//--
#define STATUS 0x00 //Status Control Register 0
#define MUX 0x01 //Multiplexer Control Register 0
#define ADCON 0x02 //A/D Control Register 0
#define DRATE 0x03 //A/D Data Rate Control Register 0
#define IO 0X04 //GPIO Control Register 0
#define OFC0 0x05 //Offset Calibration Coefficient Register 1
#define OFC1 0x06 //Offset Calibration Coefficient Register 2
#define OFC2 0x07 //Offset Calibration Coefficient Register 2
#define FSC0 0x08 //Full scale Callibration Coefficient Register 0
#define FSC1 0x09 //Full scale Callibration Coefficient Register 1
#define FSC2 0x0A //Full scale Callibration Coefficient Register 2

/*STATUS - Status Control Register 0 (see p30)*/
/* BIT7 - BIT6 - BIT5 - BIT4 - BIT3 - BIT2 - BIT1 - BIT0 */
/* ID - ID - ID - ID - ORDER - ACAL - BUFEN - DRDY */
#define STATUS_RESET 0x01 // Reset STATUS Register
/*Bits 7 - 4 ID3, ID2, ID1, ID0 Factory Programmed Identification Bits(Read Only)*/
/*ORDER1:0 Data Output Bit Order*/
#define ORDER_MSB B00000000 // Most significant Bit first (default)
#define ORDER_LSB B00001000//Least significant Bit first
/*Input data is always shifted in most significant byte and bit first. Output data is always shifted out most significant
byte first. The ORDER bit only controls the bit order of the output data within the byte.*/
/*ACAL1:0 Auto Calibration*/
#define ACAL_OFF B00000000 // Auto Calibration Disabled (default)
#define ACAL_ON B00000100 // Auto Calibration Enabled
/*When Auto-Calibration is enabled, self-calibration begins at the completion of the WREG command that changes
the PGA (bits 0-2 of ADCON register), DR (bits 7-0 in the DRATE register) or BUFEN (bit 1 in the STATUS register)
values.*/
/*BUFEN1:0 Analog Input Buffer Enable*/
#define BUFEN_OFF B00000000 //Buffer Disabled (default)
#define BUFEN_ON B00000010 //BUffer Enabled
/*DRDY1:0 Data Ready (Read Only) Duplicates the state of the DRDY pin*/

/* MUX - Multiplexer Control Register 0 (see p31 - bring together with bitwise OR | */
/* BIT7 - BIT6 - BIT5 - BIT4 - BIT3 - BIT2 - BIT1 - BIT0 */
/* PSEL3 - PSEL2 - PSEL1 - PSEL0 - NSEL3 - NSEL2 - NSEL1 - NSEL0 */
#define MUX_RESET 0x01 // Reset MUX0 Register
/* PSEL3:0 Positive input channel selection bits */
#define P_AIN0 B00000000 //(default)
#define P_AIN1 B00010000
#define P_AIN2 B00100000
#define P_AIN3 B00110000
#define P_AIN4 B01000000
#define P_AIN5 B01010000
#define P_AIN6 B01100000
#define P_AIN7 B01110000
#define P_AINCOM B10000000
/* NSEL3:0 Negativ input channel selection bits */
#define N_AIN0 B00000000
#define N_AIN1 B00000001 //(default)
#define N_AIN2 B00000010
#define N_AIN3 B00000011
#define N_AIN4 B00000100
#define N_AIN5 B00000101
#define N_AIN6 B00000110
#define N_AIN7 B00000111
#define N_AINCOM B00001000

// Differential settings
#define DIFF0_1 B00000001
#define DIFF2_3 B00100011
#define DIFF4_5 B01000101
#define DIFF6_7 B01100111

