
Texas Instruments

TSW 1400

ADC FIRMWARE DESIGN DOCUMENT

11
th
DEC. 2011

TSW 1400 is a next generation of pattern generator and data capture card used to evaluate performance of

different high speed Analog to Digital (ADC) and Digital to Analog Converters (DAC). For the case of an

ADC, by capturing the sampled data over an LVDS/CMOS interface, TSW 1400 can be used to match

ADC performance against the data sheet. Together with the accompanying GUI, it is a complete system to

capture as well as assail the data samples. TSW1400 also enables the user to generate and send the desired

pattern or data samples to a DAC. A block diagram of the system is shown in Fig. 1.

Fig. 1. Block diagram of TSW 1400

� Analog to Digital Converter (ADC)

As shown in the block diagram, TSW1400 is plugged into an Evaluation Module (EVM) for an ADC

through LVDS (or CMOS) interface. Sampled data from the ADC is then taken by the firmware in

ALTERA Stratix IV FPGA which after deserializing and formatting the data, stores it into an external

onboard 1GB DDR RAM. It is this onboard memory which enables TSW1400 to store up to 512M data

samples each of 16-bits. To acquire data, firmware in the FPGA reads the data from memory and transmits

it on Serial Peripheral Interface (SPI). An onboard FTDI chip FT4232H which is a high speed USB 2.0 to

UART/MPSSE converter carrying a Multi-Protocol Synchronous Serial Engine takes data from SPI and

transmits it to the USB port.

TSW1400 comes with a GUI that acquires data from USB port and displays the sampled data in time and

frequency domain as well as computes various performance related parameters such as Signal to Noise

Ratio (SNR) and Spurious Frequency Dynamic Range (SFDR).

Below is provided the description of firmware design for LVDS ADCs. The design for the CMOS case is

very similar.

� FPGA Firmware

Fig. 2. Firmware block diagram

Firmware in the FPGA is the Verilog code that performs all the necessary tasks to deserialize the data

received from ADC and then reformat it into individual samples. The firmware also communicates to the

FTDI chip to send the data to the GUI. Fig. 2 shows various modules of firmware and the flow of data

through them. A detailed description of these modules is provided below.

� Top Level Module

clk_osc

reset_n

clk_lvds_rx0_p

clk_lvds_rx1_p

lvds_rx_port0_p[15:0]

lvds_rx_port1_p[15:0]

lvds_rx_port2_p[15:0]

clk_spi[2:0]

spi_mosi[2:0]

spi_ss[2:0]

ext_sync

spi_miso[2:0]

spi_ss_dut[1:0]

led[7:0]

mem_addr[15:0]

mem_ba[2:0]

mem_cas_n

mem_cke[1:0]

mem_clk[1:0]

mem_clk_n[1:0]

mem_cs_n[1:0]

mem_dm[7:0]

mem_dq[63:0]

mem_dqs[7:0]

mem_dqsn[7:0]

mem_odt[1:0]

mem_ras_n

mem_we_n

TOP

LEVEL

ADC

LVDS Interface

From

FT4232H

To

FT4232H

To

DDR

Memory

trig[3:0]

To

On board

SMA

Connectors
 Fig. 3. Top level module tsw1400_top

Table 1

 I/O description for tsw1400_top

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

clk_osc N/A Input 100 MHz clock from onboard oscillator

reset_n N/A Input Asynchronous signal used to reset the internal

logic as well as FIFOs

clk_lvds_rx0_p N/A Input DDR clock from the ADC

clk_lvds_rx1_p N/A Input DDR clock from the second ADC (for future

support)

lvds_rx_port0_p[15:0] clk_lvds_rx0_p Input Data from ADC

lvds_rx_port1_p[15:0] clk_lvds_rx1_p Input Data from the second ADC(for future

support)

lvds_rx_port2_p[15:0] clk_lvds_rx0_p Input This port provides additional 16-bit input data

for DUAL BUS ADCs

clk_spi[2:0] N/A Input SPI clocks from FT4232H for the three SPI

interfaces

spi_mosi[2:0] clk_spi[2] Input spi_mosi[1:0] are unused.. spi_mosi[2] is the

SPI interface used to program the register file.

spi_ss[2:0] clk_spi[2:0] Input spi_ss[1:0] are the slave select signals for the

two SPI interfaces used to transmit ADC data

samples to the user interface. spi_ss[2] is the

slave select signal for the SPI interface used

to program the register file.

ext_sync N/A Input If enabled, it is an external trigger used to

start data capture from the ADC.

trig[3:0] N/A Output The four ports to which either the external

trigger or the software trigger is routed

spi_miso[2:0] clk_spi[2:0] Output spi_miso[1:0] are used to transmit data

samples to the two SPI interfaces. spi_miso[2]

is used by the user interface to read the

configuration registers in the register file.

