer than Line Length settings. Spread Waveform Reset at SH_R 0 Spread waveform not reset by SH_R 1 Spread waveform reset by SH_R Override PLL2 Lock Detector 0 PLL2 Lock Detector Normal 1 Force PLL2 Lock Detect = 1. Set to 1 when using SSCG. Override PLL1 Lock Detector 0 PLL1 Lock Detector Normal 1 Force PLL1 Lock Detect = 1. Useful only if using a large multiplication factor and a lot of jitter is present in the source clock. Spread MaxRate 0 Spread Normal 1 Force Spreading to highest modulation frequency instead of tied to Line Length Setting. PLL Mode Select 11 Spread All System Clocks, No Multiplication 10 PLLs and SSCG Disabled - Default 01 Spread All System Clocks, Multiplication Enabled 00 Spread Output Clocks Only, Mutiplication Enabled
2	28	1C	00000000		Clock Mult M	$\begin{aligned} & \text { Multiplying PLL. Fout }=\text { Fin } \times \mathrm{M} / \mathrm{N} \\ & \mathrm{M}=\mathrm{mmmmmmmm}+1(1 \text { to } 256) \end{aligned}$
2	29	1D	00000000		Clock Mult N	$\begin{aligned} & \text { Multiplying PLL. Fout }=\text { Fin } \times \text { M/N } \\ & \mathrm{N}=\text { nnnnnnnn }+1(1 \text { to } 256) \end{aligned}$
2	30	1E	00000000	[7] [6:0]	$\begin{gathered} \text { SSCG Control } \\ 3 \end{gathered}$	FIFO Reset 0 FIFO normal operating 1 Force reset of FIFO (self clearing) FIFO and Spread Waveform SH_R Reset Holdoff Delay reset of FIFO and Spread Waveform from 0 to 127 ADC clock cycles after the internal synchronized SH_R. To allow this event to occur during SH Interval after all valid pixels in the pipeline have been processed.

Modes of Operation

Mode 3 - Three Channel Input/Synchronous Pixel Sampling
In Mode 3, the $\mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}$, and OS_{B} input channels are sampled synchronously. The sampled input signals are then processed in parallel through their respective channels with each channel offset and gain adjusted by their respective control registers. The signals are then routed through a $3-1$ MUX to the $A D C$. The order in which pixels are processed through the MUX to the ADC is programmable $\left(\mathrm{OS}_{\mathrm{R}}-\mathrm{OS}_{\mathrm{G}}-\mathrm{OS}_{\mathrm{B}}\right.$, or $\left.\mathrm{OS}_{\mathrm{B}}-\mathrm{OS}_{\mathrm{G}}-\mathrm{OS}_{\mathrm{R}}\right)$ and is synchronized by the SH pulse.

Figure 4: Synchronous Three Channel Pixel Mode Signal Routing

Modes of Operation (cont)

Mode 2 - Two Channel Input/Synchronous Pixel Sampling
Mode 2 is useful for CCD sensors with a Black and White line with Even and Odd pixels. In its default configuration, Mode 2 samples Even sensor pixels via the Blue Channel Input, and Odd sensor pixels via the Green Channel Input. The selection of Even/Odd inputs can be changed through the serial interface registers. Sampling of the Even and Odd inputs is performed synchronously.

Figure 5: Mode 2 Signal Routing

Modes of Operation (cont)

Mode 1 - One Channel Input

In Mode 1a, all pixels are processed through a single input $\left(\mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}\right.$, or $\left.\mathrm{OS}_{\mathrm{B}}\right)$ chosen through the control register setup. This mode is useful in applications where only one input channel is used. The selected input is programmable through the control register. In this mode, the maximum channel speed is 30MSPS per channel with the ADC running at 30MSPS.

Figure 6: Mode 1a Signal Routing

Mode 1 Operating Details			
Channels Active	OS_{R} or OS_{G} or OS_{B}		Detail
Channel Sample Rate	30		One color active for all lines.
ADC Sample Rate		30	MSPS per Channel (max)
$\mathrm{f}_{\text {ADC: }}$ f $\mathrm{f}_{\text {NCLK }}$	Internal 1x Clock Selected	$1: 1$	MSPS (max)
Output Sequencing	SH Signal \rightarrow Color $1 \rightarrow$		

Modes of Operation Register Settings Table

Operating Mode	Sampling Input(s)	Signal Path(s)	Output Sequencing Mode 3 and 2 = Pixel Seq		
Mode3-RGB Forward	$\mathrm{OS}_{\mathrm{R}}\left\\|\mathrm{OS}_{\mathrm{G}}\right\\| \mathrm{OS}_{\mathrm{B}}$	RGB	Pixel $_{\text {R }} \rightarrow$ Pixel $_{G} \rightarrow$ Pixel $_{\text {B }} \rightarrow$		
Mode3-RGB Reverse	$\mathrm{OS}_{\mathrm{R}}\left\\|\mathrm{OS}_{\mathrm{G}}\right\\| \mathrm{OS} \mathrm{B}$	RGB	Pixel $_{\text {B }} \rightarrow$ Pixel $_{G} \rightarrow$ Pixel $_{\text {R }} \rightarrow$		
Mode2-RG Forw.	$\mathrm{OS}_{\mathrm{R}} \\| \mathrm{OS} \mathrm{G}_{\mathrm{G}}$	RG	Pixel $_{\text {R }} \rightarrow$ Pixel $_{G} \rightarrow$		
Mode2-RG Rev.	$\mathrm{OS}_{\mathrm{R}} \\| \mathrm{OS} \mathrm{S}_{\mathrm{G}}$	RG	Pixel $_{G} \rightarrow$ Pixel $_{\text {R }} \rightarrow$		
Mode2-GB Forw.	$\mathrm{OS}_{\mathrm{G}} \\| \mathrm{OS}_{\mathrm{B}}$	GB	Pixel $_{G} \rightarrow$ Pixel $_{\text {B }} \rightarrow$		
Mode2-GB Rev.	$\mathrm{OS}_{\mathrm{G}} \\| \mathrm{OS}$ B	GB	Pixel $_{\text {B }} \rightarrow$ Pixel $_{G} \rightarrow$		
Mode2-RB Forw.	$\mathrm{OS}_{\mathrm{R}} \\| \mathrm{OS}$ B	RB	Pixel $_{\text {R }} \rightarrow$ Pixel $_{\text {B }} \rightarrow$		
Mode2-RB Rev.	$\mathrm{OS}_{\mathrm{R}} \\|$ OS ${ }_{\text {B }}$	RB	Pixel $_{\text {B }} \rightarrow$ Pixel $_{\text {R }} \rightarrow$		
Mode1-R Mono	OS_{R}	R	Color Line Seq: $R \rightarrow R \rightarrow R \rightarrow R \rightarrow$		
Mode1-G Mono	OS_{G}	G	Color Line Seq: $\mathrm{G} \rightarrow \mathrm{G} \rightarrow \mathrm{G} \rightarrow \mathrm{G} \rightarrow$		
Mode1-B Mono	OS_{B}	B	Color Line Seq: $\mathrm{B} \rightarrow \mathrm{B} \rightarrow \mathrm{B} \rightarrow \mathrm{B} \rightarrow$		
CISa	Mode 1 or 2 or 3	Any	2,3, or 4 lines in sequence		
			Gain and Offset are channel specific. LM98714 style CB bits indicate channel used to process data. Additional CB bits can be used to identify current line in sequence.		
CISb	Mode 1 or 2 or 3	Any	2 or 3 lines in sequence		
			Gain and Offset for all channels are common, and change from line to line based on current color in sequence. LM98714 style CB bits indicate channel used to process data. Additional CB bits canbe used to identify current line in sequence.		

Input Bias and Clamping

Figure 7: Input Bias and Clamping Diagram

Input Bias and Clamping - AC Coupled Applications

The inputs to the LM9872X are typically AC coupled through a film capacitor and can be sampled in either Sample and Hold Mode (S/ H Mode) or Correlated Double Sampling Mode (CDS Mode). In either mode, the DC bias point for the LM9872X side of the AC coupling capacitor is set using the circuit of Figure 7 which can be configured to operate in a variety of different modes. A typical CCD waveform is shown in Figure 8. Also shown in Figure 8 is an internal signal "SAMPLE" which can be used to "gate" the CLPIN signal so that it only occurs during the "signal" portion of the CCD pixel waveform.

Figure 8: .Typical CCD Waveform and LM9872X Input Clamp Signal (CLPIN)

Sample/Hold Mode

Figure 9: Sample and Hold Mode Simplified Input Diagram

Proper DC biasing of the CCD waveform in Sample and Hold mode is critical for realizing optimal operating conditions. In Sample/ Hold mode, the Signal Level of the CCD waveform is compared to the DC voltage on the VCLP pin. In order to fully utilize the range of the input circuitry, it is desirable to cause the Black Level signal voltage to be as close to the VCLP voltage as possible, resulting in a near zero scale output for Black Level pixels.

In Sample/Hold Mode, the DC bias point of the input pin is typically set by actuating the input clamp switch (see Figure 7) during optical black pixels which connects the input pins to the VCLP pin DC voltage. The signal controlling this switch is an auto-generated pulse, CLPIN. CLPIN is generated with a programmable pixel delay with respect to the SH Interval and a programmable \# of pixels Duration. These parameters are available through the serial interface control registers.

Actuating the input clamp will force the average value of the CCD waveform to be centered around the VCLP DC voltage. During Optical Black Pixels, the CCD output has roughly three components. The first component of the pixel is a "Reset Noise" peak followed by the Reset (or Pedestal) Level voltage, then finally the Black Level voltage signal. Taking the average of these signal components will result in a final "clamped" DC bias point that is close to the Black Level signal voltage.

To provide a more precise DC bias point (i.e. a voltage closer to the Black Level voltage), the CLPIN pulse can be "gated" by the internally generated SAMPLE clock. This resulting CLPIN ${ }_{\text {GATED }}$ signal is the logical "AND" of the SAMPLE and CLPIN signals as shown in Figure 8. By using the CLPIN ${ }_{\text {GATED }}$ signal, the higher Reset Noise peak will not be included in the clamping period and only the average of the Reset Level and Black Level components of the CCD waveform will be centered around VCLP.

DC Coupled Applications

In some applications, particularly with CIS sensors, the output voltage is within a voltage range that will allow DC coupling of the signal. When using Sample/Hold mode, DC coupling eliminates any problems with signal droop across the line caused by voltage changes across the coupling capacitor. When DC coupling, the Auto CLPIN should be disabled.

There are two ways of setting the proper DC levels in this type of application. If the sensor has a Vref output pin, this can be connected to the VCLP pin of the LM9872X. The internal VCLP generation should be disabled to allow this external reference to set the Black Level for the chip close to the black pixel level of the sensor.
Many CIS sensors will not have a Vref output. In these applications, the internal VCLP voltage of the LM9872X can be set to the level that is closest to the black pixel level of the sensor.

Figure 10: Equivalent Input Switched Capacitance S/H Mode
In Sample and Hold Mode, the impedance of the analog input pins is dominated by the switched capacitance of the CDS/Sample and Hold amplifier. The amplifier switched capacitance, shown as C_{S} in Figure 9, and internal parasitic capacitances can be estimated by a single capacitor switched between the analog input and the VCLP reference pin for Sample and Hold mode. During each pixel cycle, the modeled capacitor, C_{SH}, is charged to the OS_{x}-VCLP voltage then discharged. The average input current at the OS_{x} pin can be calculated knowing the input signal amplitude and the frequency of the pixel. If the application requires AC coupling of the CCD output to the LM9872X analog inputs, the Sample and Hold Mode input bias current may degrade the DC bias point of the coupling capacitor. To overcome this, Input Source Follower Buffers are available to isolate the larger Sample and Hold Mode input bias currents from the analog input pin (as discussed in the following section). As shown in the section "CDS Mode" on page 16, the input bias current is much lower for CDS mode, eliminating the need for the source follower buffers.

Input Source Follower Buffers

The $\mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}, \mathrm{OS}_{\mathrm{B}}$ inputs each have an optional Source Follower Buffer which can be selected with Main Configuration Register 3 at Page 0, Register 3, Bit[7]. These source followers provide a much higher impedance seen at the inputs. In some configurations, such as Sample and Hold Mode with AC coupled inputs, the DC bias point of the input nodes must remain as constant as possible over the entire length of the line to ensure a uniform comparison to reference level (VCLP in this case). The Source Followers effectively isolate the AC input coupling capacitor from the switched capacitor network internal to the LM9872X's Sample and Hold/ CDS Amplifier. This results in a greatly reduced charge loss or gain on the AC Input coupling capacitor over the length of a line, thereby preserving its DC bias point.

The Source Followers should only be used in the 1.2 V input range (i.e. Gain Mode Register at Page 1, Register $0, \mathrm{Bit}[0]=1$, CDS Gain = 2 x). Using the Source Followers in the 2.4V (i.e. Gain Mode Register at Page 1, Register 0, Bit[0] = 0, CDS Gain = 1x). input range will result in a loss of performance (mainly linearity performance at the high and low ends of the input range).

CDS Mode

Figure 11: CDS Mode Simplified Input Diagram
Correlated Double Sampling mode does not require as precise a DC bias point as does Sample and Hold mode. This is due mainly to the nature of CDS itself, that is, the Video Signal voltage is referenced to the Reset Level voltage instead of the static DC VCLP voltage. The common mode voltage of these two points on the CCD waveform have little bearing on the resulting differential result. However, the DC bias point does need to be established to ensure the CCD waveform's common mode voltage is within rated operating ranges.

The CDS mode biasing can be performed in the same way as described in the Sample/Hold Mode Biasing section, or, an alternative method is available which precludes the need for a CLPIN pulse. Internal resistor dividers can be switched in across the $\mathrm{OS}_{\mathrm{R}}, \mathrm{OS}_{\mathrm{G}}$, and/or OS_{B} inputs to provide the DC bias voltage.

Figure 12: CDS Mode Input Bias Current
Unlike in Sample and Hold Mode, the input bias current in CDS Mode is relatively small. Due to the architecture of CDS switching, the average charge loss or gain on the input node is ideally zero over the duration of a pixel. This results in a much lower input bias current, whose main source is parasitic impedances and leakage currents.

As a result of the lower input bias current in CDS Mode, maintaining the DC Bias point the input node over the length of a line will require a much smaller AC input coupling capacitor.

VCLP DAC

The VCLP pin provides the reference level for incoming signals in Sample and Hold Mode. The pin's voltage can be set by writing to the VCLP Configuration Register on register page 0 . By default, the VCLP pin voltage is established by an internal resistor divider which sets the voltage to $0.85 \mathrm{~V}_{\mathrm{A}}$.
The VCLP buffer can also be disconnected and the pin driven externally by the another voltage in the application, such as Vref from some CIS sensors.

Table 13: VCLP Voltage Setting

VCLP Configuration Page 0, Register 0x04, Bits[2:0]	Typical VCLP Output (Final Silicon Targets)
000	$0.85 \mathrm{~V}_{\mathrm{A}}$ (Default)
001	$0.9 \mathrm{~V}_{\mathrm{A}}$
010	$0.95 \mathrm{~V}_{\mathrm{A}}$
011	$0.6 \mathrm{~V}_{\mathrm{A}}$
100	$0.55 \mathrm{~V}_{\mathrm{A}}$
101	$0.4 \mathrm{~V}_{\mathrm{A}}$
110	$0.35 \mathrm{~V}_{\mathrm{A}}$
111	$0.15 \mathrm{~V}_{\mathrm{A}}$

Gain and Offset Correction

Each input channel has individual settings for offset (DAC) and gain (PGA and CDS/SH gain).

Analog Offset

Analog offset (DAC) settings are individually adjustable for each color. In addition, there are (optionally) separate settings for Even and Odd pixels being processed through each color channel. This feature is designed to support specific CCD sensors that have two CCD transfer arrays per color, which may introduce different offset for the Even versus Odd pixels.

Figure 14: Analog Offset Applied Prior to PGA
The Black Level Offset DACs are set with a 9 bit plus sign value. This gives an approximate adjustment range of +/- 300 mV or +/600 mV when the CDS/SH Gain is set to 1 x or 2 x .
The analog offset registers are found at Page 1, Registers 0x04h to 0x0Fh.