/*ADCON - A/D Control Register 0 (see p31)*/
/* BIT7 - BIT6 - BIT5 - BIT4 - BIT3 - BIT2 - BIT1 - BIT0 */
/* 0 - CLK1 - CLK0 - SDCS1 - SDCS0 - PGA2 - PGA1 - PAG0 */
#define ADCON_RESET 0x20 // Reset ADCON Register
/*CLK2:0 D0/CLKOUT Clock Out Rate Setting*/
#define CLK_OFF B00000000 //Clock Out off
#define CLK_1 B00100000 //Clock Out Frequency = fCLKIN (default)
#define CLK_2 B01000000 //Clock Out Frequency = fCLKIN/2
#define CLK_4 B01100000 //Clock Out Frequency = fCLKIN/4
/*When not using CLKOUT, it is recommended that it be turned off. These bits can only be reset using the RESET pin.*/
/*SDCS2:0 Sensor Detection Current Sources*/
#define SDCS_OFF B00000000//Sensor Detect Off (default)
#define SDCS_05 B00001000//Sensor Detect Current 0.5?A
#define SDCS_2 B00010000//Sensor Detect Current 2?A
#define SDCS_10 B00011000//Sensor Detect Current 10?A
/*The Sensor Detect Current Sources can be activated to verify the integrity of an external sensor supplying a signal to the
ADS1255/6. A shorted sensor produces a very small signal while an open-circuit sensor produces a very large signal.*/
/*PGA3:0 Programmable Gain Amplifier Setting*/
#define PGA_1 B00000000 //(default)
#define PGA_2 B00000001
#define PGA_4 B00000010
#define PGA_8 B00000011
#define PGA_16 B00000100
#define PGA_32 B00000101
#define PGA_64 B00000110

#define PGAmulti_1 0.0000005960464832810452 //PGA-1 ą5V /16777215
#define PGAmulti_2 0.0000002980232416405226 //PGA-2 ą2.5V /16777215
#define PGAmulti_4 0.0000001490116208202613 //PGA-4 ą1.25V /16777215
#define PGAmulti_8 0.00000007450581041013064 //PGA-8 ą0.625V /16777215
#define PGAmulti_16 0.00000003725290520506532 //PGA-16 ą312.5mV /16777215
#define PGAmulti_32 0.00000001862645260253266 //PGA-32 ą156.25mV /16777215
#define PGAmulti_64 0.000000009313226301266331 //PGA-64 ą78.125mV /16777215

/*DRATE - A/D Data Rate Register 0 (see p32)*/
/* BIT7 - BIT6 - BIT5 - BIT4 - BIT3 - BIT2 - BIT1 - BIT0 */
/* DR7 - DR6 - DR5 - DR4 - DR3 - DR2 - DR1 - DR0 */
#define DRATE_RESET 0xF0 // Reset DRATE Register
/*DR7:0 Data Rate Setting*/
#define DR_30000 B11110000 //30.000 SPS (default)
#define DR_15000 B11100000 //15.000 SPS
#define DR_7500 B11010000 //7.500 SPS
#define DR_3750 B11000000 //3.750 SPS
#define DR_2000 B10110000 //2.000 SPS
#define DR_1000 B10100001 //1.000 SPS
#define DR_500 B10010010 //500 SPS
#define DR_100 B10000010 //100 SPS
#define DR_60 B01110010 //60 SPS
#define DR_50 B01100011 //50 SPS
#define DR_30 B01010011 //30 SPS
#define DR_25 B01000011 //25 SPS
#define DR_15 B00110011 //15 SPS
#define DR_10 B00100011 //10 SPS
#define DR_5 B00010011 //5 SPS
#define DR2_5 B00000011 //2,5 SPS

/*IO - GPIO Control Register 0 (see p32)*/
/* BIT7 - BIT6 - BIT5 - BIT4 - BIT3 - BIT2 - BIT1 - BIT0 */
/* DIR3 - DIR2 - DIR1 - DIR0 - DIO3 - DIO2 - DIO1 - DIO0 */
#define IO_RESET 0xE0 // Reset IO Register
/*DIR3 - Digital I/O Direction for Pin D3*/
#define DIR3_OUT B00000000 //D3 is an output
#define DIR_IN B10000000 //D3 is an input (default)
/*DIR2 - Digital I/O Direction for Pin D3*/
#define DIR2_OUT B00000000 //D2 is an output
#define DIR2_IN B01000000 //D2 is an input (default)
/*DIR1 - Digital I/O Direction for Pin D3*/
#define DIR1_OUT B00000000 //D1 is an output
#define DIR1_IN B001ßß000 //D1 is an input (default)
/*DIR0 - Digital I/O Direction for Pin D3*/
#define DIR0_OUT B00000000 //D0/CLKOUT is an output
#define DIR0_IN B00010000 //D0/CLKOUT is an input (default)
/*DIO3:0 Status of Digital I/O, Read Only*/