spi_ss_dut[1:0] - - Unused

led[7:0] N/A Output This is connected to the seven LEDs on

TSW1400 to provide visual status of various

signals.

led[1:0] : SPI slave select signals

spi_ss[1:0], used to indicate transmission of

data samples over SPI interface

led[2] : System reset led.

led[3] : PLL lock indication corresponding

to the clock from the first ADC

led[4] : PLL lock indication corresponding

to the clock from the second ADC (for future

support)

led[5] : Indicates that memory interface is

ready to use after memory initialization is

complete.

led[6:7] : Indicates that the two SPI FIFOs

are empty

Note that all the outputs starting with mem have been derived directly from the altera DDR2 SDRAM

Controller megafunction. If interested, reader is referred to the corresponding altera documentation for

description of those signals.

� Phase Locked Loop
1

PLL used is the altera megafunction altpll which provides the required clocking. ADC gives data over

LVDS interface with respect to a DDR clock inclk0 from which PLL generates a sampling clock clk_ser

twice as fast that samples the data at every rising edge. As can be noted from the Fig. 2, two clock inputs

exist at the PLL. The second clock input inclk1 is tied internally to zero and has been used to extend the

PLL input frequency lock range. Furthermore, two more clocks at the output are the result of PLL being

used in source synchronous mode. Since clock and data at the input arrive at the same time from ADC, this

mode allows the same phase relationship to be maintained between the clock and data at the output. These

clocks are sinked as shown in Fig. 4(a) and the corresponding timing diagram is shown in Fig. 4(b).

1
 For CMOS case, the internal logic is driven by the same clock that is provided by the CMOS ADC. No

separate PLL is necessary as the supported CMOS ADCs run at much slower rate than their LVDS

counterparts

Fig. 4(a). Clocking for source synchronous mode

Fig. 4(b). Phase relationship between clock and data

Note that the source synchronous mode for LVDS compensation aligns the clock at the center of data eye.

For the ADCs which already send centrally aligned data, a different phase shift setting is used for the three

output clocks (see appendix A). For further information on using LVDS receiver with external PLL, reader

is referred to altera “Clock Networks and PLLs in Stratix IV devices” documentation as well as altera

design example on “Using altlvds With External PLL Option”.

In the firmware, a module ipll_top serves as the top level module for the PLL. As shown in Fig. 2, this

module contains various sub modules including the altpll megafunction as well as the modules required to

reconfigure the PLL.

PLL Reconfiguration

 Fig.5. PLL reconfiguration module ipll_reconfig
2

PLL can also be reconfigured in real time using altera altpll_reconfig megafunction in order to change the

PLL frequency lock range to support Texas Instruments wide range of high speed ADCs with different

sampling rates. Reconfiguration block is driven by a state machine implemented in ipll_scanctrl module.

 Fig. 6. PLL scan control module ipll_scanctrl

2
 For the description of I/O ports, see altera documentation on ALTPLL RECONFIG megafunction.

 Table 2

 I/O description for ipll_scanctrl module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

clk N/A Input This clock is sourced from clk_scan port of altera DDR

controller and is 66.66MHz i.e. 2/3 of clk_osc

reset_n N/A Input Asynchronous reset signal. Resets the internal state

machine

busy clk Input Connected to busy port of altpll_reconfig megafunction

phasedone clk Input Connected to phasedone port of altpll megafunction.

req_update_p clk Input Asserted for the PLL reconfiguration request. This is a

one shot signal generated from the pll_req_rc port of

the register file

req_dpstep_p clk Input Asserted for the PLL phase reconfiguration request.

This is a one shot signal generated from the pll_req_dp

port of the register file

rom_sel[1:0] clk_sys Input This port selects one of the PLL ROMs during PLL

reconfiguration depending upon the required clock

frequency settings. Connected to pll_rom port of the

register file

dp_sel[4:0] clk_sys Input dp_sel[0] : Selects the direction of phase shift

(increment or decrement). Connected to pll_dp_sel[0]

port of the register file

dp_sel[4:1] : Select the PLL counter for which the

phase tap settings need to be reconfigured Connected

to pll_dp_sel[4:1] port of the register file

phasestep clk Output This signal feeds the pll_phasestep port of altpll

megafunction

phase_updn_r clk Output Selects the direction of phase shift (increment or

decrement) as determined by dp_sel[0] input

phase_cnt_sel_r clk Output PLL phase counter whose VCO tap settings need to be

adjusted

mux_sel_r[1:0] clk Output Selects the required PLL ROM as determined by

rom_sel input

write_from_rom clk Output Feeds the write_from_rom port of altpll reconfig

megafunction

reconfig clk Output Feeds the reconfig port of altpll reconfig megafunction

The reconfiguration block reprograms the pre and post scale counters of PLL for new counter clock

frequency settings. The .mif file for each of the different pll lock ranges is first generated and stored in

ipll_configROM which is an altera megafunction. Whenever reconfiguration request is generated by the

user, req_update_p flag is asserted. This causes the scan control module to assert write_from_rom signal at

which the reconfiguration module starts reading data from the rom selected by mux_sel output which in

turn is generated by rom_sel user input. Afterwards, the reconfig flag is asserted and ipll_reconfig module

starts reconfiguring the pll using pll_configupdate and pll_scandata signals.