Digital Offset

In addition, digital offset can be added to color data at the output of the ADC in the Digital Offset block. The digital offsets are a +/- 6 bit value. This value is summed with the upper 11 bits of the ADC output. Therefore, the effective offset range is from +2016 to -2048 Isbs of the ADC output.
The digital offset registers are found at Page 1, Registers $0 \times 10 \mathrm{~h}$ to $0 \times 15 \mathrm{~h}$.

Figure 15: Digital Offset Applied to ADC Output

Even/Odd Offset Coefficients

Certain CCD sensors may have different offset voltages for the Even versus the Odd pixels. To optimize the image processing of these pixels, separate coefficients can be stored, and applied for the Even and Odd pixels. The Even/Odd offset feature is enabled by setting Page 0 , Register $0 \times 02 \mathrm{~h}$, Bit $0=1$. Bimodal correction, discussed below, is automatically disabled when Even/Odd offset coefficients are enabled.

Figure 16: Digital Offset - Details of Color and Even/Odd coefficients

Analog Gain

The gain of each input channel can be adjusted at two points in the signal chain.

CDS/SH Gain - Page 1, Register 0x00h

- A 1 x or 2 x gain setting is available in the CDS/SH amplifier.
- By default, one common CDS/SH gain setting setting is used for all input channels. If desired, individual CDS/SH gain settings can be used for each input. To enable this feature, set Page 1, Register 0x00h, Bit $2=1$.

PGA Gain - Page 1, Registers 0x01h, 0x02h, 0x03h

- An 8 bit PGA (Programmable Gain Amplifier) is also available. The PGA gain curve is non-linear for optimal performance in imaging applications, and is shown on the following plot. The approximate gain equation is: Gain (V/V) $=180 /\left(277-P G A _C o d e\right)$, Gain $(d B)=20 \log _{10}\left(180 /\left(277-P G A _C o d e\right)\right)$.
The gain setting registers are found at Page 1, Registers $0 \times 00 \mathrm{~h}, 0 \times 01 \mathrm{~h}, 0 \times 02 \mathrm{~h}$ and $0 \times 03 \mathrm{~h}$.

PGA Gain vs. PGA Code

PGA Register Value
—Overall Gain (dB) - Overall Gain (V/V)
Figure 17: PGA Gain vs. PGA Gain Code

Dual Gain Mode - Page 1, Register 0x00h, Bit 1, and Registers 0x16h, 0x17h, 0x18h
In many scanning systems, the system illumination and optics characteristics will result in a much higher optical efficiency in the pixels near the middle of the sensor, compared with the pixels at the beginning and end of the sensor. If a single gain setting is used for all pixels, the middle pixels will be near clipping, while the ones at the edges can be at $1 / 2$ scale or lower. This results in lower signal to noise for the edge pixels. To combat this problem, the LM9872X incorporates an optional Dual Gain system. When enabled, the system provides a second set of PGA gain registers to set the "high" gain for each input channel. The "normal" gain settings will be applied during the "active/white" pixels, while the "high" gain settings will be applied for all pixels before and after the "active/white" pixels (see "LM9872X Typical Line Timing and Pixel Gain Regions" on page 20).
The Dual Gain enable bit is found at Page 1, Register 0x00h, Bit 1. The High Gain PGA settings are found at Page 1, Registers $0 \times 16 \mathrm{~h}$ to $0 \times 18 \mathrm{~h}$.

LM9872X Typical Line Timing and Pixel Gain Regions

Automatic Black and White Level Calibration Loops

Calibration Overview

The offset and gain settings in the AFE will normally be set to optimize the range of the sensor output signal within the ADC input range. These settings can be calculated in a host ASIC and loaded into the AFE during the calibration procedure. To reduce the processing required to do these calculations, the LM9872X has built in feedback or calibration loops that will automatically adjust the offset and gain settings. A number of register values must be initially set to optimize the calibration for the particular application.

Different Modes for Different Needs

The calibration features of the LM9872X are not intended to be used during active scanning, but rather before scanning begins, or in the page gap between images. Generally, more time is available to perform the initial calibration before scanning begins. Page gap calibration must be necessariliy short to ensure the process finishes in the limited number of scan lines available.
The Black and White Fine Tuning, and Black Calibration Only modes can be used during the page gap to adjust for small differences in offset/gain that occur over time.
Black and White Full Calibration should be run before the initial scanning process, or periodically between major jobs to take care of larger shifts in offset/gain of the input signal.

Calibration Initiation

Once these settings have been made, the Register Lock Control bit (Page 0, Register 0, Bit 0) should be set to begin converting pixels. Once the sensor data from the test image is stable the calibration process can be started by either setting the CAL register bit at Page 0, Register 0x01h, Bit 5, or by applying a logic high to the CAL input pin. (Both of these inputs are active when the Register Lock Control is set.) The CAL input pin is particularly useful for implementing page gap calibration.

Key Calibration Settings

- General Settings
- Calibration Mode Page 2, Register 0, Bits[1:0]
- Black Calibration Only 00
- Black and White Full Calibration 01
- Black and White Fine Tuning 10
- Number of Lines Page 2, Register 1
- Black Loop Specific Settings
- \# Black Pixels Averaged Page 2, Register 2, Bits[1:0]
- Black Target Page 2, Register 3
- Black Pixels Start Page 2, Register 8
- ADAC Scaling Page 2, Register 2, Bits[3:2]
- DDAC Scaling Page 2, Register 2, Bits[5:4]
- DDAC enable/disable Page 2, Register 0, Bit 2
- White Loop Specific Settings
- White Target Page 2, Register 5
- White Loop Tolerance Page 2, Register 4, Bits[6:3]
- White Pixel Averaging Window SizePage 2, Register 4, Bits[2:0]
- Active/White Pixels Start Page 2, Registers 0x09h, 0x0Ah
- Active/White Pixels End Page 2, Registers 0x0Bh, 0x0Ch

The calibration loops are intended to be used prior to scanning the page or between pages being scanned. The black loop calibrates the channel offset such that the ADC outputs the desired code for Optical Black Pixels. The white loop calibrates the channel gain such that the ADC outputs the desired maximum white value when scanning a white target image.
The Black Loop and White loop will both update until the \# Lines setting is met. Settings of 1 to 254 lines will cause the loops to run for that many lines, and then stop. A setting of 255 will cause the calibration loops to run indefinitely.
While using the Auto Black Level Correction Loop, the DAC registers are re-written as required every line the loop is running. While using the Auto White Level Correction Loop, the PGA registers are re-written as required every line the loop is running.

General Black Loop Operation

During calibration, the following general process is performed:
Beginning at Black Pixels Start, the selected number of black pixels are averaged.
This Black Average value is compared with the Black Target to give the Black Error value.
In general, if the Black Average>Black Target, the new DAC values will be lower than the previous ones. If the Black Average<Black Target the new DAC values will be higher than the previous ones.
The ADAC Scaling and DDAC Scaling values are used to balance the speed of convergence against the tolerance for noise in the data. The smallest (1/8) scaling values will give slower convergence, but will make the system repond more slowly to noisy data. The highest (1/2) will result in the fastest convergence, but will respond more quickly to noisy data. The DDAC scaling factor of Linear 1LSB adjust will result in a maximum change of one Isb of the DDAC value, regardless of how great the difference betweeen Black Average and Black Target
The number of Black Pixels to be processed by the algorithm is set at Page 2, Register 2, Bits[1:0]. 4, 8, 16 or 32 pixels can be averaged together to determine the current Black Value. Averaging the highest number of pixels possible for the sensor in use will improve the accuracy and repeatability of the Black Average value.

The delay from the end of the SH Interval to the first Black Pixel to be processed is set at Page 2, Register 8. A delay of up to 255 pixels can be set.

ADAC/DDAC Convergence

At the beginning of the calibration process, the ADAC will be used to reduce the Black Error as much as possible. Once further adjustments of the ADAC can no longer reduce the Black Error, the ADAC adjustments will stop and the DDAC will be used. *If users would rather apply digital offset corrections in their ASIC, the DDAC corrections can be omitted by setting the DDAC disable bit at Page 2, Register 0x00h, Bit 2.

Figure 18: Black Loop Timing

1. CLPIN represents the internally generated input clamping signal. The Black level Calibration Loop should be triggered after CLPIN returns low during Optical Black Pixels .
2. BLKCLP represents the time during a line where the Black level Calibration Loop is active. BLKCLP is programmed to begin relative to the end of the SH Interval

A = Number of Optical Black Pixels the Black Level Calibration Loop averages per line. It is configured by the Black Cal Config. Register (Page 2, Reg. 2, Bits[1:0]) B = Black Level Clamp Position with delay from SH. Black Loop Start Register (Page 2, Reg. 0x08h)

General White Loop Operation

The White Peak value is determined by a moving window average done throughout the Active/White pixels region of the line (Refer to "LM9872X Typical Line Timing and Pixel Gain Regions" on page 20). The size of the moving window is set at Page 2, Register 4, Bits[2:0]. 4, 8, 16 or 32 (default) pixels are averaged together at a time and compared with the previous Peak White value. If the new White Average is greater than the previous Peak White value, then the Peak White value is set equal to the White Average. The window is then shifted over to the next group of pixels (one window width) and a new average is calculated. This process is repeated until the Active/White Pixels End value is reached. The final Peak White value is then compared with the White Target value (Page 2, Register 5). The gain settings are then adjusted to make the Peak White value closer to the White Target value.

White Loop Modes

- White Full Calibration (Cold start or Pre-Job) - In this mode, the gain settings are completely reset to default at the beginning of the loop. The first change or gain decision is whether the CDS/SH gain setting will be 1 x or 2 x . Subsequent decisions are made to adjust the PGA setting to the provide the Peak White value that is closest to the White Target value.
- White Fine Tuning (Page Gap Calibration) - In this mode, the previous gain settings are used as the starting point. The CDS/ SH gain setting will not be changed. The PGA gain will be increased or decreased by one step at a time, to fine tune the gain. This mode is normally used where only minor changes in the white level are expected.

Bimodal (Automatic) Correction

Due to the architecture of the ADC used in the LM9872X, it is possible that a small offset in the resulting data will be present between the Even and Odd pixels processed by the device. This offset is referred to as a Bimodal distribution in the data. It can occur because the signals being procesed go through two different paths to achieve the required throughput. Each of these paths can give a slightly different signal offset, resulting in the bimodal distribution in output data, for a given fixed input voltage.
When the automatic Black Level (offset) correction circuit is engaged, a portion of that circuitry automatically corrects the bimodal distribution. The bimodal correction applied is stored at Page 1, Registers $0 \times 1 \mathrm{Ch}, 0 \times 1 \mathrm{Dh}$, and $0 \times 1 \mathrm{Eh}$. The stored value is divided by two. Half is added to the Even pixels, and half is subtracted from the Odd pixels.

Coarse Pixel Phase Alignment

Precise placement of the CCD video signal sampling point is a critical aspect in any typical imaging application. Many factors such as logic gate propagation delays and signal skew increase the difficulty in properly aligning the CCD pixel output signals with the AFE input sampling points. The LM9872X provides two powerful features to aid the system level designer in properly sampling the CCD video signal under a large range of conditions. The first feature, discussed in this section, is the Coarse Pixel Phase Alignment block. As the name implies, this block provides a very coarse range of timing adjustment to align the phase of the CCD Pixel output with the phase of the LM9872X sample circuit. The second feature, discussed on the section "Internal Sample Timing" on page 29, is the block which is designed for fine tuning of the sampling points within the selected Coarse Pixel Alignment Phase. A small portion of a typical imaging application is shown in Figure 19.

Figure 19: Typical AFE/CCD Interface

As shown in the diagram, the LM9872X provides the timing signals to drive the CCD using external logic gates to drive the high capacitance CCD clock pins. The pixels are shifted out of the CCD, thru the emitter follower buffers and received by the LM9872X inputs for processing.

In an ideal application, depicted in Figure 20, the Pixel output signal would be in phase with the timing signals that drove the CCD. The LM9872X input sampling clocks (CLAMP and SAMPLE) are adjustable within a pixel period. By default, the pixel period (or pixel "phase") is defined to be in line with the input clock. As shown in the ideal case in Figure 20, CLAMP and SAMPLE can be properly adjusted to their ideal positions within the pixel phase, shown below at the stable region near the end of the pedestal and data phases.

By default, the LM98724's internal sampling clocks (CLAMP and SAMPLE) are adjustable within PIXPHASEO, an internal pixel rate clock which is in phase with the input clock.

Figure 20: Clock Alignment in an Ideal Application

In a real system however, propagation delays exist in all stages of the signal chain. These propagation delays will lead to a shift in the CCD Pixel outputs with respect to the LM9872X input clock. The phase shift of the CCD Pixel output, demonstrated in Figure 21, can lead to significant sample timing issues if not properly corrected.

Figure 21: CCD Output Phase Shift in a Real Application
In the default mode, the LM9872X sampling is performed during a clock period whose phase is aligned with the input clock (ignoring any clock tree skew for the moment). The actual sampling clocks are adjustable within the clock period, as shown in Figure 21 (shown for CDS mode in the diagram) and further described in the "Internal Sample Timing" on page 29. As shown in the diagram, the delay of the CCD Pixel output is shifted far enough that the fine CLAMP and SAMPLE clocks cannot be placed in a stable portion of the waveform. To remedy this situation, the LM9872X's Coarse Pixel Phase Alignment feature allows the designer to shift the entire phase of the analog front end with respect to the input clock. This allows the designer to choose one of four sampling phases which best matches the delay in the external circuitry. Once the "Coarse Pixel Phase" has been chosen, the designer can then fine tune the sampling clocks using the fine adjustment (see "Internal Sample Timing" on page 29.)

The four available Coarse Pixel Phases (PIXPHASEO - PIXPHASE3) are depicted in Figure 22 (Mode 3), Figure 23 (Mode 2) and Figure 24 (Mode 1). Also shown in the diagrams are the external input clock (INCLK) and a typical CCD output delayed from the input clock.

Figure 22: Mode 3 Coarse Pixel Adjustment

The CCD output will usually have a measurable delay with respect to the input clock to the AFE. The AFE's internal sampling clocks are based on one of four PIXPHASE clocks. These PIXPHASE settings provide coarse adjustment of the internal AFE clock domain to best match the phase of the incoming CCD signal . Fine adjustment of the sampling clocks is discussed in another section. In this example above, PIXPHASE2 appears to provide the closest match for the incoming CCD signal

Figure 23: Mode 2 Coarse Pixel Phase Adjustment

The CCD output will usually have a measurable delay with respect to the input clock to the AFE. The AFE's internal sampling clocks are based on one of four PIXPHASE clocks. These PIXPHASE settings provide coarse adjustment of the internal AFE clock domain to best match the phase of the incoming CCD signal . Fine adjustment of the sampling clocks is discussed in another section. In this example above, PIXPHASE2 appears to provide the closest match for the incoming CCD signal.

Figure 24: Mode 1 Coarse Pixel Phase Adjustment

Internal Sample Timing

A typical CCD input signal is depicted in Figure 25 and Figure 26. Also shown are the internally generated SAMPLE and CLAMP pulses. These signals provide the sampling points of the input signal $\left(\mathrm{OS}_{\mathrm{x}}\right)$. The timing of SAMPLE and CLAMP is derived from an internal system clock (SYSCLK).

The pixel's reference level input (depicted as $V_{\text {REF }}$) is captured by the falling edge of the CLAMP pulse. In Sample/Hold Mode the $V_{\text {REF }}$ input is a sample of the VCLP DC voltage. In CDS Mode the CLAMP pulse samples the pedestal Level of the CCD output waveform.

The pixel's signal level input (depicted as $\mathrm{V}_{\text {SIG }}$) is captured by the SAMPLE pulse. In either Sample/Hold or CDS Mode, the $\mathrm{V}_{\text {SIG }}$ input is the signal level of the CCD output waveform.

The LM9872X provides fine adjustment of the CLAMP and SAMPLE pulse placement within the pixel period. This allows the user to program the optimum location of the CLAMP and SAMPLE falling edges. The available fine tuning locations for CLAMP and SAMPLE are shown in Figure 27 and Figure 28 for each sampling mode (CDS or S / H) and channel mode (3, 2, or 1 Channel).

CLAMP and SAMPLE are the internal sampling clocks for the input CDS amplifier. CLAMP and SAMPLE are adjustable within the selected PIXPHASE setting.