/* SPI COMMAND DEFINITIONS (p34) */
/*SYSTEM CONTROL */
#define WAKEUP 0x00 //Exit Sleep Mode
#define STANDBY 0xFD //Enter Sleep Mode
#define SYNC 0xFC //Synchornize the A/D Conversion
#define RESET 0xFE //Reset To Power UP values
#define NOP 0xFF //No operation
/*DATA READ*/
#define RDATA 0x01 //Read data once
#define RDATAC 0x03 //Read data continously
#define SDATAC 0x0F //Stop reading data continously
/*READ REGISTER */
#define RREG 0x10 //Read From Register
#define WREG 0x50 //Write To Register
/*Calibration */
#define SYSOCAL 0xF3 //System Offset Calibration
#define SYSGCAL 0xF2 //System Gain Calibration
#define SELFCAL 0xF0 //Self offset then gain calibration
#define SELFOCAL 0xF1 //Self offset calibration
#define SELFGCAL 0xF2 //Self gain calibration
//---

#define cs 10 // chip select
#define rdy 9 // data ready, input
#define rst 8
#define MISOPIN 12
#define SCLKPIN 13
#define rdy 5
#define DIN 11
#define cs 10

#define SPISPEED 1250000
 // 1700000

#include <SPI.h>

void setup()
{
 Serial.begin(115200);

 pinMode(SCLKPIN, OUTPUT); pinMode(MISOPIN, INPUT);pinMode(cs,OUTPUT); pinMode(rdy, INPUT);pinMode(rst,OUTPUT);pinMode(DIN,OUTPUT);
 digitalWrite(cs, LOW);

 reset_adc();

 delay(500);
 SPI.begin(); //start the spi-bus
 delay(500);

 while (digitalRead(rdy)) {} // wait for ready_line to go low
 SPI.beginTransaction(SPISettings(SPISPEED, MSBFIRST, SPI_MODE1)); // start SPI
 delayMicroseconds(10);

 //Reset to Power-Up Values (FEh)
 //SPI.transfer(0xFE);
 //delayMicroseconds(100);

 byte status_reg = 0 ; // address (datasheet p. 30)
 //PGA SETTING
 //1 ±5V
 //2 ±2.5V
 //4 ±1.25V
 //8 ±0.625V
 //16 ±312.5mV
 //32 ±156.25mV
 //64 ±78.125mV
 // --
 // Status setup
 // PGA SETTING
 Serial.println("Status Data setup started");
 byte status_data = 0x01; //status: Most Significant Bit First, Auto-Calibration Disabled, Analog Input Buffer Disabled
 SPI.transfer(0x50 | status_reg);
 SPI.transfer(0x00); // 2nd command byte, write one register only
 SPI.transfer(status_data); // write the databyte to the register
 delayMicroseconds(10);
 //---

 //-------------------------------
 // ADCON setup
 //byte adcon_data = 0x00; // 0 00 00 000
 Serial.println("ADCON Data setup started");
 SPI.transfer(0x50 | ADCON);
 SPI.transfer(0x00); // 2nd command byte, write one register only
 SPI.transfer(PGA_1); // write the databyte to the register
 Serial.println("ADCON Data setup ended");
 delayMicroseconds(10);
 //--------------------------------

 //--------------------------------
 // Data Rate setup
 Serial.println("DRATE Data setup started");
 SPI.transfer(0x50 | DRATE);
 SPI.transfer(0x00);
 SPI.transfer(DR_100);
 Serial.println("DRATE Data setup complete");
 delayMicroseconds(10);
 //--------------------------------