The .mif file does not contain any information about the phase settings of the output clock. Every time PLL

is reconfigured, the phase tap settings revert to what was originally mentioned in the altpll megafunction.

Therefore, every time the PLL is reconfigured, in order to keep the same phase shifts of the output clocks,

it is imperative to reconfigure all the phase taps as well. altpll megafunction provides the provision to

dynamically change the phase settings of the PLL. Phase reconfiguration request is generated by the user

through req_dp_p signal. Depending upon the user input through dp_sel, the scan control module selects

the PLL counter phase_cnt_sel_r whose phase is to be adjusted and direction for the phase shift

phase_updn_r and asserts the phasestep flag. For a more detailed description of the steps required to

reconfigure phase settings, reader is referred to altera’s “Clock Networks and PLLs in Stratix IV devices”

documentation.

� ADC Interface

ADC interface, adc_if module serves as the top level for LVDS RX and format data modules as shown in

Fig. 2. It does three crucial jobs, deserializes the data from the ADC, aligns it with the correct frame clock

sequence as well as formats the binary data from the ADC into a complete sample for each ADC channel.

When the data arrives from ADC LVDS interface, before feeding it to the LVDS receiver, it is rewired into

the same bit order as is coming from the output of the ADC and stored in an internal vector rx0a_in.. This

is necessary due to the fact that the LVDS interface might not be physically connected to the ADC output

in the same order as the output of the ADC itself. Note that how rewiring is done on the input data depends

on the type of ADC plugged into the board as each ADC is different as well as has different

interconnections with the LVDS interface. Two more vectors rx0b_in and rx1_in rewire and store data

from the other two LVDS ports (see LVDS RX description).

LVDS RX

Fig. 7. LVDS receiver module adcif_lvds

3

 Firmware uses altlvds deserializer LVDS receiver, an altera megafunction that serves two purposes. It

deserializes the data from ADC as well as performs the bit slip operation in order to align the word

boundaries with respect to the ADC frame clock. Detecting correct frame clock sequence is imperative

to tracking start and end of a sample. Since the 64-bit data (for a deserialization factor of 4) coming out

of LVDS deserializer is not necessarily aligned with correct frame clock sequence, it is important to

perform the bitslip operation. The bitslip request is generated by the TSW1400 GUI through register

file by asserting an internal bitslipx flag which is connected to rx_channel_data_align port of the

LVDS receiver block. The program keeps generating the bitslip request until it finds the correct frame

clock sequence (which is different for different ADC). Once the frame clock is locked, only then the

data is considered valid. An example timing diagram for the case of TI’s ADS5281 is shown in Fig. 8.

3
 For the description of I/O ports, see altera documentation on ALTLVDS megafunction.

Fig.8. Timing diagram showing the search for correct frame clock sequence

Note that the bit slip operation is kept being performed till the correct frame clock sequence 0xFC0 is

found. Frame clock from ADC arrives at bit position 10 of 3
rd

 LVDS port lvds_rx_port2_p in the top level

module tsw1400_top which in turn is tied to an internal signal dinx[10] in adcif module.

As can be noted in the top level tsw1400_top scaffolding in Fig. 3 as well as in the firmware block diagram

in Fig. 2, there are three LVDS input ports. lvds_rx_port0_p is the port capturing the data from an ADC,

port lvds_rx_port1_p is to provide the support for capturing the data from two ADCs simultaneously while

the 3
rd

 port lvds_rx_port2_p provides an additional port for the dual bus ADCs having wider than 16-bits

output. For instance TI’s ADS5400 is capable of transmitting data on two channels each of 16-bits. It is to

be noted that lvds_rx_port0_p is always active while a multiplexer selects either lvds_rx_port1_p or

lvds_rx_port2_p depending upon DUAL_BUS define directive.

Recall that the 64-bit data out of an LVDS RX has to be registered as shown in Fig. 4(a). This is done in the

top level ADC interface module adc_if.