In CDS mode, CLAMP falling edge captures the pixel reference level $\left(\mathrm{V}_{\mathrm{REF}}\right)$. In CDS mode, SAMPLE falling edge captures the pixel signal level $\left(\mathrm{V}_{\mathrm{SIG}}\right)$.

PIXPHASE is 1 of 4 internal reference clocks used to estimate the phase of the incoming pixel. Once the coarse estimation of the pixel location is chosen via PIXPHASE, the CLAMP and SAMPLE clocks can be fine tuned within PIXPHASE to their optimum location.

Figure 25: Pixel Sampling in CDS Mode

Figure 26: Pixel Sampling in S/H Mode

OSX
SAMPLE Start and SAMPLE Stop can be individually programmed SAMPLE Valid programming range as follows:
Control $=\quad$ SAMPLE Start 0 to 38
SAMPLE Stop 4 to 42

Figure 27: 3 Channel (Mode 3) CLAMP and SAMPLE Timing

CLAMP Start and CLAMP Stop can be individually programmed
OS_{x} CLAMP Valid programming range as follows:
Control $=\quad$ CLAMP Start 0 to 24
CLAMP Stop 4 to 28

SAMPLE Start and SAMPLE Stop can be individually programmed
OS $_{x}$ SAMPLE Valid programming range as follows:
Control $=\quad$ SAMPLE Start 0 to 24
SAMPLE Stop 4 to 28

SAMPLE

Figure 28: 1 or 2 Channel (Mode 1, Mode 2) CLAMP and SAMPLE Timing

A flexible internal timing generator is included to provide clocking signals to CCD and CIS sensors. A block diagram of the CCD Timing Generator is shown in Figure 29.

Figure 29: CCD Timing Generator Block Diagram

Examples of the various operating modes and settings are shown following. The detailed pixel timing is somewhat dependent on the operating modes of the AFE circuitry regarding the number of adjustment points for the on and off points of the different timing outputs.
*Note: In addition to the timing adjustments shown, the polarity of all sensor clock signals can be adjusted by register control.

Figure 30: Pixel Timing - 42 Timing Points Per Pixel in Mode 3

Figure 31: Pixel Timing-28 Timing Points Per Pixel in Mode 2 and Mode 1

$\underset{\substack{\text { Example } 1 \\ \text { Data }}}{\text { 0. }} 00001111111111111111111110000000000000000$

$\underset{\substack{\text { Example } 2 \\ \text { Data }}}{ } 111100000000000000000000011111111111111111$
 Example 3
Pattern

Example 30000000000001111110000000000000000000000000000000000001111110000000000000000000000000
Data
Figure 32: Pixel Timing - Normal or 1/2 Rate Timing for High Resolution Sensors

Figure 33: Pixel Timing - Independent Inversion of Each Output

SH Interval Details - Multiple States Defined within SH Interval

In the LM9872X, each SH Interval (the period when the high speed pixel timing is stopped) can have a selected number of "States", with each "State" having a specified duration. In the most common usage, each SH Interval is the same, and there can be as many as 31 defined States within the SH Interval. During each State, the logic level of each output signal can be defined as 1 or 0 . The duration of the State, and the logic levels of the signals are defined in configuration registers on register pages 3,4 and 5 .
Each State basic duration can be from 1 to 255 pixel periods. There is also a multiplier of $2 \mathrm{x}, 4 \mathrm{x}, 8 \mathrm{x}$ or 16 x (Page 2, Register 0 x 17) that will increase SH State durations for sensors that require long SH pulse widths.
If less than the maximum number of states are required, the first 0 duration State in the SH Interval will terminate processing.
At the end of the SH Interval, a glitchless transition to pixel timing will occur. Similarly, at the end of the pixel timing, a glitchless transition to the first state in the SH Interval will occur.
Some more complex sensors require different SH Interval timing in some sequence. The LM9872X can support up to 4 different SH Interval Timings. The available 31 states are divided as follows when higher numbers of SH Intervals are used:

	Available States			
\# of SH Intervals	SH Interval 1	SH Interval 2	SH Interval 3	SH Interval 4
1	$0-30$	n / a	n / a	n / a
2	$0-14$	$15-30$	n / a	n / a
3	$0-9$	$10-19$	$20-30$	n / a
4	$0-6$	$7-14$	$15-22$	$23-30$

Signal levels in each SH Interval State are set by the settings "SH State x LSPIX 12-0" settings in pages 4 and 5 of the register table. The SH State settings are $1=$ high. These internal signals can be inverted by the polarity settings for each signal output found in Page 7.
State Durations (in pixel periods) are set by the settings "SH State Length x " settings in page 3 of the register table and can be from 1 to 255 pixel periods.
States 0 to 30 (31 total) are supported, for a maximum SH Interval duration of $31 \times 255=7905$ pixel periods.
At a 22 MHz pixel rate, this will support SH intervals as long as 359 us *(to 5.7 ms). Each SH State can be as long as 255×45.455 ns $=11.59$ us *(to 185 us). *(Both of these quantities can be longer by factors of $2 \mathrm{x}, 4 \mathrm{x}, 8 \mathrm{x}$, or 16 x as set by Page 2, Register 16
Processing will of SH Interval States will continue as long as subsequent State Length settings are non -zero. The first zero length State Length setting will terminate processing, and signify the end of the SH interval. In this example, the duration for SH State 11 was set to 0 , so the SH Interval was complete at the end of SH State 10.

Figure 34: Sensor Timing SH Interval Details - Single SH Interval
An example showing a 4 SH Interval sequence is shown on the next 4 Figures.

In the First SH Interval, SH States 0 to 6 are available.
Figure 35: Sensor Timing SH Interval Details - Multiple SH Intervals - 1 of 4

In the Second SH Interval, SH States 7 to 14 are available. The SH interval ends at the first zero length SH State. In this example, only states $7,8,9,10$ are used.

Figure 36: Sensor Timing SH Interval Details - Multiple SH Intervals - 2 of 4

In the Third SH Interval, SH States 15 to 22 are available.
Figure 37: Sensor Timing SH Interval Details - Multiple SH Intervals - 3 of 4

In the Fourth SH Interval, SH States 23 to 30 are available.
Figure 38: Sensor Timing SH Interval Details - Multiple SH Intervals - 4 of 4

SH Outputs - Low Speed Line Timing Usage

While the PHI, RS and CP outputs generate high speed timing during the pixel portion of the line, the SH outputs can be used to generate low frequency signals during this period. This can be useful to generate "mode" or "resolution" control signals for certain sensors.
Each SH output has a programmed ON and OFF point within the line. These points are programmed with a 16 bit value that sets the pixel number where the transition occurs.
Programming ON and OFF in different orders will allow pulses that are normally low or normally high, always high, always low, etc. A common 1x, 2 x , or 4 x multiplier (Page 2, Register 0x15) can be used to increase the range (and reduce the resolution) of these ON/ OFF points, as well as the White/Active and Line Length pixels settings.

Figure 39: Sensor Timing SH ON/OFF Details - Example Settings and Waveforms

Controlled Inversion

When using multiple SH Intervals, it is possible to invert the pixel portion of the line for any of the output signals in any of the 4 Lines in the sequence. There is one bit per signal (or pair of signals for PHIA, PHIB and PHIC), for each of the 1 to 4 lines in the sequence. Setting the bit for a particular output and line in the sequence will cause the pixel portion of that line to be inverted. The transition to
the next line in the sequence occurs at the end of the SH Interval. Inversion can affect both the high speed timing signals (PHIx, RS, CP) and the low speed ON/OFF behavior of the SH signals.

Below is an example of Polarity Override with a 2 Line sequence. Note that the PHIA1, SH1, SH2 and SH3 signals are inverted in Line 2, while all other signals are at the default polarity for both lines.

SH Interval signal levels are set by SH Interval Information
Polarity for pixel portion of lines can be adjusted by Polarity Override Settings - Page 7, Registers 0×14 to $0 \times 1 \mathrm{D}$
Figure 40: Sensor Timing Mode Pin Output Details - Active Programmed Transition

CCD Timing Generator Master/Slave Modes

The internal Sensor Timing generator is capable of operating in Master Mode or in Slave Mode. The Master/Slave operation is configured with the Master Mode Select bit (Page 2, Register 0x00, bit 1). In either Master or Slave Mode, control bit data can be included in the LM9872X output data to indicate when each new scan is starting as well as pixel information such as color, type (active, black, dummy, etc.), and the beginning of each line.

Master Timing Generator Mode

In Master Timing Mode (Page 2, Register 0x00, bit $1=1$), the LM9872X controls the entire CCD Timing Generation based on INCLK and the Register Lock Bit (Page 0, Register 0, Bit 0) state. The Register Lock bit is set by the user to initiate a new scan. The LM9872X controls when each new line of the scan begins and ends based on the CCD Timing Generator register settings. Scanning is enabled as long as the Register Lock bit $=1$. The period of the line (integration time) is controlled by the SH Interval State Length settings (Page 3 Registers) and the Line Length setting (Page 3, Registers 0x0D and 0x0E) as well as the Pixel Multiplier Factor (Page 2, Register 0x0F) and SH State Length Multiplier (Page 2, Register 0x11) .

The line period from end of one SH Interval to the end of the next SH Interval is equal to:

Line Period $=($ Sum of SH Interval States \times SH State Length Multiplier $)+($ Line Length Setting \times Pixel Multiplier Factor $)$ pixels

Slave Timing Generator Mode

In Slave Timing Mode (Page 2, Register 0x00, bit $1=0$), the LM9872X CCD Timing Generator is controlled by the external SH_R pin. Each new line of a scan is initiated by an SH_R pulse. The period of the line (integration time) is mainly controlled by the period of the incoming SH_R signal. The minimum period between SH_R pulses should be at least the SH Interval duration as calculated above, plus the number of pixels to be clocked out of the CCD or CIS sensor.

Figure 41: SH_R to INCLK (PIXCLK or ADCCLK) Timing

Multiple SH Intervals

Multiple SH Intervals are supported for those CCD sensors that has different waveform and timing requirements during successive SH Intervals. Up to 4 different SH Intervals are supported.
In the Multiple SH Interval mode, the Line Period can be different for each line, due to the possible different settings for SH Interval duration. In that case the Line Periods would be calculated as follows:

Line Period1 $=($ Sum of SH Interval States1 \times SH State Length Multiplier $)+($ Line Length Setting \times Pixel Multiplier Factor $)$ pixels
Line Period2 $=($ Sum of SH Interval States $2 \times$ SH State Length Multiplier) + (Line Length Setting x Pixel Multiplier Factor) pixels
Line Period3 $=$ (Sum of SH Interval States3 x SH State Length Multiplier) + (Line Length Setting x Pixel Multiplier Factor) pixels
Line Period4 = (Sum of SH Interval States $4 \times$ SH State Length Multiplier) + (Line Length Setting x Pixel Multiplier Factor) pixels
In multiple SH Interval mode, the SH Interval States are subdivided as follows:

\# SH Intervals	SH Interval 1 States	SH Interval 2 States	SH Interval 3 States	SH Interval 4 States
1	$0-30$			
2	$0-14$	$15-30$		
3	$0-9$	$10-19$	$20-30$	$23-30$
4	$0-6$	$7-14$	$15-22$	23

Support for CIS Sensors

In CIS Sensor modes, the SH (LampR), SH2 (LampG), SH3 (LampB) and SH4 (LampIR) outputs are configured as Lamp illumination control outputs. In CIS mode, the number of lines/colors in the lamp sequence is selected by the Multiple SH Interval setting at Page 2, Register 10h, Bits 1:0. Sequences of 2, 3 or 4 lines/colors are supported in CIS mode. By definition, the standard CCD timing mode is equivalent to a CIS mode with length $=1$.
Two different CIS modes are supported (CISa and CISb, selected at Page 2, Register 0x10h, Bits 4:3):

In CISa, there can be 2,3 or 4 colors in the sequence, to support sensors with as many as 4 different lamp colors. In this mode, the PGA and DAC settings are controlled by the channel settings, regardless of what line in the sequence is being processed.

Mode 3, 3 Color Sequence, CISa Default
In CISb, there are 2 or 3 colors in the sequence. In this mode, the PGA and DAC settings are controlled by the color in the sequence that is being processed. For example, when a Red line of data (exposed using the SH1 or LampR output) is being processed, the Red channel PGA and DAC settings are used for all input channels. When the SH2/LampG (Green) line of data is being processed, the Green PGA and DAC settings are used for all input channels. etc.

Mode 3, 3 Color Sequence, CISb

In CISb, when a 2 line sequence is selected, it is necessary to choose which coefficients are used during the 2 different lines in the sequence. this selection is made with the CISb Color Coefficient Select at Page 2, Register 10h, Bits 6:5. Following is an example of a 2 color sequence, where Red and Green are the selected colors:

Mode 3, 2 Color Sequence, CISb
Use Page 2, Register 10h, Bits 6:5 to choose which SHx Lampx outputs are used, and which coefficients are used in CISb 2 color sequence.

To support monochrome scanning with an RGB CIS, select Mode 3, and a 1 line sequence. The LampR, LampG and LampB On/Off times will apply for every line. The On/Off times and relative channel gains can both be adjusted to achieve the desired white balance. Lamps can be on either simultaneously if the CIS and power budget allow, or sequentially.

Mode 3, Mono - 1 Color, CCD Timing
Lamps can be on simultaneously, or sequentially within each line

LVDS Output Format - LM98714 Mode

Figure 42: LVDS Output Bit Alignment and Data Format

LVDS Control Bit Coding - LM98714 Mode

The 5 control bits included in the LVDS data stream are coded as follows:
The "active" and "black" pixel tags are programmable tags that the LM9872X provides in order to identify how many pixels have been processed since the falling edge of SH .

Which pixels are given "Active" and "Black" CB tags is controlled by Page 2, Registers 0x02, 0x08-0x0C, and 0x0F. (\# Black Pixels Averaged, Black Pixels Start, Active/White Pixels Start, Active/White Pixels End, and Line Length Multiplier).

The LM9872X counts the number of pixel periods after the SH Interval: If the number of pixel periods after the SH Interval is greater than (Black Pixels Start) and less than (Black Pixels Start + \# Black Pixels Averaged) the CB bits will indicate that the pixel is a Black pixel. If the number of pixel periods after the falling edge of SH is between Active/White Pixels Start and Active/White Pixels End, the CB bits will indicate that the pixel is an Active pixel.

Latency Compensation of CB Bits

By default, the CB bits will be compensated for the latency through the AFE signal chain. This compensation can be turned off by setting Page 8, Register 0x08, Bit $2=1$.

CB[4]	Description
0	Not the beginning of line
1	Beginning of Line
	(This bit is high during the SH Interval)

CB[3:0]	Description
0000	Dummy Pixels
0001	Red Active Pixels
0010	Green Active Pixels
0011	Blue Active Pixels

CB[3:0]	Description
0100	IR1 Active Pixels
0101	IR2 Active Pixels
0110	Red Black Pixels
0111	Green Black Pixels
1000	Blue Black Pixels
1001	IR1 Black Pixels
1010	IR2 Black Pixels
1111	Beginning of Scan

Flexible LVDS Formatting Mode - Mapping

Figure 43: LVDS Output Bit Alignment and Data Format
In Flexible LVDS Formatting Mode, the values highlighted in red can be substituted with other CB tag information. The table below shows the different CB information that can be selected:

Setting	CB Tag Information
0000	Original CB or Data
0001	CBOO from LM98714 definition
0010	CBO1 from LM98714 definition
0011	CBO2 from LM98714 definition
0100	CBO3 from LM98714 definition
0101	CBO4 from LM98714 definition
0110	R - High for a red channel pixel
0111	G - High for a green channel pixel
1000	B - High for a blue channel pixel
1001	Parity - 21 bit if TXOUT0 Enabled, 14 bit if TXOUT0 Disabled
1010	Ping - High for pixels processed by the Ping section of a channel, low for Pong
1011	Line\# lsb - Line $=0$ to 3 for lines 0 to 3 in multiline sequences
1100	Line\# msb
1101	Black Loop Pixels - High for pixels processed by the Black Loop
1110	White Loop Pixels - High for pixels process by the White Loop
1111	CLP Pixels - High for pixels where the input CLP switch is closed

TXOUTO Disable

The TXOUTO data pair can be disabled. In combination with the new Flexible LVDS Formatting Mode, this can support applications where only the upper 14 MSB of data are required. This will save one pair of LVDS wires in the cable, and reduce the LM9872X slightly.
In addition, if fewer than 14 bits are required, the D2 and D3 bits can be replaced with the desired CB information, selected from the above table.