 //--------------------------------
 //Self-calibration full
 Serial.println("Full Self-cal setup started");
 SPI.transfer(SELFCAL);
 delayMicroseconds(1300);
 Serial.println("Full Self-cal setup complete");
 //--------------------------------

 digitalWrite(cs, HIGH);

 Serial.println("configured, starting");
}

void reset_adc()
{
 digitalWrite(rst, LOW);
 delay(1);
 digitalWrite(rst,HIGH);
 //Another method to make reset
 //digitalWrite(SCLKPIN,LOW);
 //delayMicroseconds(326);
 //digitalWrite(SCLKPIN,HIGH);
 //delayMicroseconds((500+750+1250)/CLKIN);
}

void Self_cal_full()
{
 Serial.println("Full Self-cal setup started");
 SPI.transfer(SELFCAL);
 delayMicroseconds(1300);
 Serial.println("Full Self-cal setup complete");
}

void Self_cal_offset()
{
 Serial.println("Self offset calibration setup started");
 SPI.transfer(SELFOCAL);
 delayMicroseconds(1300);
 Serial.println("Self offset calibration setup complete");
}

void Self_cal_gain()
{
 Serial.println("Self gain calibration setup started");
 SPI.transfer(SELFGCAL);
 delayMicroseconds(1300);
 Serial.println("Self gain calibration setup complete");
}

void ReadReg_STATUS()
{
 byte reg_val;
 digitalWrite(cs, LOW);
 SPI.beginTransaction(SPISettings(SPISPEED, MSBFIRST, SPI_MODE1)); // start SPI
 delayMicroseconds(10);

 while (digitalRead(rdy)) {} ;

 SPI.transfer(0x10);
 delayMicroseconds(10);

 //SYNC command 1111 1100
 SPI.transfer(SYNC);
 delayMicroseconds(10);

 //WAKEUP 0000 0000
 SPI.transfer(WAKEUP);
 delayMicroseconds(10);

 reg_val = SPI.transfer(0);
 reg_val <<= 8; //shift to left
 reg_val |= SPI.transfer(0);
 reg_val <<= 8;
 reg_val |= SPI.transfer(0);
 Serial.print("HEX: "); Serial.println(reg_val,HEX);
 Serial.print("BIN: "); Serial.println(reg_val,BIN);

 delayMicroseconds(10);

 digitalWrite(cs, HIGH);
 SPI.endTransaction();
}

void AIN_0_COM()
{
 unsigned long adc_val =0; // store reading

 digitalWrite(cs, LOW);
 SPI.beginTransaction(SPISettings(SPISPEED, MSBFIRST, SPI_MODE1)); // start SPI
 delayMicroseconds(10);
 //The most efficient way to cycle through the inputs is to
 //change the multiplexer setting (using a WREG command
 //to the multiplexer register MUX) immediately after DRDY
 //goes low. Then, after changing the multiplexer, restart the
 //conversion process by issuing the SYNC and WAKEUP
 //commands, and retrieve the data with the RDATA
 //command.
 while (digitalRead(rdy)) {} ;

 //byte channel = 0;
 //byte data = (channel << 4) | (1 << 3); //AIN-channel and AINCOM
 //byte data = 1;
 SPI.transfer(0x50 | 1); // MUX register (0101 rrrr)
 SPI.transfer(0x00); // 2nd command byte, write one register only
 //SPI.transfer(AIN0_COM); // write the databyte to the register
 SPI.transfer(P_AIN0 + N_AINCOM);
 delayMicroseconds(10);

 //SYNC command 1111 1100
 SPI.transfer(SYNC);
 //delayMicroseconds(10);

 //WAKEUP 0000 0000
 SPI.transfer(WAKEUP);
 //delayMicroseconds(10);

 SPI.transfer(0x01); // Read Data 0000 0001 (01h)
 //delayMicroseconds(10);

 adc_val = SPI.transfer(0);
 adc_val <<= 8; //shift to left
 adc_val |= SPI.transfer(0);
 adc_val <<= 8;
 adc_val |= SPI.transfer(0);

 delayMicroseconds(10);

 digitalWrite(cs, HIGH);
 SPI.endTransaction();