FORMAT DATA

Fig. 9. Format data module adcif_formatpdata

Table 3

 I/O description for adcif_formatpdata module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

clk_adc N/A Input This clock, derived from the PLL, is half the rate of the

DDR clock coming from the ADC (inclk0).

adc_sel[1:0] clk_sys Input Connected to adc_sel port of register file

data_sel[7:0] clk_sys Input Connected to data_sel port of register file

capture clk_sys Input Connected to capture port of register file

rx0_data[63:0] clk_adc Input Deserialized data from the LVDS RX0. This is the

output of synchronizing register used to register data

from an LVDS RX.

rx1_data[63:0] clk_adc Input Deserialized data from the LVDS RX1. This is the

output of synchronizing register used to register data

from an LVDS RX.

dvalid clk_adc Output Data valid signal

dout[127:0] clk_adc Output Output data

This module is responsible for arranging the data from the deserializer into individual samples for every

ADC channel. A module adcif_rotatelvds first rearranges the data from the deserializer. This rearrangement

is necessary as the deserialized data has all the bits having same bit positions but arriving in different cycles

placed together. This can be understood with Fig. 10(a) and 10(b). Note that the adcif_rotatelvds module

rearranges the data in the desired order as shown in Fig. 10(b)

Fig. 10(a). Data at the input of desrializer adcif_lvds

Fig. 10(b). Ouput of deserializer adcif_lvds and adcif_rotatelvds modules

For some ADCs, such as TI’s ADS62p49, the polarity of DDR clock from the ADC is physically swapped

on the LVDS interface. This causes a problem for instance in the case of ADS62p49 which always outputs

even byte of the sample at positive edge followed by odd byte at the negative. However the LVDS receiver

always samples the data at the positive edge of the clk_ser (which is double the rate of DDR clock from the

ADC inclk0). Due to swapping of clock polarity, every time in the output of deserializer even byte of first

of the two samples is missing. adcif_rotatelvds module also accounts for this clock swapping by extracting

this even byte from a delayed internal vector out_pre_d1_r. The ADC for which this type of clock

swapping has been done is selected by data_sel input in the format data module.

Output of the module adcif_rotatelvds gives the data in the same format as provided by the ADC except

that it is deserialized. However, in order to form a complete sample of each ADC channel, reordering of the

data bits is done outside adcif_rotatelvds within format data module. This rearrangement of the bits is

different for different ADCs depending upon number of output bits from the ADC, order of the bits as well

as number of channels. Table 4 describes various internal vectors used in adcif_formatpdata module to

reorder bits of different types of ADCs.

Table 4

 Vectors used to reorder data bits from different types of ADCs

Vectors Description

dinx_intlv This is used for the ADCs which provide even and odd bytes of a sample on alternate cycles.

Even and odd bytes are interleaved together such that they form a complete sample

dinx_4w This is used for the ADCs which at a time output 4 bits of every channel

dinx_2w_r This is used for the ADCs which at a time output 2 bits of every channel

dinx_1w This is used for the ADCs which at a time output only a single bit of every channel

After the reordering of bits, the data becomes arranged in the conventional bit order (MSB in most

significant and LSB in the least significant position). Since the code also provides support to capture data

from two ADCs or for a single dual bus ADC as mentioned in LVDS RX description, all the vectors in

Table 4 are indexed 1 and 0. Vectors with index x =0 are used for the ADC whose data is received on

lvds_rx_port0_p (input to the top level module tsw1440_top) while those with x=1 are associated with the

ADC data received on either lvds_rx_port1_p for the case of two ADCs or lvds_rx_port2_p for the case of

a single dual bus ADC. A vector adc_sel which is programmed by the user through the register file

specifies whether to transmit samples from a single ADC or both ADCs.

Note that output dout of adcif_formatpdata is 128 bits wide. For the case of two ADCs, the lower 64-bits

correspond to the ADC connected to lvds_rx_port0_p while the upper 64-bits correspond to the ADC

connected to lvds_rx_port1_p. For the case of a single dual bus ADC, for instance TI’s ADS58C48, the

lower 64-bits correspond to channels A,B,C,D while the upper 64-bits correspond to channels E,F,G,H with

channel A in least significant position and H in most significant. If only a single ADC is used without any

dual bus operation, dout is still a 128 bit vector, however, now the data is valid on alternate cycles.

The assertion of data valid signal dvalid in adcif_formatpdata module follows the description of dout

mentioned above. After the frame clock is locked, and if capture command has been sent, dvalid signal is

high on every clock cycle for the case of two ADCs or a single dual bus ADC while it is high on alternate

cycle for the case of a single ADC with out dual bus operation.

Frame Clock Hunt

The data format module also performs the vital job of sending frame clock sequence to the TSW1400 GUI

(see LVDS RX section for a detailed description of frame clock search). The GUI, through the register file,

asserts the flag data_sel[3] when it is searching for the frame clock. On the assertion of this flag,

adcif_formatpdata sends the frame clock sequence on the data bus dout. The frame clock sequence is

interleaved with the data samples on alternate words
4
. Table 5 describes correct frame clock sequence for

different Texas Instrument’s ADCs and the associated vectors in the adcif_formatpdata module which

contain the actual sequence.