Parity

A parity bit is available for use as one of the CB bits. Parity is calculated based on all bits being sent via the 21 or 14 bit LVDS link except:

- If any bit is selected to transmit CB Parity, it will not be used in the calculation
- If any bit is transmitting a scrambler key bit when scrambler mode 2 is selected, it will not be used in the calculation.

The total parity across the 21 or 14 output bits (excluding any scrambler key bit) will be even.

Latency Compensation of CB Bits

By default, the CB bits will be compensated for the latency through the AFE signal chain. This compensation can be turned off by setting Page 8, Register 0x08, Bit $2=1$.

LVDS Data Randomization for EMI Reduction

While LVDS transmissions will inherently reduce the amount of electromagnetic energy, further reductions can be achieved by randomizing the data being sent over the link. A built in "scrambler" feature provides a number of different modes to suit different applications and host processing capabilities. One key part of the scrambler is a linear feedback shift register (LFSR) implementation to provide pseudo-random sequence "keys" to randomize the image data. The basic implementation of an LFSR is shown below:

The LFSR algorithm used in the LM9872X is an n=21 maximal length right-shift implementation as shown above. As a reference for FPGA and ASIC developers, the sequence is the same as that created by the Synopsys DW component DW03_lfsr_load with inverted outputs. The preload or starting value for the sequence is $0 \times 000001 \mathrm{~h}$.
If the prs (serial-type) output is selected (MODE $\left.=01, S U B _M O D E=0 X\right)$, the 21 bits of the LFSR are shifted one position to the right on each TXCLK.
For clarity, the first 11 values in the prs sequence are:
$0 \times 000001 \mathrm{~h}$
$0 \times 100000 \mathrm{~h}$
$0 \times 080000 \mathrm{~h}$
0x040000h
0x020000h
0x010000h
0x008000h
0x004000h
0x002000h
0x001000h
0x000800h

If the pprs (parallel-type) output is selected (MODE $=01$, SUB_MODE $=1 \mathrm{X}$), the next 21 coefficients of the shift-in term are calculated in parallel, and the LFSR is loaded with these coefficients: the effect is equivalent to clocking the LFSR 21 times in serial mode. For clarity, the first 11 values in the pprs sequence are:
0x000001h
$0 \times 080001 \mathrm{~h}$
0x020001h
0x0A8001h
$0 \times 002001 \mathrm{~h}$
0x082801h
0x022201h
0x0AAA81h
0x000021h
$0 \times 080029 \mathrm{~h}$
$0 \times 120023 \mathrm{~h}$
A summary of the modes and submodes is shown in this table. Detailed descriptions of each mode follow :

MODE Page 0, Register 0×05 Bits $4: 3$	SUB_MODE Page 0, Register 0×05 Bits $2: 1$	description
00		scrambler disabled
01	full scrambler enabled. sub-mode settings select:	
	00	send Ivds_data[20:0] bitwise XOR with prs[20:0]
	01	send prs[20:0]
	10	send Ivds_data[20:0] bitwise XOR with pprs[20:0]
	11	send pprs[20:0]

10	1 bit scrambler with key of prs[0] send Ivds_data[20:0] bitwise XOR with prs[0], with Ivds_data[k] $=0$ send prs[0] on Ivds_out[k] k is selected with following settings:	
	00	$\mathrm{k}=0$ (DB0 in CMOS and 714 modes, CB0 in flexible, 16 bit mode)
	01 (TXOUT0 Disable = 0)	$\mathrm{k}=5$ (DB0 (LSB) in flexible, 16 bit mode)
	01 (TXOUT0 Disable = 1)	$\mathrm{k}=7$ (DB2 (LSB) in flexible, 14 bit mode)
	10	$\mathrm{k}=16$ (CB0 in 714 mode)
	11	$\mathrm{k}=20$ (CB4 in 714 mode)
11	1 bit scrambler with key of Ivds_data[k]. send Ivds_data[20:0] bitwise XOR with Ivds_data[k] with Ivds_out[k] = Ivds_data[k]	
	00	$\mathrm{k}=0$ (DB0 in CMOS and 714 modes, CB0 in flexible, 16 bit mode)
	01 (TXOUT0 Disable = 0)	$\mathrm{k}=5$ (DB0 (LSB) in flexible, 16 bit mode)
	01 (TXOUT0 Disable = 1)	$\mathrm{k}=7$ (DB2 (LSB) in flexible, 14 bit mode)
	10	$\mathrm{k}=16$ (CB0 in 714 mode)
	11	$\mathrm{k}=20$ (CB4 in 714 mode)

Mode 00: Scrambler Disabled

Mode 01: Full scrambler using the full 21-bit pseudo random sequence

There are 4 sub-modes: (a) the 21-bit output will be bit-wise XORed with the 21-bit serial pseudo-random sequence. i.e. Ivds_data[20:0] ^ prs[20:0]; (b) the 21-bit serial pseudo random sequence will be output directly; (c) the 21-bit output will be bit-wise XORed with the 21-bit parallel pseudo-random sequence. i.e. Ivds_data[20:0] ^ pprs[20:0]; (d) the 21-bit parallel pseudo random sequence will be output directly. In all sub-modes, the sequences start m clock cycles after the de-assertion of the bol where m is defined as the analog latencies in 1-ch, 2-ch and 3-ch modes. In other words, the output starts the same way as the up-count test pattern mode. Unlike the up-count test pattern mode, the 21-bit pseudo-random sequence runs at the ADC (same as TXCLK) rate, not pixel or line rate.

Mode 10: One bit scrambler using the prs shift bit only, sending this bit out on a CB bit

Each bit of Ivds_data[20:0] is XORed with prs[0]. One selected bit, Ivds_data[k] is replaced with 0 before the XOR procedure. The resulting output Ivds_out[20:0] has bit k replaced by prs[0]. The bit k selection is flexible to support different mappings of Ivds_out depending on output settings as follows:

- LVDS Mapping - 714 Default Mode versus Flexible Mode (Since the location of CB bits changes depending on which is selected) Mapping select is at Page 8, Register 8, Bit 0.
- CMOS Mode versus LVDS Mode (since only lvds_out[15:0] are available in CMOS mode) CMOS/LVDS mode select at Page 0 , Register 5, Bit 7.
- LVDS 3 Pair Mode versus LVDS 2 Pair Mode (Since TXOUT0 pair is disabled in 2 Pair Mode(txout0_dis=1)) TXOUT0 Disable at Page 8, Register 8, Bit 1.

Ivds_out[20:0] mapping in different modes

LM98714 Compatible Mapping (Default)

Flexible CB Mapping with LVDS Disable TXOUT0 $=0$

Flexible CB Mapping with LVDS Disable TXOUT0 = 1

CMOS Mode

Possible Key Bit Positions (k value)

If an output bit is replaced with the scrambler key, that bit position/value is excluded from the calculation of the parity.

Mode 11: "LSB" scrambler

The "LSB" selected from Ivds_data[k] is used to scramble the output. The Ivds_data[20:0] key bit k, as selected in Mode 10 above is used (as the "LSB") to XOR the other bits. The key bit itself is not replaced.

Scrambler Inhibit Bit Select

This feature allows individual bits in the LVDS output stream to be non-scrambled. This can be used as a setup and debugging aid during initial system development, or as a permanent feature to simplify the data decoding task. The tradeoff will be somewhat compromised EMI reduction over a fully scrambled LVDS data stream.
The controls for this feature are located as follows:
Scrambler Inhibit 0 - Page 8, Register 0x12h, Bits 6:0 - LVDS[6:0]
Scrambler Inhibit 1 - Page 8, Register 0x13h, Bits 6:0 - LVDS[13:7]
Scrambler Inhibit 2 - Page 8, Register 0x14h, Bits 6:0 - LVDS[20:14]

LVDS Drive Strength Adjust

The LVDS outputs may be decreased in stength to reduce EMI generation, or increased in strength to improve noise immunity.
Page 8, Register 8, Bits $5: 4$ can be adjusted as follows (in terms of VOD into 100 Ohm termination):
00 - Decrease of approximately 100 mV
01 - Decrease of approximately 50 mV
10 - Default - Approximately 350 mV
11 - Increase of approximately 50 mV

LVDS Output Timing Details

Figure 44: LVDS Data Output Mode Specification Diagram

Optional TXCLK Delay

The LM9872X includes a selectable (off by default) delay of TXCLK. This delay can be enabled (Page 8, Register 0x08, Bit 3) to improve timing margin between the TXCLK and TXOUTx signals when using certain LVDS deserializers. The default/off setting is intended to be compatible with the LM98714 LVDS timing.

LVDS Data Latency Diagrams

Data latency shown is for Mode 3 in relation to PIXPHASEO with the processing order set to $\mathrm{OS}_{\mathrm{R}} \Rightarrow \mathrm{OS}_{G} \Rightarrow \mathrm{OS}_{\mathrm{B}}$. If the incoming pixels are not aligned with PIXPHASEO, one of the remaining PIXPHASEs can be selected as the sampling phase without effecting the output data location.

Figure 45: Mode 3 LVDS Data Latency

Figure 46: Mode 2 LVDS Data Latency

Figure 47: Mode 1 LVDS Data Latency

Data Test Patterns

The data test patterns present different data to the input of the LVDS serializer block. There are two basic groups of test patterns:

- LVDS Output Pattern Modes - These patterns are applicable to all 21 bits of the LVDS interface.
- AFE Output Pattern Modes (Default) - These patterns are applicable to the 16 bit AFE data sent to the LVDS interface.
- All Test Pattern Modes are selected at Page 0, Register 6.

LVDS Output Pattern Modes

Worst Case Transitions (Alternating 0x2A/0x55 on each LVDS pair)

This test mode provides an LVDS output with the maximum possible transitions. This mode is useful for system EMI evaluations, and for ATE timing tests.
The effective data values are an alternating pattern between 21'b101010101010101010101 (0x155555) and 21 'b010101010101010101010 (0x0AAAAA). This test pattern resets to 0×155555 at the selected event (BOL or BOS).

Fixed Output Data

This mode sends a fixed repeating data pattern to each of the indicated LVDS output pairs. This is useful for system debugging of the LVDS link and receiver circuitry. There are 4 different choices within this mode:

- $0 \times 2 \mathrm{~A}(0101010 \mathrm{~b})$ (All 3 data pairs)
- 0×55 (1010101b) (All 3 data pairs)
- 0×00 (0000000b) (*All 3 data pairs + clock pair)
- 0x7F (1111111b) (*All 3 data pairs + clock pair)
*Since the 0×00 and 0x7F patterns also affect the clock pair, they cannot be used for deserializer and downstream testing. They are useful for DC measurements of the LVDS outputs.

AFE Output Pattern Modes

There are 3 different types of AFE Output Patterns:

- Normal ADC/AFE output (Default)
- Up-Counter Data
- Fixed AFE Patterns

Up-Counter data

The counter will be reset to 0xFFFF during the BOS (Beginning Of Scan) SH Interval. When the AFE up-counter is selected, the ramp begins at the BOS, and increments by 1 at either the pixel rate or at the line rate (every BOL). This data can be useful as it can provide a grayscale image that increases in intensity down the "page". Alternately, it can provide data that increments at the pixel rate. Either of these forms can be very useful in debugging the downstream data processing system.

Fixed AFE Pattern

The fixed AFE patterns allow the CB coding information to be sent normally, while specific data is used to replace the AFE output. This can be useful in debugging portions of the downstream data processing system.

- $0 x F F 00(0 x 1111111100000000 b)$ fixed data
- 0xAA55 (0x1010101001010101b) fixed data
- 0x0000 (0x0000000000000000b) fixed data
- 0xFFFF (0x11111111111111111b) fixed data
- 0x00FF (0x0000000011111111b) fixed data
- $0 x 55 A A(0 x 0101010110101010 b)$ fixed data
-

CMOS Output Format

Figure 48: CMOS Data Output Format (Mode 3 shown)

Data latency shown is for Mode 3 in relation to PIXPHASE0 with the processing order set to $\mathrm{OS}_{\mathrm{R}} \Rightarrow \mathrm{OS}_{\mathrm{G}} \Rightarrow \mathrm{OS}_{\mathrm{B}}$. If the incoming pixels are not aligned with PIXPHASE0, one of the remaining PIXPHASEs can be selected as the sampling phase without effecting the output data location.

Figure 49: Mode 3 CMOS Output Latency

Data latency shown is for Mode 2 in relation to PIXPHASE0 with the processing order set to $\mathrm{OS}_{\mathrm{G}} \leftrightharpoons \mathrm{OS}_{\mathrm{B}}$. If the incoming pixels are not aligned with PIXPHASEO, one of the remaining PIXPHASEs can be selected as the sampling phase without effecting the output data location.

Figure 50: Mode 2 CMOS Output Latency

Figure 51: Mode 1 CMOS Output Latency

Serial Interface

A serial interface is used to write and read the configuration registers. The interface is a four wire interface using SCLK, $\overline{\text { SEN }}$, SDI and SDO connections. SDI and SDO can be connected together to support the same format and connectivity as previous LM98714 designs. The CE pin should be tied to GND to support LM98714 compatible communications. This will set the device address bits to 00.

CE Level	Address
VD	01
Float	10
GND	00

The main input clock (INCLK) to the LM9872X can be active or stopped when accessing the Serial Interface. Care should be taken to avoid stopping or starting the INCLK during Serial Interface communication. After starting or stopping INCLK, users should wait for 50 ms to allow the internal PLL and logic to stabilize before resuming Serial Interface communications.

Serial Interface Operating Modes

- LM98714 Compatible Mode (Default) - By default the serial interface is compatible with the LM98714 interface, allowing SDI and SDO to be connected and driving by a single pin on the host.
- LM9872X 4 Wire 16+ Clock Mode (Default) - The 4 Wire 16+ Clock Mode is essentially the same as the LM98714 Compatible Mode, but using all 4 wires, with separate SDO and SDI signals between the Host and Slave. This requires additional wires, but removes the need for a bidirectional signal. A valid transaction is recognized after a minimum of 16 SCLK while $\overline{\text { SEN }}$ is low.
- LM9872X 25+ Clock Mode (Selected when Page 0, Register 0x01h, Bit 7=1) - This mode forces the serial interface logic to only process a transaction with 25 or more SCLK while SEN is low. This mode can be used with either 3 or 4 wire connections.
In all of the above cases, the final 16 bits on SDI (before the rising edge of $\overline{\text { SEN }}$) are processed by the serial interface logic. Any earlier information on SDI is ignored.

Serial Interface in Absence of MCLK

- Clockless (MCLK stopped) Mode (always enabled if MCLK stopped) - When the input MCLK is stopped, Data Read operation is exactly the same as MCLK present mode. The Data Write operation no longer provides a free readback of the previously written data. See the figures "Serial Write - 4 Wire Connection-25+ Clock Mode" on page 61 and "Serial Write - 4 Wire Connection - 16+ Clock Mode" on page 62.

Writing to the serial registers

To write to the serial registers, the timing diagram shown in Figure 52 must be met. First, SEN is toggled low. The *previously addressed device assumes control of the SDO pin during the first eight clocks of the command. During this period, data is clocked out of the device at the rising edge of SCLK. At the rising edge of ninth clock, the LM9872X releases control of the SDO pin. At the falling edge of the ninth clock period, the master should assume control of the SDI pin and begin issuing the new command. SDI is clocked into the LM9872X at the rising edge of SCLK. The remaining bits are composed of the "write" command bit (a zero), two device address bits (00,01 or 10 for the LM9872X), five bit register address to be written, and the eight bit register value to be written. When SEN toggles high, the register is written to, and the LM9872X now functions with this new data.
*The previously addressed device could be another device on a shared serial interface or this device. If the previous command was to this device, and was a read, then the SDO pin will be driven during the first eight clocks. If the previous command was to this device and was a write, then the SDO pin will only be driven if the serial interface is in "MCLK active" mode.

Reading the serial registers

To read to the serial registers, the timing diagram shown in Figure 53 must be met. First, SEN is toggled low. The LM9872X assumes control of the SDO pin during the first eight clocks of the command. During this period, data is clocked out of the device at the rising edge of SCLK. The eight bit value clocked out is the contents of the previously addressed register, regardless if the previous command was a read or a write. At the rising edge of ninth clock, the LM9872X releases control of the SDO pin. At the falling edge of the ninth clock period, the master should assume control of the SDI pin and begin issuing the new command. SDI is clocked into the LM9872X at the rising edge of SCLK. The remaining bits are composed of the "read" command bit (a one), two device address bits (zeros for the LM9872X), five bit register address to be read, and the eight bit "don't care" bits. When SEN toggles high, the register is not written to, but its contents are staged to be outputted at the beginning of the next command.

Examples of Serial Writes and Reads in the various modes are shown in the following figures:

Figure 52: Serial Write - LM98714 Compatible Connection

Master issues "read" bit (1), 2 "chip enable" bits (00,01 or 10), five bit register address, and eight "don't care" bits. Register contents are not altered. Only final 16 bits of SDI data before rising edge of /SEN are processed.
Figure 53: Serial Read - LM98714 Compatible Connection
 register address, and eight bit register value to be written. Only final 16 bits of SDI data before rising edge of /SEN are processed
Figure 54: Serial Write-4 Wire Connection-25+ Clock Mode

Master issues "read" bit (1), 2 "chip enable" bits (00,01 or 10), five bit register
address, and eight "don't care" bits. Register contents are not altered.
Only final 16 bits of SDI data before rising edge of/SEN are processed.
Figure 55: Serial Read - 4 Wire Connection-25+ Clock Mode

Serial Interface Timing Details

Figure 58: Serial Interface Specification Diagram

Configuration Registers

The LM9872X operation is very flexible to support a wide variety of sensors and system designs. This flexibility is controlled through configuration registers which are first summarized, then described in full in the following tables. Because the serial interface only allows 5 address bits, a register paging system is used to support the larger number of required registers.
The page register is present at the highest address (1Fh or 11111b) of the currently selected page. The power on default setting of the page register is 00 . Writing other values to this register allows the other pages to be accessed.
Once all registers are written, the Register Lock Control bit (Page 0, Register 0, Bit 0) is set to 1 to start the state machines and initiate the converting of pixels. If Slave mode is selected, SH_R pulses must also be input to trigger this process.
***When Register Lock Control = 1, many registers are locked to prevent state machines from becoming corrupted, while others are accessible to allow control of necessary functions. The registers and bits that are still writable are indicated in Boldface print in the Bits and Register Description columns of the Register Definition Details table.

Operational Setup Sequence:

Ensure Lock Bit (Page 0, Register 0, Bit 0) $=0$ for following setting writes
Apply either no INCLK or a stable INCLK to ensure accurate serial communications

Page 0

Set AFE mode (\# of input channels)
Set output data format
Enable data outputs
Set AFE biasing
Set AFE Clamp and Sample timing
Setup Slave or Master Mode
Page 1
Set Gain Mode (Singe or Dual)
Set CDS/SH Gain
Set PGA
Set DAC settings

Page 2

Set Input Clamping Settings
Set Black Pixel Start and \# Black Pixels Averaged
Set Active White Pixels Start and End
Set Line Length (Master Mode Only)
Set \# Pixel Multiplier, SH Line Sequence \# and SH State Length Multiplier
Set PHI, RS, CP On and Off delay settings
Set Spread Spectrum control settings
Page 3
Set SH State Length settings

Page 4

Set SH Interval State Settings for PHI, RS, CP

Page 5

Set SH Interval State Settings for SH1 to SH5
Page 6
Set PHI, RS, CP pattern bit fields and rate (normal or $1 / 2$ rate)

Page 7

Set SHx On, Off settings if needed
Set CLK invert settings for multi-line sequences if needed
Page 8
Set CLK output activity, polarity, enable
Set LVDS output format
Set CB coding
Set PHI, RS, CP, SH unlock output state

Begin scanning:

Ensure stable INCLK applied and PLL is locked (read back Page 0, Register 0, Bit 7)
Set Register Lock Control bit = 1
In Master Mode, conversions will begin after the Lock Bit is set. In Slave Mode, SH_R pulses can begin af ter the Lock Bit is set. SH Intervals will be generated in response to the SH_R input pulses.
Registers and Bits marked in Boldface print may be adjusted while scanning is in progress. More major changes (ie. color mode, CCDTG details) should be done by writing a 0 to the Register Lock Control Bit to pause scanning.

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Register Title
1	11	B	00000000	Red Odd DAC LSB
1	12	C	10000000	Green Odd DAC MSB
1	13	D	00000000	Green Odd DAC LSB
1	14	E	10000000	Blue Odd DAC MSB
1	15	F	00000000	Blue Odd DAC LSB
1	16	10	01000000	Red Even Digital Offset
1	17	11	01000000	Green Even Digital Offset
1	18	12	01000000	Blue Even Digital Offset
1	19	13	01000000	Red Odd Digital Offset
1	20	14	01000000	Green Odd Digital Offset
1	21	15	01000000	Blue Odd Digital Offset
1	22	16	01100001	Red High Gain PGA
1	23	17	01100001	Green High Gain PGA
1	24	18	01100001	Blue High Gain PGA
1	28	1C	01000000	Red Channel Bimodal
1	29	1D	01000000	Green Channel Bimodal
1	30	1E	01000000	Blue Channel Bimodal
1	31	1F	00000000	Page Register
PAGE 2				
2	0	0	00000000	Calibration Mode
2	1	1	00000000	Calibration \# Lines
2	2	2	00010100	Black Cal Config
2	3	3	01000000	Black Target
2	4	4	01000011	White Cal Config
2	5	5	10000000	White Target
2	6	6	00000100	AutoCLPIN Start
2	7	7	00001100	AutoCLPIN End
2	8	8	00010000	Black Loop Start
2	9	9	00000000	Active/White Pixels Start - MSB
2	10	A	00010100	Active/White Pixels Start - LSB
2	11	B	00010000	Active/White Pixels End - MSB
2	12	C	00000000	Active/White Pixels End - LSB
2	13	D	00010000	Line Length MSB
2	14	E	01000000	Line Length LSB
2	15	F	00000000	Line Length Multiplier
2	16	10	00000000	Line Mode
2	17	11	00000000	SH State Length Multiplier
2	18	12	00000000	PHIA/B/C Delays

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Register Title
2	19	13	00000000	RS/CP Delays
2	20-23	14-17		Reserved
2	24	18	11111000	PLL Control 1
2	25	19	00011000	PLL Control 2
2	26	1A	00000000	SSCG Control 1
2	27	1B	00000010	SSCG Control 2
2	28	1 C	00000000	Clock Mult M
2	29	1D	00000000	Clock Mult N
2	30	1E	00000000	SSCG Control 3
2	31	1F		Page Register
				PAGE 3
3	0	0	00000000	SH State 0 Length
3	1	1	00000000	SH State 1 Length
3	2	2	00000000	SH State 2 Length
3	3	3	00000000	SH State 3 Length
3	4	4	00000000	SH State 4 Length
3	5	5	00000000	SH State 5 Length
3	6	6	00000000	SH State 6 Length
3	7	7	00000000	SH State 7 Length
3	8	8	00000000	SH State 8 Length
3	9	9	00000000	SH State 9 Length
3	10	A	00000000	SH State 10 Length
3	11	B	00000000	SH State 11 Length
3	12	C	00000000	SH State 12 Length
3	13	D	00000000	SH State 13 Length
3	14	E	00000000	SH State 14 Length
3	15	F	00000000	SH State 15 Length
3	16	10	00000000	SH State 16 Length
3	17	11	00000000	SH State 17 Length
3	18	12	00000000	SH State 18 Length
3	19	13	00000000	SH State 19 Length
3	20	14	00000000	SH State 20 Length
3	21	15	00000000	SH State 21 Length
3	22	16	00000000	SH State 22 Length
3	23	17	00000000	SH State 23 Length
3	24	18	00000000	SH State 24 Length
3	25	19	00000000	SH State 25 Length
3	26	1A	00000000	SH State 26 Length

$\begin{aligned} & \text { Page } \\ & \text { (dec) } \end{aligned}$	Addr (dec)	Addr (hex)	Default (binary)	Register Title
5	0	0	00000000	SH State 0 SH1-SH5
5	1	1	00000000	SH State 1 SH1-SH5
5	2	2	00000000	SH State 2 SH1-SH5
5	3	3	00000000	SH State 3 SH1-SH5
5	4	4	00000000	SH State 4 SH1-SH5
5	5	5	00000000	SH State 5 SH1-SH5
5	6	6	00000000	SH State 6 SH1-SH5
5	7	7	00000000	SH State 7 SH1-SH5
5	8	8	00000000	SH State 8 SH1-SH5
5	9	9	00000000	SH State 9 SH1-SH5
5	10	A	00000000	SH State 10 SH1-SH5
5	11	B	00000000	SH State 11 SH1-SH5
5	12	C	00000000	SH State 12 SH1-SH5
5	13	D	00000000	SH State 13 SH1-SH5
5	14	E	00000000	SH State 14 SH1-SH5
5	15	F	00000000	SH State 15 SH1-SH5
5	16	10	00000000	SH State 16 SH1-SH5
5	17	11	00000000	SH State 17 SH1-SH5
5	18	12	00000000	SH State 18 SH1-SH5
5	19	13	00000000	SH State 19 SH1-SH5
5	20	14	00000000	SH State 20 SH1-SH5
5	21	15	00000000	SH State 21 SH1-SH5
5	22	16	00000000	SH State 22 SH1-SH5
5	23	17	00000000	SH State 23 SH1-SH5
5	24	18	00000000	SH State 24 SH1-SH5
5	25	19	00000000	SH State 25 SH1-SH5
5	26	1A	00000000	SH State 26 SH1-SH5
5	27	1B	00000000	SH State 27 SH1-SH5
5	28	1C	00000000	SH State 28 SH1-SH5
5	29	1D	00000000	SH State 29 SH1-SH5
5	30	1E	00000000	SH State 30 SH1-SH5
5	31	1F		Page Register
Prese PAGE 6				
6	0	0	00000000	PHIAO
6	1	1	00000000	PHIA1
6	2	2	00000000	PHIA2
6	3	3	00000000	PHIA3
6	4	4	00000000	PHIA4

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Register Title
6	5	5	00000000	PHIA5
6	6	6	00000000	PHIB0
6	7	7	00000000	PHIB1
6	8	8	00000000	PHIB2
6	9	9	00000000	PHIB3
6	10	A	00000000	PHIB4
6	11	B	00000000	PHIB5
6	12	C	00000000	PHICO
6	13	D	00000000	PHIC1
6	14	E	00000000	PHIC2
6	15	F	00000000	PHIC3
6	16	10	00000000	PHIC4
6	17	11	00000000	PHIC5
6	18	12	00000000	RS0
6	19	13	00000000	RS1
6	20	14	00000000	RS2
6	21	15	00000000	RS3
6	22	16	00000000	RS4
6	23	17	00000000	RS5
6	24	18	00000000	CPO
6	25	19	00000000	CP1
6	26	1A	00000000	CP2
6	27	1B	00000000	CP3
6	28	1C	00000000	CP4
6	29	1D	00000000	CP5
6	30	1E	00000000	HSPIX Rate Select
6	31	1F		Page Register
PAGE 7				
7	0	0	00000000	SH1 PIXEL ON MSB
7	1	1	00000000	SH1 PIXEL ON LSB
7	2	2	00000000	SH1 PIXEL OFF MSB
7	3	3	00000000	SH1 PIXEL OFF LSB
7	4	4	00000000	SH2 PIXEL ON MSB
7	5	5	00000000	SH2 PIXEL ON LSB
7	6	6	00000000	SH2 PIXEL OFF MSB
7	7	7	00000000	SH2 PIXEL OFF LSB
7	8	8	00000000	SH3 PIXEL ON MSB
7	9	9	00000000	SH3 PIXEL ON LSB

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Register Title
7	10	A	00000000	SH3 PIXEL OFF MSB
7	11	B	00000000	SH3 PIXEL OFF LSB
7	12	C	00000000	SH4 PIXEL ON MSB
7	13	D	00000000	SH4 PIXEL ON LSB
7	14	E	00000000	SH4 PIXEL OFF MSB
7	15	F	00000000	SH4 PIXEL OFF LSB
7	16	10	00000000	SH5 PIXEL ON MSB
7	17	11	00000000	SH5 PIXEL ON LSB
7	18	12	00000000	SH5 PIXEL OFF MSB
7	19	13	00000000	SH5 PIXEL OFF LSB
7	20	14	00000000	PHIA Polarity Override
7	21	15	00000000	PHIB Polarity Override
7	22	16	00000000	PHIC Polarity Override
7	23	17	00000000	RS Polarity Override
7	24	18	00000000	CP Polarity Override
7	25	19	00000000	SH1 Polarity Override
7	26	1A	00000000	SH2 Polarity Override
7	27	1B	00000000	SH3 Polarity Override
7	28	1 C	00000000	SH4 Polarity Override
7	29	1D	00000000	SH5 Polarity Override
7	30	1E	00000000	Reserved
7	31	1F		Page Register
PAGE 8				
8	0	0	00000000	PHIA1, PHIA2 Polarity / State
8	1	1	00000000	PHIB1, PHIB2 Polarity / State
8	2	2	00000000	PHIC1, PHIC2 Polarity / State
8	3	3	00000000	RS, CP Polarity / State
8	4	4	00000000	SH1, SH2 Polarity / State
8	5	5	00000000	SH3, SH4 Polarity / State
8	6	6	00000000	SH5 Polarity / State
8	7	7	00000000	Reserved
8	8	8	00100000	LVDS Configuration
8	9	9	00000000	CB1/CB0 CB Mapping
8	10	A	00000000	CB3/CB2 CB Mapping
8	11	B	00000000	D2/CB4 CB Mapping
8	12	C	00000000	D4/D3 CB Mapping
8	13	D	00000000	D5 CB Mapping
8	14	E	00000000	Unlock State Output Values PHIA, PHIB, PHIC, RS, CP

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Register Title
8	15	F	00000000	Unlock State Output Values SH1, SH2, SH3, SH4, SH5
8	$16-17$	$10-11$	00000000	Reserved
8	18	12	00000000	Scrambler Inhibit 0 (LVDS[6:0])
8	19	13	00000000	Scrambler Inhibit 1 (LVDS[13:7])
8	20	14	00000000	Scrambler Inhibit 2 (LVDS[20:14])
8	$16-30$	$15-1 \mathrm{E}$	00000000	Reserved
8	31	1 F		Page Register

Register Definition
The following section describes all available registers in the LM9872X register bank, and their functions.
Registers and/or Bits Marked in Boldface are Writeable when Register 0, Bit $0=1$, all others are "Locked".