4
 Note that once the frame clock is locked, no frame clock sequence is sent. Only data samples are sent to

the GUI

Table 5

 Correct frame clock sequence for various TI’s ADCs

ADC Correct Frame Clock Sequence Associated Vector

ADS6443 Correct Sequence ‘F0’, din0_2w_frm

ADS5281 Correct Sequence ‘FC0’ din0_1w_frm

ADS5493 Correct Sequence ‘3’ din0[19:16]

ADS642x Correct Sequence ‘E3’ or ‘38’ din0_2w_frm

Number of frame clock bits required to form the correct sequence depend upon the serialization factor of an

ADC. Note that only those ADCs have been mentioned in Table 5 for which frame clock is necessary to

detect start of a sample. The GUI tries to find the corresponding sequence of the device or any possible

combination of that sequence (for instance, for ADS5493, FC0 C0F or 0FC are all valid to lock to the

frame clock, similarly for other ADCs). Once a valid frame clock sequence is found by the GUI, it

deasserts data_sel[3] flag causing the module logic to start sending data samples. It must be noted that

even though frame clock can be locked at any possible combination of corresponding sequence in Table 5,

the data is latched by the adcif_formatpdata module only AT the sequence given in the table.

� Memory Bridge

 Fig. 11. Memory Bridge module dumpmem_bridge

Table 6

 I/O description for dumpmem_bridge module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

clk_adc N/A Input This clock, derived from the PLL, is half the rate of

the DDR clock coming from the ADC (inclk0).

clk_sys N/A Input Since the altera DDR controller is used as a half

rate controller, this clock is 166 .66 MHz which is

half the rate of the system clock (clk_sys port of

memory read/write control module dumpmem)

reset_n N/A Input Asynchronous reset signal.

ext_sync N/A Input Connected to ext_sync port of top level module

tsw1400_top

ext_sync_en clk_sys Input Connected to ext_sync_en port of the register file

ext_sync_dlysel[2:0] clk_sys Input Connected to ext_sync_dlysel port of the register

file

capture clk_sys Input Connected to capture port of register file

flush_fifo clk_adc Input Clears the internal FIFO. It is a delayed version of

flush_fifo[2] port from the register file

din_valid clk_adc Input Data valid signal

din_fifo[127:0] clk_adc Input Data

local_wdata_req clk_sys Input This signal is asserted when data is to be written in

the memory. It serves as read request signal for the

internal FIFO. Obtained by ANDing

local_write_req and local_ready signals from

memory read/write control and ddr controller

modules repectively.

dowrburst clk_sys Output Asserted if there are atleast four read words in the

internal FIFO

dout_fifo[255:0] clk_sys Output Data from the internal FIFO

This module contains a FIFO that acts as a bridge between format data module and DDR controller. FIFO

starts capturing data when capture flag is asserted. If the external trigger enable flag ext_sync_en is

asserted, the module does not capture the data until an external trigger ext_sync is applied through the

TRIG port on TSW1400. It should be noted that after the external trigger is applied, capture command must

still be asserted to start data capture into the FIFO.

Data is read from the FIFO on to dout_fifo bus whenever write request local_wdata_req is asserted. A do

write burst signal dowrburst makes sure that there are at least four read words in the FIFO before data can

be read into the DDR memory.

� DDR Controller

The DDR controller is an altera DDR2 SDRAM Controller megafunction which serves as an interface to

the external onboard DDR memory. Read and write operations with the DDR memory are governed by the

controller which in turn follows a state machine in memory read/write control module dumpmem. The

controller here has been used as a half rate controller. For further details, reader is referred to the

corresponding altera documentation.

� Memory Read/Write Control

Fig. 12. Memory read/write control module dumpmem

Table 7

 I/O description for dumpmem module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

clk_spi[1:0] N/A Input SPI clocks from FT4232H for the two SPI

interfaces in the module

spi_ss[1:0] clk_spi[1:0] Input Slave select signal for the two SPI interfaces

clk_sys N/A Input This is the system clock ruuning at 333.33 MHz

sourced from the PLL of altera DDR controller

clk_ddr2 N/A Input The clock runs at 166.66 MHz, half the rate of

system clock clk_sys. This clock is same as clk_sys

port of memory bridge module dumpmem_bridge

and is derived from the PLL of altera DDR

controller

local_rdata_valid clk_ddr2 Input Data valid signal

local_rdata[255:0] clk_ddr2 Input Data read by the DDR controller from the memory

local_ready clk_ddr2 Input Indicates that the DDR controller is ready to accept

data. Connected to local_ready port of DDR

controller

flush_fifo clk_sys Input Resets both SPI transmitters. Connected to

flush_fifo[0] port of the register file

flush_fifo_sync clk_ddr2 Input Clears both internal FIFOs as well as resets the state

machine. . It is a delayed version of flush_fifo[1]

port from the register file

adc_wrsdram clk_ddr2 Input It is two clock cycles delayed version of capture

signal from the register file

dowrburst clk_ddr2 Input Connected to dowrburst port of memory bridge

module

MAX_CHIPSEL N/A Input Maximum chip select signal. Since there is only

one DDR memory, this signal is tied to 0

MAX_BANK[2:0] clk_sys Input This signal is connected to mem_max_addr[18:16]

ports of register file. This defines the bank address

up to which the memory will be written

MAX_ROW[15:0] clk_sys Input This signal is connected to mem_max_addr[15:0]

ports of register file. This defines the row address

up to which the last bank of the memory

(MAX_BANK) will be filled

MAX_COL[9:0] N/A Input This signal defines the number of columns up to

which the last row (MAX_ROW) of the last bank

(MAX_BANK) will be written. It is hard wired to

maximum possible columns i.e. 1016

empty_sync[1:0] clk_ddr2 Output Empty signals for the two internal FIFOs

adc_wrsdram_done clk_ddr2 Output The signal is asserted for two clock cycles by the

state machine after the memory has been written up

to the maximum address.

adc_rdsdram_done clk_ddr2 Output The signal is asserted by the state machine after the

memory has been read up to the maximum address.

mem_miso[1:0] clk_spi[1:0] Output This port is used to transmit data samples over the

two SPI interfaces. Feeds spi_miso[1:0] port of top

level module tsw1400_top

Note that all the output ports with their names starting with local feed the corresponding ports in the altera

DDR2 SDRAM controller megafunction. For the description of these ports, see corresponding altera

documentation.

This module initiates all the data transfers to and from the DDR memory. It generates the read and write

requests to the DDR controller which in turn reads from or writes the samples into the memory. The

module is also responsible for generating read/write address.

A state machine in the module controls the generation of above signals. The flow of the state machine is as

follows

1- Capture command sent by the user asserts adc_wrsdram flag. If then the memory is ready for the

transfer, as indicated by local_ready input, do write burst signal dowrburst is checked. If it is set,

the module asserts the write request flag local_write_req which begins the data transfer. It is to be

noted that both read/write transfer is done in the burst transfer mode.

2- Sample bursts are kept being transferred till maximum programmed address of the memory is

reached which implies maximum column address, maximum row address as well as maximum

bank address of the memory.

3- After which local_write_req is deasserted and adc_wrsdram_done is asserted for one cycle

4- If the memory is ready for read transfer, then step 3 is followed by assertion of read request

local_read_req signal

5- Read request is deasserted if either of the two spi FIFOs shown in Fig. 2 get filled above a

maximum threshold level or maximum address of the memory is reached. local_read_req flag is

cleared and adc_rdsdram_done is asserted for one cycle.

It is to be noted that the GUI only starts reading the samples once the capture bit (in the register file) is

cleared by adc_wrsdram_done signal. During the memory write cycles, GUI keeps reading the capture

register to check if all the samples have been written into the memory.

As mentioned above, the module also generates read/write addresses. The onboard DDR memory consists

of 8 banks. In each bank there are 16376 rows and in each row there are 1016 columns. The module

generates the addresses for each one of the three. The module writes the memory up to the programmable

address location which is computed by the TSW1400 GUI from the number of samples user wants capture.

It must be noted that column address is not user programmable i.e. each row is completely filled up to the

maximum number of columns. Hence number of samples captured by the user must always be multiple of

4096.

The 256-bits data read from the memory is transferred into two spi FIFOs 128-bits each such that all even

words are transferred into spi FIFO0 and all odd words into spi FIFO1.

SPI Transmitter

Samples from the two FIFOs are read by two SPI transmitters SPI TX0, SPI TX1 as shown in Fig. 2. Each

SPI interface is configured for Clock Phase Polarity (CPHA) = 1 and Clock Polarity (CPOL) = 1 (sample

on the rising edge while transmit on falling edge) as well as 8-bit data length with LSB first.

Read request to each SPI FIFO in dumpmem module is generated as soon as first 128-bit word arrives in the

FIFO. The slave select input spi_ss is active low and data is transmitted by the SPI transmitter

dumpmem_mspi module at the first negative edge of clk_spi after the spi_ss goes low. It should be noted

that both transmitters work in parallel in order to double the data transfer rate.

� Register File

 Fig. 13. Register File dumpmem_config

Table 8

 I/O description for dumpmem_config module

SIGNAL CLOCK

DOMAIN

DIRECTION DESCRIPTION

reset_n N/A Input Asynchronous reset signal. It resets the internal

logic as well as reconfigure the configuration

registers with their default values

clk_sys N/A Input This is the system clock ruuning at 333.33 MHz

sourced from the PLL of altera DDR controller

clk_spi N/A Input spi clock for the SPI interface. Connected to

clk_spi[2] port of the top level module

tsw1400_top

spi_ss clk_spi Input SPI slave select signal.