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description

PAGE 0						
0	0	0	00100000	[7] [6] [5] [4] [3] [2] [1] [0]	Main Configuration 0	PLL Locked (READ ONLY) Status Bit 0 PLL is not locked 1 PLL is locked Not Used SH_R Capture Clock Select 0 Use internal CLK from XTAL source. 1 Use external INCLK source. SH_R Capture Edge Select 0 Use rising edge of selected Clock source. 1 Use falling edge of selected Clock source. Not Used XTALEN 0 Use autodetecting CMOS/LVDS clock receiver 1 Enable crystal driver. INCLK+ is output, INCLKis input. Master Mode Select Bit 0 Slave/SH_R 1 Master/Line Length Register Lock Control 0 Registers are unlocked (i.e. writeable) and CCDTG state machines are stopped 1 Registers are locked (default) and CCDTG state machines are operating
0	1	1	01000000	[7] [6] [5] [4] [3] [2] [1] [0]	Main Configuration 1	Serial Interface Mode Select 0 16+ Clock Mode [Default] 1 25+ Clock Mode Enable PLL Range Autocalibration 0 PLL Range Autocal OFF 1 PLL Range Autocalibrates (Default) Calibrate Gain/Offset (self clearing) 0 Calibration is off 1 Calibration is active Software Reset - FSM Set to 1 to reset all state machines. Self clearing. Software Reset - FSM + Registers Set to 1 to reset all state machines and registers. Self clearing. Power Down CDS/SH Amplifier Reference Buffer Power Down Master Power Down 0 Master Power Down Disable 1 Master Power Down Enable

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
0	2	2	11000000	$[7: 6]$ [5:4] [3] [2] [1] [0]	$\begin{gathered} \quad \text { Main } \\ \text { Configuration } \\ 2 \end{gathered}$	Mode Select Bits 11 Mode 3 (Default) (3 Channel Mode) 10 Mode 2 (2 Channel Mode) 01 Mode 1 (1 Channel Mode) 00 Not Used Color Select Bits. Used to determine the inputs sampled during a scan. 11 Reserved 10 Mode 2 = OSR \& OSB Mode $1=$ OSB 01 Mode 2 = OSG \& OSB Mode $1=$ OSG 00 Mode $2=$ OSR \& OSG Mode $1=$ OSR Color Order. Configures the sequence of the pixel processing 0 Forward (default) 1 Reverse PIXCLK/ADCCLK Configuration. Selects appropriate multiplier for given input clock frequency Mode 3: ADC Frequency $=3 x$ Pixel Frequency Mode 2: ADC Frequency $=2 x$ Pixel Frequency Mode 1: ADC Frequency $=1 x$ Pixel Frequency 0 User supplies ADC rate clock, LM9872X performs no multiplication. 1 User supplies Pixel rate clock, LM9872X performs clock multiplication. Sampling Mode Select 0 Sample and Hold Mode 1 Correlated Double Sampling Mode (Default) Even/Odd CCD Sensor Enable Dedicated Even and Odd DACs and Digital Offsets would be applied to every other pixels.
0	3	3	10000010	[7] [6] [5] [4:2] [1] [0]		Source Follower Enable. 0 Disable 1 Enable (Default) Input Bias Enable. Enables the Input Bias Resistor ladder. 0 Disable (Default) 1 Enable Bit CLP mode enable (black clamping done in reference portion of every pixel of line) 0 Disabled (Default) 1 Enable Pixel Phase Clock Select. Coarse adjustment for Pixel phase relative to INCLK. Useful in systems where Pixel inputs arrive with significant delay relative to INCLK. Sensor Polarity Select 0 Voltage increases with increasing white level 1 Voltage decreases with increasing white level Reserved

| Page
 (dec) | Addr
 (dec) | Addr
 (hex) | Default
 (binary) | Bits | Register Title | Register Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- |

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
0	6	6	00000000	[7] [6:4] [3] [2:0]	Configuration 6	LVDS Test Pattern Synchronization Select 0 Synchronizes at (held at initial state during) BOL \& BOS 1 Synchronizes at (held at initial state during) BOS only LVDS Output Pattern Select 000 Select AFE output (normal operation) (Must be 00 for AFE Test Patterns) 001 Select 0x2A \& 0x55 alternating patterns (all 3 pairs) 010 Selects 0x2A (all 3 pairs) 011 Selects 0×55 (all 3 pairs) 100 Selects 0×00 (all 4 pairs) (Differential 0 on all outputs) 101 Selects 0x7F (all 4 pairs) (Differential 1 on all outputs) AFE Test Pattern - Up-count Rate Select 0 Up-count at pixel rate 1 Up-count at BOL Test Pattern - AFE Data Select - (Bits 6:4 must be 000 for AFE Test Patterns) 000 Selects ADC output (normal operation) 001 Selects up-counter output 010 Selects 0xFF00 - fixed data 011 Selects 0xAA55-fixed data 100 Selects 0×0000 - fixed data 101 Selects 0xFFFF - fixed data 110 Selects 0x00FF - fixed data 111 Selects 0x55AA - fixed data
0	7	7	00000000	$\begin{gathered} {[5]} \\ {[4]} \\ {[3]} \\ {[2]} \\ {[1]} \\ {[0]} \end{gathered}$	Configuration 7	Timing Generator Output Driver Strength PHIA1, PHIA2 - $0=$ Normal, $1=$ High PHIB1, PHIB2-0 = Normal, $1=$ High PHIC1, PHIC2-0 = Normal, $1=$ High RS - $0=$ Normal, $1=$ High CP - $0=$ Normal, $1=$ High SH1, SH2, SH3, SH4, SH5-0 = Normal, $1=$ High
0	8	8	00000000	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	$\begin{gathered} \text { OSR } \\ \text { CLAMP Start } \\ \text { Edge } \end{gathered}$	Not Used CLAMP_R Start Edge - Default $=0 d$
0	9	9	00010000	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	$\begin{gathered} \text { OSR } \\ \text { CLAMP Stop } \\ \text { Edge } \end{gathered}$	Not Used CLAMP_R Stop Edge $\boldsymbol{-}$ Default $=16 \mathrm{~d}$
0	10	A	00000000	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	OSG CLAMP Start Edge	Not Used CLAMP_G Start Edge $\boldsymbol{-}$ Default $=\mathbf{0 d}$
0	11	B	00010000	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	OSG CLAMP Stop Edge	Not Used CLAMP_G Stop Edge $\boldsymbol{-}$ Default $=16 \mathrm{~d}$
0	12	C	00000000	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	$\begin{aligned} & \text { OSB } \\ & \text { CLAMP Start } \\ & \text { Edge } \end{aligned}$	Not Used CLAMP_B Start Edge - Default $=0 d$

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
0	13	D	00010000	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	$\begin{aligned} & \text { OSB } \\ & \text { CLAMP Stop } \\ & \text { Edge } \end{aligned}$	Not Used CLAMP_B Stop Edge - Default $=16 \mathrm{~d}$
0	14	E	00010110	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	OSR SAMPLE Start Edge	Not Used SAMPLE_R Start Edge - Default = 22d
0	15	F	00100110	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	$\begin{gathered} \text { OSR } \\ \text { SAMPLE Stop } \\ \text { Edge } \end{gathered}$	Not Used SAMPLE_R Stop Edge - Default = 38d
0	16	10	00010110	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	OSG SAMPLE Start Edge	Not Used SAMPLE_G Start Edge - Default = 22d
0	17	11	00100110	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	$\begin{gathered} \text { OSG } \\ \text { SAMPLE Stop } \\ \text { Edge } \end{gathered}$	Not Used SAMPLE_G Stop Edge - Default = 38d
0	18	12	00010110	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	OSB SAMPLE Start Edge	Not Used SAMPLE_B Start Edge - Default = 22d
0	19	13	00100110	$\begin{aligned} & {[7: 6]} \\ & {[5: 0]} \end{aligned}$	OSB SAMPLE Stop Edge	Not Used SAMPLE_B Stop Edge - Default = 38d
0	20	14	00000000	[7] [6] [5:3] [2:0]	 Clamp Monitor 0	Not Used SH_R Capture Monitor Override 0 SAMPB=SAMPB, CLAMPB=CLAMPB - Default 1 SAMPB = INCLK, CLAMPB = SH_R Selection bits for RS (user test mode) 000 Normal output 001 SAMPR Output 010 SAMPG Output 011 SAMPB Output 100 CLAMPR Output 101 CLAMPG Output 110 CLAMPB Output 111 PIXPHASE Output Selection bits for CP (user test mode) 000 Normal output 001 SAMPR Output 010 SAMPG Output 011 SAMPB Output 100 CLAMPR Output 101 CLAMPG Output 110 CLAMPB Output 111 PIXPHASE Output

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	
0	21	15	00000000	$[7: 6]$		Register Description

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
PAGE 1						
1	0	0	00000000	[7] [6] [5] [4:3] [2] [1] [0]	Gain Mode	CDS/SH Gain Blue - $0=1 \times$ Gain, $1=2 x$ Gain CDS/SH Gain Green - 0 = 1x Gain, 1 = $\mathbf{2 x}$ Gain CDS/SH Gain Blue - $0=1 x$ Gain, $1=2 x$ Gain Not used Individual CDS/SH Gain Enable 0 Use Bit 0 for CDS/SH Gain 1 Use Bits 7:5 for CDS/SH Gains Dual Gain Mode Enable 0 Single Gain Setting Within Each Line 1 Two Gain Settings Within Each Line Gain Select 0 1x CDS/SH Gain - Default 1 2x CDS/SH Gain
1	1	1	01100001	[7:0]	Red PGA	Default $=97 \mathrm{~d}$ for Gain $=1$
1	2	2	01100001	[7:0]	Green PGA	Default = 97d for Gain = 1
1	3	3	01100001	[7:0]	Blue PGA	Default $=97 \mathrm{~d}$ for Gain $=1$
1	4	4	10000000	[7:0]	Red Even DAC MSB	DAC[9:2]
1	5	5	00000000	$\begin{aligned} & {[7: 2]} \\ & {[1: 0]} \end{aligned}$	Red Even DAC LSB	Not Used DAC[1:0]
1	6	6	10000000	[7:0]	Green Even DAC MSB	DAC[9:2]
1	7	7	00000000	$\begin{aligned} & {[7: 2]} \\ & {[1: 0]} \end{aligned}$	Green Even DAC LSB	Not Used DAC[1:0]
1	8	8	10000000	[7:0]	Blue Even DAC MSB	DAC[9:2]
1	9	9	00000000	$\begin{aligned} & {[7: 2]} \\ & {[1: 0]} \end{aligned}$	Blue Even DAC LSB	Not Used DAC[1:0]
1	10	A	10000000	[7:0]	Red Odd DAC MSB	DAC[9:2]
1	11	B	00000000	$\begin{aligned} & {[7: 2]} \\ & {[1: 0]} \end{aligned}$	$\begin{gathered} \text { Red Odd DAC } \\ \text { LSB } \end{gathered}$	Not Used DAC[1:0]
1	12	C	10000000	[7:0]	Green Odd DAC MSB	DAC[9:2]
1	13	D	00000000	$\begin{aligned} & {[7: 2]} \\ & {[1: 0]} \end{aligned}$	Green Odd DAC LSB	Not Used DAC[1:0]

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
1	14	E	10000000	[7:0]	$\begin{aligned} & \text { Blue Odd DAC } \\ & \text { MSB } \end{aligned}$	DAC[9:2]
1	15	F	00000000	$\begin{aligned} & {[7: 2]} \\ & {[1: 0]} \end{aligned}$	Blue Odd DAC LSB	Not Used DAC[1:0]
1	16	10	01000000	$\begin{gathered} {[7]} \\ {[6: 0]} \end{gathered}$	Red Even Digital Offset	Not Used Digital Offset
1	17	11	01000000	$\begin{gathered} {[7]} \\ {[6: 0]} \end{gathered}$	Green Even Digital Offset	Not Used Digital Offset
1	18	12	01000000	$\begin{gathered} {[7]} \\ {[6: 0]} \end{gathered}$	Blue Even Digital Offset	Not Used Digital Offset
1	19	13	01000000	$\begin{gathered} {[7]} \\ {[6: 0]} \end{gathered}$	Red Odd Digital Offset	Not Used Digital Offset
1	20	14	01000000	$\begin{gathered} {[7]} \\ {[6: 0]} \end{gathered}$	Green Odd Digital Offset	Not Used Digital Offset
1	21	15	01000000	$\begin{gathered} {[7]} \\ {[6: 0]} \end{gathered}$	Blue Odd Digital Offset	Not Used Digital Offset
1	22	16	01100001	[7:0]	Red High Gain PGA	PGA setting during high gain portion of line when dual gain mode is enabled Default = 97d for Gain = 1
1	23	17	01100001	[7:0]	Green High Gain PGA	PGA setting during high gain portion of line when dual gain mode is enabled Default = 97d for Gain = 1
1	24	18	01100001	[7:0]	Blue High Gain PGA	PGA setting during high gain portion of line when dual gain mode is enabled Default = 97d for Gain = 1
1	28	1 C	01000000	$\begin{gathered} {[7]} \\ {[6: 0]} \end{gathered}$	Red Channel Bimodal	Not Used Offset Binary digital Offset for Bimodal Correction
1	29	1D	01000000	$\begin{gathered} {[7]} \\ {[6: 0]} \end{gathered}$	Green Channel Bimodal	Not Used Offset Binary digital Offset for Bimodal Correction
1	30	1E	01000000	$\begin{gathered} {[7]} \\ {[6: 0]} \end{gathered}$	Blue Channel Bimodal	Not Used Offset Binary digital Offset for Bimodal Correction
1	31	1F	00000000	[3:0]	Page Register	Used to select desired page of registers being accessed.

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description	
PAGE 2							
2	0	0	00000000	[7:3] [2] $[1: 0]$	Calibration Mode	Not Used DDAC Disable 0 AFE output includes DDAC (digital DAC offset) correction 1 AFE output does not include DDAC correction Calibration Mode 00 Black Calibration Only 01 White and Black Calibration - Full/Binary White Cal 10 White and Black Calibration - Fine Tuning 11 Reserved	
2	1	1	00000000	[7:0]	Calibration \# Lines	Calibration is active for this number of lines 0 Reserved 1d to 254 d sets number of lines 255d sets infinite calibration	
2	2	2	00010100	[5:4] [3:2] [1:0]	Black Cal Config	DDAC Scaling 00 Linear-1 LSB adjust 01 Scaling $=1 / 2$ 10 Scaling $=1 / 4$ 11 Scaling $=1 / 8$ ADAC Scaling 00 Reserved (No scaling) 01 Scaling $=1 / 2$ 10 Scaling $=1 / 4$ 11 Scaling $=1 / 8$ Number of Black Pixels Number of pixels averaged by Black Loop 004 pixels 018 pixels 1016 pixels 1132 pixels	
2	3	3	01000000	[7:0]	Black Target	Target level for Black calibration Range is 0 to 255 at 11 bit level or 0 to 8160 at 16 bit level (default $=64$ or 2048 at 16 bit level)	
2	4	4	01000011	$[6: 3]$ [2:0]	White Cal Config	White Loop Tolerance White Cal success if \|White Peak - White Target	< White Loop Tolerance 0 to 15 at 10 bit level - Default $=8$ Number of White Pixels Number of White Pixels processed in moving window average to find White Peak in line between White Pixels Start and White Pixels End 0004 pixels 0018 pixels 01016 pixels 01132 pixels - Default
2	5	5	10000000	[7:0]	White Target	White Target White Target $=768 \mathrm{~d}+[7: 0]$ at 10 bit level Range is 768 d to 1023 d at 10 bit level or 49152 to 65472 at 16 bit level (Default $=896 d$ or 57344 at 16 bit level)	

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
2	6	6	00000100	[7:0]	AutoCLPIN Start	\# of pixels from SH interval End to Start of Black Pixel Clamping (Default $=4 \mathrm{~d}$)
2	7	7	00001100	[7:0]	$\begin{aligned} & \text { AutoCLPIN } \\ & \text { End } \end{aligned}$	\# of pixels from SH interval End to End of Black Pixel Clamping (Default = 12d)
2	8	8	00010000	[7:0]	Black Loop Start	\# of pixels from SH interval End to Start of Black Loop Pixels (Default = 16d)
2	9	9	00000000	[7:0]	Active/White Pixels Start MSB	\# of Pixels between SH Interval End and first Valid Data Pixel (Default = 64d)
2	10	A	00010100	[7:0]	Active/White Pixels Start LSB	
2	11	B	00010000	[7:0]	Active/White Pixels End MSB	\# of Pixels between SH Interval End and last Valid Data Pixel $($ Default $=4096)$
2	12	C	00000000	[7:0]	Active/White Pixels End LSB	
2	13	D	00010000	[7:0]	Line Length MSB	\# of Pixel Periods between beginning of consecutive SH Intervals (Default $=4160$)
2	14	E	01000000	[7:0]	Line Length LSB	\# of Pixel Periods between beginning of consecutive SH Intervals
2	15	F	00000000	$\begin{aligned} & {[7: 2]} \\ & {[1: 0]} \end{aligned}$	Line Length Multiplier	Not Used Multiplier factor for Active/White, LSPIX ON/OFF and Line Length Pixels Register Settings $\begin{array}{ll} 00 & 1 x \\ 01 & 2 x \\ 10 & 4 x \end{array}$