mosi_ctrl clk_spi Input Carries the data to program the configuration

registers. Connected to port spi_mosi[2] of the

top level module tsw1400_top

adc_sel[1:0] clk_sys Output It is an ADC select signal which specifies number

of input LVDS ports at ADC LVDS interface

from which the data will be accepted (see the

Config1 register description)

data_sel[7:0] clk_sys Output See Config7 register description

bitslip0[7:0] clk_sys Output See Config4 register description

bitslip1[7:0] clk_sys Output See Config5 register description

ilvds_cnfg[7:0] clk_sys Output See Config6 register description

flush_fifo[7:0] clk_sys Output See Config0 register description

capture clk_sys Output Capture command sent by the user to start data

capture from the ADC

ext_sync_en clk_sys Output External trigger enable signal. See Config2

register description

ext_sync_dlysel[2:0] clk_sys Output See Config2 register description

sif_sync clk_sys Output Software trigger generated by the user

srcsel_sync clk_sys Output Trigger source select signal. See Config2 register

description

pll_req_rc clk_sys Output PLL reconfiguration request.

pll_req_dp clk_sys Output PLL phase reconfiguration request

pll_rom[1:0] clk_sys Output Selects the required PLL ROM from which

reconfiguration data is to be read

pll_dp_sel[4:0] clk_sys Output pll_dp_sel[0] : Selects the direction of phase

shift (increment or decrement).

pll_dp_sel[4:1] : Select the PLL counter for

which the phase tap settings need to be

reconfigured. See Config3 register description

mem_max_addr[23:0] clk_sys Output Defines the address up to which DDR memory is

filled

ss0

ss1

- - Unused

ctrl_miso clk_spi Output This port is used by the user interface to read the

configuration registers over SPI. Connected to

spi_miso[2] port of top level module tsw1400_top

The register file is used to program various configuration registers allowing the user to set various user

selectable parameters in the firmware. These are programmed by the user TSW1400 GUI through SPI

interface. The SPI interface in this case is implemented using the Bit-Banging technique and has the same

configuration as that of the other two SPI interfaces used to transmit ADC samples.

Detail of various configuration registers is provided below.

Config 0 :

 Write Address Read Address D7 D6 D5 D4 D3 D2-D0

0x10 0x00 flush_fifo

D2-D0 : flush_fifo

 3’b111 : Clears all internal FIFOs

Config 1 :

Write Address Read Address D7 D6 D5-D4 D3 D2 D1 D0

0x11 0x01 adc_sel

D5-D4 : adc_sel

 2’b00, 2’b01 : Transmits samples from ADC connected to lvds_port0 only

 2’b10 : Transmits samples from ADC connected to lvds_port1 only

 2’b11 : Transmits samples from both ADCs
5

Config 2 :

Write Address Read Address D7 D6-D4 D3 D2 D1 D0

0x12 0x02 ext_sync_en delay_sel sif_sync srcsel_sync capture

D7 : ext_sync_en

1’b1 : Enables external trigger. If enabled, data capture will not start until

 externally triggered (TP13 on TSW1400). Works on rising edge

D6-D4 : delay_sel

This signal is used to delay the external trigger by specified number of cycles of

the clk_adc clock in the memory bridge module

D2 : sif_sync

1’b1 : Acts as a software trigger. This bit is asserted by the user whenever trigger is to

 be applied through the user’s command

D1 : srcsel_sync

1’b1 : Routes the external trigger ext_sync, input port of the top level module, to the

 trig output port of the top level.

1’b0 : Routes the software trigger sif_sync signal to the trig output port of the top

 level. Used to synchronize multiple TSW1400 boards for ADC data capture

D0 : capture

1’b1 : Generates data capture command. If external trigger is enabled, trigger must be

 applied before data capture command can be sent

Config 3 :

PLL Reconfiguration

Write Address Read Address D7 D6 D5-D4 D3 D2 D1 D0

0x13 0x03 pll_rom pll_reconfig

D0 : pll_reconfig

1’b1 : Enables real time reconfiguration of the PLL counters’ clock

 frequencies

D4-D5 : pll_rom

5
 Must be set 2’b11 for dual bus ADC.

PLL ROM selection corresponding to the desired frequency settings

 2’b00 : 300M < inclk0
6
 < 625M.

 2’b01 : 150M < inclk0 < 300M.

 2’b10 : 80M < inclk0 < 150M.

 2’b11 : 40M < inclk0 < 80M

PLL Phase Shift Settings

Write Address Read Address D7-D3 D2 D1 D0

0x13 0x03 pll_counter_sel pll_phase

D1 : pll_phase

1’b1 : Enables real time reconfiguration of the PLL’s output clocks’ phase shifts

D7-D3 : pll_counter_sel

 D3 : Selects direction of phase shift (increment 1 or decrement 0)

D7-D4 : Selects PLL post scale counter of the output clock to be phase shifted
7

Note that the bits D0 and D1 must not be asserted simultaneously.