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
2	16	10	00000000	[7] 6:5 4:3 [1:0]	Line Mode	Not Used CIS - 2 Color Coefficient Select Select which color PGA/DAC coefficients are used in 2 color CIS sequences 00 Red and Green Lamp/Coefficients Used 01 Green and Blue Lamp/Coefficients Used 10 Red and Blue Lamp/Coefficients Used 11 Reserved CCD/CIS Mode Select 00 Normal CCD Timing 01 CISa (2, 3, or 4 color sequences) 10 CISb (2 or 3 color sequences) 11 Reserved \# SH Intervals. How many different SH intervals in a sequence of lines 001 SH Interval - Same SH timing every line 012 SH Intervals - 2 different SH interval timings 103 SH Intervals - 3 different SH interval timings 114 SH Intervals - 4 different SH interval timings SH States are allocated as follows: 1 Interval $1=0$ to 30 2 Interval $1=0$ to 14 , Interval $2=15$ to 30 $3 \operatorname{Int} 1=0$ to $9, \operatorname{Int} 2=10$ to $19, \operatorname{Int} 3=20$ to 30 $4 \operatorname{lnt} 1=0$ to $6, \operatorname{lnt} 2=7$ to $14, \operatorname{lnt} 3=15$ to $22, \operatorname{lnt} 4=$ 23 to 30
2	17	11	00000000	$\begin{aligned} & {[7: 3]} \\ & {[2: 0]} \end{aligned}$	SH State Length Multiplier	Not Used SH State Length values are multiplied by this factor 000 SH Timings x1 001 SH Timings x2 010 SH Timings $\times 4$ 011 SH Timings x8 100 SH Timings $\times 16$ 101 to 111 Reserved

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
2	18	12	00000000	$[7: 6]$		Not Used PHIA On Delay
0						

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description	
2	27	1 B	00000010	$[7]$		Load SSCG state machine (SSCG Enable 0->1 also performs this function) 0 Normal 1 Load state machine (self clearing)	
2							

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
PAGE 3						
3	0	0	00000000	[7:0]	SH State 0 Length	Sets length of this SH interval state
3	1	1	00000000	[7:0]	SH State 1 Length	Sets length of this SH interval state
3	2	2	00000000	[7:0]	SH State 2 Length	Sets length of this SH interval state
3	3	3	00000000	[7:0]	SH State 3 Length	Sets length of this SH interval state
3	4	4	00000000	[7:0]	SH State 4 Length	Sets length of this SH interval state
3	5	5	00000000	[7:0]	SH State 5 Length	Sets length of this SH interval state
3	6	6	00000000	[7:0]	SH State 6 Length	Sets length of this SH interval state
3	7	7	00000000	[7:0]	SH State 7 Length	Sets length of this SH interval state
3	8	8	00000000	[7:0]	SH State 8 Length	Sets length of this SH interval state
3	9	9	00000000	[7:0]	SH State 9 Length	Sets length of this SH interval state
3	10	A	00000000	[7:0]	SH State 10 Length	Sets length of this SH interval state
3	11	B	00000000	[7:0]	SH State 11 Length	Sets length of this SH interval state
3	12	C	00000000	[7:0]	SH State 12 Length	Sets length of this SH interval state
3	13	D	00000000	[7:0]	SH State 13 Length	Sets length of this SH interval state
3	14	E	00000000	[7:0]	SH State 14 Length	Sets length of this SH interval state
3	15	F	00000000	[7:0]	SH State 15 Length	Sets length of this SH interval state
3	16	10	00000000	[7:0]	SH State 16 Length	Sets length of this SH interval state
3	17	11	00000000	[7:0]	$\begin{aligned} & \text { SH State } 17 \\ & \text { Length } \end{aligned}$	Sets length of this SH interval state
3	18	12	00000000	[7:0]	SH State 18 Length	Sets length of this SH interval state

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
3	19	13	00000000	[7:0]	SH State 19 Length	Sets length of this SH interval state
3	20	14	00000000	[7:0]	SH State 20 Length	Sets length of this SH interval state
3	21	15	00000000	[7:0]	SH State 21 Length	Sets length of this SH interval state
3	22	16	00000000	[7:0]	SH State 22 Length	Sets length of this SH interval state
3	23	17	00000000	[7:0]	SH State 23 Length	Sets length of this SH interval state
3	24	18	00000000	[7:0]	SH State 24 Length	Sets length of this SH interval state
3	25	19	00000000	[7:0]	SH State 25 Length	Sets length of this SH interval state
3	26	1A	00000000	[7:0]	SH State 26 Length	Sets length of this SH interval state
3	27	1B	00000000	[7:0]	SH State 27 Length	Sets length of this SH interval state
3	28	1 C	00000000	[7:0]	SH State 28 Length	Sets length of this SH interval state
3	29	1D	00000000	[7:0]	SH State 29 Length	Sets length of this SH interval state
3	30	1E	00000000	[7:0]	SH State 30 Length	Sets length of this SH interval state
3	31	1F		[3:0]	Page Register	

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
PAGE 4						
4	0	0	00000000	[7] [6] [5] [4] [3] [2] [1] [0]	$\begin{aligned} & \text { SH State } 0 \\ & \text { PHI, RS, CP } \end{aligned}$	Controls whether these outputs are 1 or 0 during this SH interval state RS $0=$ Low, $1=$ High CP $0=$ Low, $1=$ High PHIA2 $0=$ Low, $1=$ High PHIA1 0 = Low, 1 = High PHIB2 0 = Low, 1 = High PHIB1 $0=$ Low, 1 = High PHIC2 0 = Low, $1=$ High PHIC1 $0=$ Low, $1=$ High
4	1	1	00000000	[7:0]	SH State 1 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	2	2	00000000	[7:0]	SH State 2 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	3	3	00000000	[7:0]	SH State 3 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	4	4	00000000	[7:0]	SH State 4 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	5	5	00000000	[7:0]	SH State 5 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	6	6	00000000	[7:0]	SH State 6 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	7	7	00000000	[7:0]	SH State 7 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	8	8	00000000	[7:0]	SH State 8 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	9	9	00000000	[7:0]	SH State 9 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	10	A	00000000	[7:0]	$\begin{aligned} & \text { SH State } 10 \\ & \text { PHI, RS, CP } \end{aligned}$	Controls whether these outputs are 1 or 0 during this SH interval state
4	11	B	00000000	[7:0]	SH State 11 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	12	C	00000000	[7:0]	SH State 12 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	13	D	00000000	[7:0]	SH State 13 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	14	E	00000000	[7:0]	SH State 14 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	15	F	00000000	[7:0]	SH State 15 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	16	10	00000000	[7:0]	SH State 16 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
4	17	11	00000000	[7:0]	SH State 17 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	18	12	00000000	[7:0]	SH State 18 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	19	13	00000000	[7:0]	SH State 19 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	20	14	00000000	[7:0]	SH State 20 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	21	15	00000000	[7:0]	SH State 21 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	22	16	00000000	[7:0]	SH State 22 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	23	17	00000000	[7:0]	SH State 23 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	24	18	00000000	[7:0]	SH State 24 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	25	19	00000000	[7:0]	SH State 25 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	26	1A	00000000	[7:0]	SH State 26 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	27	1B	00000000	[7:0]	SH State 27 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	28	1C	00000000	[7:0]	SH State 28 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	29	1D	00000000	[7:0]	SH State 29 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	30	1E	00000000	[7:0]	SH State 30 PHI, RS, CP	Controls whether these outputs are 1 or 0 during this SH interval state
4	31	1F		[3:0]	Page Register	

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
PAGE 5						
5	0	0	00000000	[7:5] [4] [3] [2] [1] [0]	SH State 0 SH1-SH5	Not Used Controls whether these outputs are 1 or 0 during this SH interval state $\begin{aligned} & \text { SH5 } 0=\text { Low, } 1=\text { High } \\ & \text { SH4 } 0=\text { Low, } 1=\text { High } \\ & \text { SH3 } 0=\text { Low, } 1=\text { High } \\ & \text { SH2 } 0=\text { Low, } 1=\text { High } \\ & \text { SH1 } 0=\text { Low, } 1=\text { High } \end{aligned}$
5	1	1	00000000	[4:0]	SH State 1 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	2	2	00000000	[4:0]	SH State 2 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	3	3	00000000	[4:0]	SH State 3 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	4	4	00000000	[4:0]	SH State 4 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	5	5	00000000	[4:0]	SH State 5 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	6	6	00000000	[4:0]	SH State 6 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	7	7	00000000	[4:0]	SH State 7 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	8	8	00000000	[4:0]	$\begin{gathered} \text { SH State } 8 \\ \text { SH1-SH5 } \end{gathered}$	Controls whether these outputs are 1 or 0 during this SH interval state
5	9	9	00000000	[4:0]	SH State 9 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	10	A	00000000	[4:0]	SH State 10 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	11	B	00000000	[4:0]	$\begin{gathered} \text { SH State } 11 \\ \text { SH1-SH5 } \end{gathered}$	Controls whether these outputs are 1 or 0 during this SH interval state
5	12	C	00000000	[4:0]	SH State 12 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	13	D	00000000	[4:0]	SH State 13 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	14	E	00000000	[4:0]	SH State 14 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	15	F	00000000	[4:0]	SH State 15 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	16	10	00000000	[4:0]	SH State 16 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
5	17	11	00000000	[4:0]	$\text { SH State } 17$	Controls whether these outputs are 1 or 0 during this SH interval state
5	18	12	00000000	[4:0]	$\begin{gathered} \text { SH State } 18 \\ \text { SH1-SH5 } \end{gathered}$	Controls whether these outputs are 1 or 0 during this SH interval state
5	19	13	00000000	[4:0]	$\begin{aligned} & \text { SH State } 19 \\ & \text { SH1-SH5 } \end{aligned}$	Controls whether these outputs are 1 or 0 during this SH interval state
5	20	14	00000000	[4:0]	SH State 20 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	21	15	00000000	[4:0]	$\begin{aligned} & \text { SH State } 21 \\ & \text { SH1-SH5 } \end{aligned}$	Controls whether these outputs are 1 or 0 during this SH interval state
5	22	16	00000000	[4:0]	SH State 22 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	23	17	00000000	[4:0]	SH State 23 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	24	18	00000000	[4:0]	SH State 24 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	25	19	00000000	[4:0]	SH State 25 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	26	1A	00000000	[4:0]	$\text { SH State } 26$ SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	27	1B	00000000	[4:0]	SH State 27 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	28	1 C	00000000	[4:0]	$\begin{aligned} & \text { SH State } 28 \\ & \text { SH1-SH5 } \end{aligned}$	Controls whether these outputs are 1 or 0 during this SH interval state
5	29	1D	00000000	[4:0]	SH State 29 SH1-SH5	Controls whether these outputs are 1 or 0 during this SH interval state
5	30	1E	00000000	[4:0]	$\begin{aligned} & \text { SH State } 30 \\ & \text { SH1-SH5 } \end{aligned}$	Controls whether these outputs are 1 or 0 during this SH interval state
5	31	1F		[3:0]	Page Register	

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
PAGE 6						
6	0	0	00000000	[1:0]	PHIAO	Upper 2 MSb (first shifted out of HSTG)
6	1	1	00000000	[7:0]	PHIA1	Next 8
6	2	2	00000000	[7:0]	PHIA2	Next 8
6	3	3	00000000	[7:0]	PHIA3	Next 8
6	4	4	00000000	[7:0]	PHIA4	Next 8
6	5	5	00000000	[7:0]	PHIA5	Lower 8 LSb (last shifted out of HSTG)
6	6	6	00000000	[1:0]	PHIB0	Upper 2 MSb (first shifted out of HSTG)
6	7	7	00000000	[7:0]	PHIB1	Next 8
6	8	8	00000000	[7:0]	PHIB2	Next 8
6	9	9	00000000	[7:0]	PHIB3	Next 8
6	10	A	00000000	[7:0]	PHIB4	Next 8
6	11	B	00000000	[7:0]	PHIB5	Lower 8 LSb (last shifted out of HSTG)
6	12	C	00000000	[1:0]	PHICO	Upper 2 MSb (first shifted out of HSTG)
6	13	D	00000000	[7:0]	PHIC1	Next 8
6	14	E	00000000	[7:0]	PHIC2	Next 8
6	15	F	00000000	[7:0]	PHIC3	Next 8
6	16	10	00000000	[7:0]	PHIC4	Next 8
6	17	11	00000000	[7:0]	PHIC5	Lower 8 LSb (last shifted out of HSTG)
6	18	12	00000000	[1:0]	RSo	Upper 2 MSb (first shifted out of HSTG)
6	19	13	00000000	[7:0]	RS1	Next 8
6	20	14	00000000	[7:0]	RS2	Next 8
6	21	15	00000000	[7:0]	RS3	Next 8
6	22	16	00000000	[7:0]	RS4	Next 8
6	23	17	00000000	[7:0]	RS5	Lower 8 LSb (last shifted out of HSTG)
6	24	18	00000000	[1:0]	CP0	Upper 2 MSb (first shifted out of HSTG)
6	25	19	00000000	[7:0]	CP1	Next 8
6	26	1A	00000000	[7:0]	CP2	Next 8
6	27	1B	00000000	[7:0]	CP3	Next 8

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
6	28	1 C	00000000	[7:0]	CP4	Next 8
6	29	1D	00000000	[7:0]	CP5	Lower 8 LSb (last shifted out of HSTG)
6	30	1E	00000000	[7:5] [4] [3] [2] [1] [0]	HSPIX Rate Select	Not Used Allows high speed generators to operate at $1 / 2$ normal rate. So the full sequence will be clocked out over 2 pixels instead of 1 pixel PHIA $0=$ Normal Rate, $1=1 / 2$ Rate PHIB $0=$ Normal Rate, $1=1 / 2$ Rate PHIC $0=$ Normal Rate, $1=1 / 2$ Rate RS $0=$ Normal Rate, $1=1 / 2$ Rate CP $0=$ Normal Rate, $1=1 / 2$ Rate
6	31	1F		[3:0]	Page Register	

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
PAGE 7						
7	0	0	00000000	[7:0]	SH1 PIXEL ON MSB	MSB of Pixel count where this signal goes low to high Range is 0 to 65535
7	1	1	00000000	[7:0]	$\begin{aligned} & \text { SH1 } \\ & \text { PIXEL ON } \\ & \text { LSB } \end{aligned}$	LSB of Pixel count where this signal goes low to high
7	2	2	00000000	[7:0]	SH1 PIXEL OFF MSB	MSB of Pixel count where this signal goes high to low Range is 0 to 65535
7	3	3	00000000	[7:0]	SH1 PIXEL OFF LSB	LSB of Pixel count where this signal goes high to low
7	4	4	00000000	[7:0]	SH2 PIXEL ON MSB	MSB of Pixel count where this signal goes low to high Range is 0 to 65535
7	5	5	00000000	[7:0]	SH2 PIXEL ON LSB	LSB of Pixel count where this signal goes low to high
7	6	6	00000000	[7:0]	SH2 PIXEL OFF MSB	MSB of Pixel count where this signal goes high to low Range is 0 to 65535
7	7	7	00000000	[7:0]	SH2 PIXEL OFF LSB	LSB of Pixel count where this signal goes high to low
7	8	8	00000000	[7:0]	SH3 PIXEL ON MSB	MSB of Pixel count where this signal goes low to high Range is 0 to 65535
7	9	9	00000000	[7:0]	$\begin{gathered} \text { SH3 } \\ \text { PIXEL ON } \\ \text { LSB } \end{gathered}$	LSB of Pixel count where this signal goes low to high
7	10	A	00000000	[7:0]	SH3 PIXEL OFF MSB	MSB of Pixel count where this signal goes high to low Range is 0 to 65535
7	11	B	00000000	[7:0]	SH3 PIXEL OFF LSB	LSB of Pixel count where this signal goes high to low
7	12	C	00000000	[7:0]	SH4 PIXEL ON MSB	MSB of Pixel count where this signal goes low to high Range is 0 to 65535
7	13	D	00000000	[7:0]	SH4 PIXEL ON LSB	LSB of Pixel count where this signal goes low to high
7	14	E	00000000	[7:0]	SH4 PIXEL OFF MSB	MSB of Pixel count where this signal goes high to low Range is 0 to 65535