Config 4 :

Write Address Read Address D7 D6 D5 D4 D3 D2 D1 D0

0x14 0x04 bit_slip

D0 : bit_slip

 1’b1 : Generates bitslip request for LVDS_RX0
8

Config 5 :

Write Address Read Address D7 D6 D5 D4 D3 D2 D1 D0

0x15 0x05 bit_slip

D0 : bit_slip

 1’b1 : Generates bitslip request for LVDS_RX1

Config 6 :

Write Address Read Address D7 D6 D5 D4 D3 D2 D1 D0

0x16 0x06 lvds1_reset lvds0_reset

D0 : lvds0_reset

 1’b1 : Resets data alignment circuitry of LVDS_RX0
9

D1 : lvds1_reset

 1’b1 : Resets data alignment circuitry of LVDS_RX1

Config 7 :

6
 Note that inclk0 is the DDR clock coming form ADC (Bit clock)

7
 Clocks have been drawn from post scale counters 0, 3 and 5. See altera documentation “Clock Networks and PLLs in Stratix IV

devices” for value corresponding to each of these counters
8
 Whenever a bit slip request is generated, it applies to all 16 inputs of LVDS receiver. Also for multiple bitslips, bitslip request must

be generated as many times
9
 Applies to all 16 input channels of LVDS receiver

Write Address Read Address D7 D6 D5-D3 D2 D0-D1

0x17 0x07 data_sel[5:3] data_sel[1:0]

D0-D1 : Used for correct formatting of data. Read format data module description

D5-D4 : Serves the same purpose as D0-D1, except that they are used to format the data

 from the other 16-bit input bus (for dual bus ADCs)

D3 : Asserted during search for correct frame clock sequence

Config8-Config10 :

These registers are used to program maximum row and bank addresses up to which DDR memory is

written or read. The mem_max_addr output holds all the maximum addresses

mem_max_addr : {config10, config9, config8}

mem_max_addr [15:0] : Maximum row address

mem_max_addr [18:16] : Maximum bank address

The maximum row address can be as high as 3FFF while that for the bank is 7. It is must be noted that

maximum row address is the number of rows up to which the last bank of the maximum bank address will

be filled. For all the previous banks, all rows will be filled. In the firmware, this is taken care of by a

prelast_addr_hit signal in the memory read/write control module. Also note that since the number of

samples to be captured must be multiple of 4096, the number of columns to be written is not programmable

as each row is always filled up to its maximum number of columns of 3F8.

 Config11 :

This register contains the Interface ID for a device family. All the devices which share the same firmware

are assigned one unique Interface ID. This register is read only and is read by the TSW1400 GUI to figure

out which type of firmware is loaded in the FPGA

 Config14 :

This is a read only register and carries the latest firmware version number

Appendix A :

Phase Shifts Settings for PLL Output Clocks

For the LVDS receiver to sample the ADC data correctly, clocks going to altlvds_rx megafunction, as

shown in Fig. 4(a), must be given certain amount of phase shift. The phase shift given depends upon

deserialization factor and whether the data from the ADC is centrally aligned or edge aligned, as mentioned

in the altera design example on “Using altlvds With External PLL Option”.

For a deserialization factor of 4, the phase shifts to the three output clocks of the PLL are given in Table 9

Table 9

Phase Shifts of PLL output clocks

Clocks Edge Aligned Centrally Aligned
C0 (clk_adc) -45

o
 0

C3 (clk_ser) -180
o
 0

C5 (clk_en) 180
o
 225

o

To realize phase shift, the PLL uses VCO delay cycles in order to delay the output clocks. For a finer

resolution, phase taps are used where 1 phase tap is 1/8
th

 of a VCO cycle. These delay settings are different

for different PLL lock ranges as shown in Table 10

Table 10

Delay Settings for the PLL Counters

 Counter 300M-625M 150M-325M 80M-160M 40M-80M

 Edge Center Edge Center Edge Center Edge Center

M 1(4) 1 2 1 3 1 3 1

C0 1 1 1 1 1 1 1 1

C3 1 1 1 1 1 1 1 1

C5 3(4) 3(4) 6 6 11 11 11 11

K 1 1 1 1 1 1 2 2

The quantity in parentheses is the number of phase taps and the one outside is the number of VCO cycles

by which the corresponding clock is delayed. M counter shifts all of the output counters (C0-C6), K counter

is used to divide VCO clock by 2 (if K=2) in order to generate slower clocks form the PLL
10

.

As mentioned in the PLL reconfiguration section, every time after reconfiguring the PLL lock range, the

settings for the initial VCO delay cycles and phase taps revert to what was mentioned in the altpll

megafunction. Therefore in order to program the correct phase shifts, the output counters’ delay settings

have to be reconfigured according to Table 10. Note that the settings in Table 10 have been found using the

altpll megafunction.

10

 Unlike other counters, K counter can not be dynamically programmed. Therefore K=2 value is never

used, however, K=1 seems to work fine even for 40M-80M range.