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
7	15	F	00000000	[7:0]	SH4 PIXEL OFF LSB	LSB of Pixel count where this signal goes high to low
7	16	10	00000000	[7:0]	$\begin{gathered} \text { SH5 } \\ \text { PIXEL ON } \\ \text { MSB } \end{gathered}$	MSB of Pixel count where this signal goes low to high Range is 0 to 65535
7	17	11	00000000	[7:0]	$\begin{gathered} \text { SH5 } \\ \text { PIXEL ON } \\ \text { LSB } \end{gathered}$	LSB of Pixel count where this signal goes low to high
7	18	12	00000000	[7:0]	SH5 PIXEL OFF MSB	MSB of Pixel count where this signal goes high to low Range is 0 to 65535
7	19	13	00000000	[7:0]	SH5 PIXEL OFF LSB	LSB of Pixel count where this signal goes high to low
7	20	14	00000000	[7:4] [3] [2] [1] [0]	PHIA Polarity Override	Not Used Polarity Override Line 3 0 Signal Not Inverted 1 Signal Inverted Polarity Override Line 2 Polarity Override Line 1 Polarity Override Line 0
7	21	15	00000000	[7:4] [3] [2] [1] [0]	PHIB Polarity Override	Not Used Polarity Override Line 3 0 Signal Not Inverted 1 Signal Inverted Polarity Override Line 2 Polarity Override Line 1 Polarity Override Line 0
7	22	16	00000000	[7:4] [3] [2] [1] [0]	PHIC Polarity Override	Not Used Polarity Override Line 3 0 Signal Not Inverted 1 Signal Inverted Polarity Override Line 2 Polarity Override Line 1 Polarity Override Line 0
7	23	17	00000000	[7:4] [3] [2] [1] [0]	RS Polarity Override	Not Used Polarity Override Line 3 0 Signal Not Inverted 1 Signal Inverted Polarity Override Line 2 Polarity Override Line 1 Polarity Override Line 0

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
7	24	18	00000000	$[7: 4]$		Not Used
7						

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
7	30	1 E	00000000		Reserved	
7	31	1 F		$[3: 0]$	Page Register	

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
8	4	4	00000000	[7] [6] [5] [4] [3] [2] [1] [0]	SH1, SH2 Polarity / State	Not Used SH1 Active ($0=$ Tristate, $1^{*}=$ Active) SH1 Source ($0^{*}=$ Timing, $1=$ DC logic 1) SH1 Polarity ($0^{*}=$ Not Inverted, $1=$ Inverted $)$ Not Used SH2 Active ($0=$ Tristate, $1^{*}=$ Active $)$ SH2 Source ($0^{*}=$ Timing, $1=$ DC logic 1) SH2 Polarity ($0^{*}=$ Not Inverted, $1=$ Inverted)
8	5	5	00000000	[7] [6] [5] [4] [3] [2] [1] [0]	SH3, SH4 Polarity / State	Not Used SH3 Active ($0=$ Tristate, $1^{*}=$ Active) SH3 Source ($0^{*}=$ Timing, $1=$ DC logic 1) SH3 Polarity ($0^{*}=$ Not Inverted, $1=$ Inverted $)$ Not Used SH4 Active ($0=$ Tristate, $1^{*}=$ Active) SH4 Source ($0^{*}=$ Timing, $1=$ DC logic 1) SH4 Polarity ($0^{*}=$ Not Inverted, $1=$ Inverted $)$
8	6	6	00000000	[7] [6] [5] [4] [3:0]	SH5 Polarity / State	Not Used SH5 Active ($0=$ Tristate, $1^{*}=$ Active $)$ SH5 Source (0* = Timing, $1=\mathrm{DC}$ logic 1) SH5 Polarity (0* = Not Inverted, 1 = Inverted) Not Used
8	7	7	00000000	[7:0]	Reserved	

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Page (dec) \& Addr (dec) \& Addr (hex) \& Default (binary) \& Bits \& Register Title \& Register Description

\hline 8 \& 9 \& 9 \& 00000000 \& [7:4]

[\& CB1/CB0 CB Mapping \& | Selects CB Bit Mapping |
| :--- |
| CB1 Mapping |
| 0000 CBO1 from LM98714 definition |
| 0001 CBO0 from LM98714 definition |
| 0010 CBO1 from LM98714 definition |
| 0011 CBO2 from LM98714 definition |
| 0100 CBO3 from LM98714 definition |
| 0101 CBO4 from LM98714 definition |
| 0110 R - High for a red channel pixel |
| 0111 G - High for a green channel pixel |
| 1000 B - High for a blue channel pixel |
| 1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if |
| TXOUTO disabled |
| 1010 Ping - High for pixels processed by the Ping |
| section of a channel, low for Pong |
| 1011 Line\#Isb - Line $=0$ to 3 for lines 0 to 3 in multiline |
| sequences |
| 1100 Line\#msb |
| 1101 Black Loop Pixels - High for pixels processed by the Black Loop |
| 1110 ActiveWhite Loop Pixels - High for pixels processed by the White Loop |
| 1111 CLP Pixels - High for pixels where the input CLP switch is closed |
| CB0 Mapping |
| 0000 CBO0 from LM98714 definition |
| 0001 CBO0 from LM98714 definition |
| 0010 CBO1 from LM98714 definition |
| 0011 CBO2 from LM98714 definition |
| 0100 CBO3 from LM98714 definition |
| 0101 CBO4 from LM98714 definition |
| 0110 R - High for a red channel pixel |
| 0111 G - High for a green channel pixel |
| 1000 B - High for a blue channel pixel |
| 1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if |
| TXOUT0 disabled |
| 1010 Ping - High for pixels processed by the Ping |
| section of a channel, low for Pong |
| 1011 Line\#lsb - Line $=0$ to 3 for lines 0 to 3 in multiline |
| sequences |
| 1100 Line\#msb |
| 1101 Black Loop Pixels - High for pixels processed by the Black Loop |
| 1110 ActiveWhite Loop Pixels - High for pixels processed by the White Loop |
| 1111 CLP Pixels - High for pixels where the input CLP switch is closed |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Page (dec) \& Addr (dec) \& Addr (hex) \& Default (binary) \& Bits \& Register Title \& Register Description

\hline 8 \& 10 \& A \& 00000000 \& [7:4]

[\& CB3/CB2 CB

Mapping \& | Selects CB Bit Mapping |
| :--- |
| CB3 Mapping |
| 0000 CBO30 from LM98714 definition |
| 0001 CBOO from LM98714 definition |
| 0010 CBO1 from LM98714 definition |
| 0011 CBO2 from LM98714 definition |
| 0100 CBO3 from LM98714 definition |
| 0101 CBO4 from LM98714 definition |
| 0110 R - High for a red channel pixel |
| 0111 G - High for a green channel pixel |
| 1000 B - High for a blue channel pixel |
| 1001 Parity - 21 bit if TXOUTO enabled, 14 bit if |
| TXOUTO disabled |
| 1010 Ping - High for pixels processed by the Ping section of a channel, low for Pong |
| 1011 Line\#lsb - Line $=0$ to 3 for lines 0 to 3 in multiline sequences |
| 1100 Line\#msb |
| 1101 Black Loop Pixels - High for pixels processed by the Black Loop |
| 1110 ActiveWhite Loop Pixels - High for pixels processed by the White Loop |
| 1111 CLP Pixels - High for pixels where the input CLP switch is closed |
| CB2 Mapping |
| 0000 CBO2 from LM98714 definition |
| 0001 CBOO from LM98714 definition |
| 0010 CBO1 from LM98714 definition |
| 0011 CBO2 from LM98714 definition |
| 0100 CBO3 from LM98714 definition |
| 0101 CBO4 from LM98714 definition |
| 0110 R - High for a red channel pixel |
| 0111 G - High for a green channel pixel |
| 1000 B - High for a blue channel pixel |
| 1001 Parity - 21 bit if TXOUTO enabled, 14 bit if |
| TXOUTO disabled |
| 1010 Ping - High for pixels processed by the Ping section of a channel, low for Pong |
| 1011 Line\#lsb - Line $=0$ to 3 for lines 0 to 3 in multiline sequences |
| 1100 Line\#msb |
| 1101 Black Loop Pixels - High for pixels processed by the Black Loop |
| 1110 ActiveWhite Loop Pixels - High for pixels processed by the White Loop |
| 1111 CLP Pixels - High for pixels where the input CLP switch is closed |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Page (dec) \& Addr (dec) \& Addr (hex) \& Default (binary) \& Bits \& Register Title \& Register Description

\hline 8 \& 11 \& B \& 00000000 \& [7:4]

[\& D2/CB4 CB Mapping \& | Selects CB Bit Mapping |
| :--- |
| D2 Mapping |
| 0000 D2 (Normal output for particular bit position) |
| 0001 CBO0 from LM98714 definition |
| 0010 CBO1 from LM98714 definition |
| 0011 CBO2 from LM98714 definition |
| 0100 CBO3 from LM98714 definition |
| 0101 CBO4 from LM98714 definition |
| 0110 R - High for a red channel pixel |
| 0111 G - High for a green channel pixel |
| 1000 B - High for a blue channel pixel |
| 1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if |
| TXOUT0 disabled |
| 1010 Ping - High for pixels processed by the Ping |
| section of a channel, low for Pong |
| 1011 Line\#lsb - Line $=0$ to 3 for lines 0 to 3 in multiline |
| sequences |
| 1100 Line\#msb |
| 1101 Black Loop Pixels - High for pixels processed by the Black Loop |
| 1110 ActiveWhite Loop Pixels - High for pixels processed by the White Loop |
| 1111 CLP Pixels - High for pixels where the input CLP switch is closed |
| CB4 Mapping |
| 0000 CBO4 from LM98714 definition |
| 0001 CBO0 from LM98714 definition |
| 0010 CBO1 from LM98714 definition |
| 0011 CBO2 from LM98714 definition |
| 0100 CBO3 from LM98714 definition |
| 0101 CBO4 from LM98714 definition |
| 0110 R - High for a red channel pixel |
| 0111 G - High for a green channel pixel |
| 1000 B - High for a blue channel pixel |
| 1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if |
| TXOUT0 disabled |
| 1010 Ping - High for pixels processed by the Ping |
| section of a channel, low for Pong |
| 1011 Line\#lsb - Line $=0$ to 3 for lines 0 to 3 in multiline |
| sequences |
| 1100 Line\#msb |
| 1101 Black Loop Pixels - High for pixels processed by the Black Loop |
| 1110 ActiveWhite Loop Pixels - High for pixels processed by the White Loop |
| 1111 CLP Pixels - High for pixels where the input CLP switch is closed |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Page (dec) \& Addr (dec) \& Addr (hex) \& Default (binary) \& Bits \& Register Title \& Register Description

\hline 8 \& 12 \& C \& 00000000 \& [7:4]

[\& \begin{tabular}{l}
D4/D3 CB

Mapping

 \&

Selects CB Bit Mapping

D4 Mapping

0000 D4 (Normal output for particular bit position)

0001 CBO0 from LM98714 definition

0010 CBO1 from LM98714 definition

0011 CBO2 from LM98714 definition

0100 CBO3 from LM98714 definition

0101 CBO4 from LM98714 definition

0110 R - High for a red channel pixel

0111 G - High for a green channel pixel

1000 B - High for a blue channel pixel

1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if

TXOUT0 disabled

1010 Ping - High for pixels processed by the Ping

section of a channel, low for Pong

1011 Line\#lsb - Line $=0$ to 3 for lines 0 to 3 in multiline

sequences

1100 Line\#msb

1101 Black Loop Pixels - High for pixels processed by the Black Loop

1110 ActiveWhite Loop Pixels - High for pixels processed by the White Loop

1111 CLP Pixels - High for pixels where the input CLP switch is closed

D3 Mapping

0000 D4 (Normal output for particular bit position)

0001 CBO0 from LM98714 definition

0010 CBO1 from LM98714 definition

0011 CBO2 from LM98714 definition

0100 CBO3 from LM98714 definition

0101 CBO4 from LM98714 definition

0110 R - High for a red channel pixel

0111 G - High for a green channel pixel

1000 B - High for a blue channel pixel

1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if

TXOUT0 disabled

1010 Ping - High for pixels processed by the Ping

section of a channel, low for Pong

1011 Line\#lsb - Line $=0$ to 3 for lines 0 to 3 in multiline

sequences

1100 Line\#msb

1101 Black Loop Pixels - High for pixels processed by the Black Loop

1110 ActiveWhite Loop Pixels - High for pixels processed by the White Loop

1111 CLP Pixels - High for pixels where the input CLP

switch is closed
\end{tabular}

\hline
\end{tabular}

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
8	13	D	00000000	[7:4] [3:0]	D5 CB Mapping	Not Used Selects CB Bit Mapping D5 Mapping 0000 D5 (Normal output for particular bit position) 0001 CBO0 from LM98714 definition 0010 CBO1 from LM98714 definition 0011 CBO2 from LM98714 definition 0100 CBO3 from LM98714 definition 0101 CBO4 from LM98714 definition 0110 R - High for a red channel pixel 0111 G - High for a green channel pixel 1000 B - High for a blue channel pixel 1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if TXOUT0 disabled 1010 Ping - High for pixels processed by the Ping section of a channel, low for Pong 1011 Line\#lsb - Line $=0$ to 3 for lines 0 to 3 in multiline sequences 1100 Line\#msb 1101 Black Loop Pixels - High for pixels processed by the Black Loop 1110 ActiveWhite Loop Pixels - High for pixels processed by the White Loop 1111 CLP Pixels - High for pixels where the input CLP switch is closed
8	14	E	00000000	[7] [6] [5] [4] [3] [2] [1] [0]	Unlock State Output Values PHIA, PHIB, PHIC, RS, CP	Select level of CLK outputs during register updating (UNLOCK state) These can be modified during LOCK state to allow user to set up chip for what happens during the next UNLOCK state PHIA1 Unlock State $0 \text { = Low, } 1 \text { = High }$ PHIA2 Unlock State $0 \text { = Low, } 1 \text { = High }$ PHIB1 Unlock State $0 \text { = Low, } 1 \text { = High }$ PHIB2 Unlock State $0 \text { = Low, } 1 \text { = High }$ PHIC1 Unlock State $0 \text { = Low, } 1 \text { = High }$ PHIC2 Unlock State $0 \text { = Low, } 1 \text { = High }$ RS Unlock State $0 \text { = Low, } 1 \text { = High }$ CP Unlock State 0 = Low, 1 = High

Page (dec)	Addr (dec)	Addr (hex)	Default (binary)	Bits	Register Title	Register Description
8	15	F	00000000	$[7: 5]$ [4] [3] [2] [1] [0]	Unlock State Output Values SH1, SH2, SH3, SH4, SH5	Not Used Select level of CLK outputs during register updating (UNLOCK state) These can be modified during LOCK state to allow user to set up chip for what happens during the next UNLOCK state SH1 Unlock State 0 = Low, 1 = High SH2 Unlock State $0 \text { = Low, } 1 \text { = High }$ SH3 Unlock State $0 \text { = Low, } 1 \text { = High }$ SH4 Unlock State $0 \text { = Low, } 1 \text { = High }$ SH5 Unlock State $0 \text { = Low, } 1 \text { = High }$
8	16-17	$\begin{gathered} 10- \\ 11 \end{gathered}$	00000000		Reserved	
8	18	12	00000000	[7] [6] [5] [4] [3] [2] [1] [0]	Scrambler Inhibit 0	Reserved Inhibit Scrambling Individual LVDS Bits if 1. Do Not Scramble LVDS[6] Do Not Scramble LVDS[5] Do Not Scramble LVDS[4] Do Not Scramble LVDS[3] Do Not Scramble LVDS[2] Do Not Scramble LVDS[1] Do Not Scramble LVDS[0]
8	19	13	00000000	[7] [6] [5] [4] [3] [2] [1] [0]	Scrambler Inhibit 1	Reserved Inhibit Scrambling Individual LVDS Bits if 1. Do Not Scramble LVDS[13] Do Not Scramble LVDS[12] Do Not Scramble LVDS[11] Do Not Scramble LVDS[10] Do Not Scramble LVDS[9] Do Not Scramble LVDS[8] Do Not Scramble LVDS[7]
8	20	14	00000000	[7] [6] [5] [4] [3] [2] [1] [0]	Scrambler Inhibit 2	Reserved Inhibit Scrambling Individual LVDS Bits if 1. Do Not Scramble LVDS[20] Do Not Scramble LVDS[19] Do Not Scramble LVDS[18] Do Not Scramble LVDS[17] Do Not Scramble LVDS[16] Do Not Scramble LVDS[15] Do Not Scramble LVDS[14]
8	21-30	$\begin{aligned} & 15- \\ & 1 \mathrm{E} \end{aligned}$	00000000		Reserved	
8	31	1F		[3:0]	Page Register	

$A x \frown \frown 0.1 \mid A$

MTD56 (I
DETAILA
TYPICAL