 //The ADS1255/6 output 24 bits of data in Binary Two's
 //Complement format. The LSB has a weight of
 //2VREF/(PGA(223 - 1)). A positive full-scale input produces
 //an output code of 7FFFFFh and the negative full-scale
 //input produces an output code of 800000h.
 if(adc_val > 0x7fffff){ //if MSB == 1
 adc_val = (16777215ul - adc_val) + 1; //do 2's complement
 }
 //Serial.print("AIN0_COM: ");
 Serial.println(adc_val*PGAmulti_1,10);
 //Serial.println(" Volt");
 //Serial.println(adc_val*PGAmulti_1*1000,2);
}

void AIN_1_COM()
{
 unsigned long adc_val =0; // store reading

 digitalWrite(cs, LOW);
 SPI.beginTransaction(SPISettings(SPISPEED, MSBFIRST, SPI_MODE1)); // start SPI
 delayMicroseconds(10);
 //The most efficient way to cycle through the inputs is to
 //change the multiplexer setting (using a WREG command
 //to the multiplexer register MUX) immediately after DRDY
 //goes low. Then, after changing the multiplexer, restart the
 //conversion process by issuing the SYNC and WAKEUP
 //commands, and retrieve the data with the RDATA
 //command.
 while (digitalRead(rdy)) {} ;

 //byte channel = 0;
 //byte data = (channel << 4) | (1 << 3); //AIN-channel and AINCOM
 //byte data = 1;
 SPI.transfer(0x50 | 1); // MUX register
 SPI.transfer(0x00); // 2nd command byte, write one register only
 //SPI.transfer(AIN0_COM); // write the databyte to the register
 SPI.transfer(P_AIN1 + N_AINCOM);
 delayMicroseconds(10);

 //SYNC command 1111 1100
 SPI.transfer(SYNC);
 delayMicroseconds(10);

 //WAKEUP 0000 0000
 SPI.transfer(WAKEUP);
 delayMicroseconds(10);

 SPI.transfer(0x01); // Read Data 0000 0001 (01h)
 delayMicroseconds(10);

 adc_val = SPI.transfer(0);
 adc_val <<= 8; //shift to left
 adc_val |= SPI.transfer(0);
 adc_val <<= 8;
 adc_val |= SPI.transfer(0);

 delayMicroseconds(10);

 digitalWrite(cs, HIGH);
 SPI.endTransaction();

 //The ADS1255/6 output 24 bits of data in Binary Two's
 //Complement format. The LSB has a weight of
 //2VREF/(PGA(223 - 1)). A positive full-scale input produces
 //an output code of 7FFFFFh and the negative full-scale
 //input produces an output code of 800000h.
 if(adc_val > 0x7fffff){ //if MSB == 1
 adc_val = (16777215ul - adc_val) + 1; //do 2's complement
 }
 Serial.print("AIN1_COM: "); Serial.print(adc_val*PGAmulti_1,5); Serial.println(" Volt");
}

void DIFFdata0_1()
{
 unsigned long adc_val =0; // store reading

 digitalWrite(cs, LOW);
 SPI.beginTransaction(SPISettings(SPISPEED, MSBFIRST, SPI_MODE1)); // start SPI
 delayMicroseconds(10);
 //The most efficient way to cycle through the inputs is to
 //change the multiplexer setting (using a WREG command
 //to the multiplexer register MUX) immediately after DRDY
 //goes low. Then, after changing the multiplexer, restart the
 //conversion process by issuing the SYNC and WAKEUP
 //commands, and retrieve the data with the RDATA
 //command.
 while (digitalRead(rdy)) {} ;

 //byte channel = 0;
 //byte data = (channel << 4) | (1 << 3); //AIN-channel and AINCOM
 //byte data = 1;
 SPI.transfer(0x50 | 1); // MUX register
 SPI.transfer(0x00); // 2nd command byte, write one register only
 SPI.transfer(DIFF0_1); // write the databyte to the register
 delayMicroseconds(10);

 //SYNC command 1111 1100
 SPI.transfer(SYNC);
 delayMicroseconds(10);

 //WAKEUP 0000 0000
 SPI.transfer(WAKEUP);
 delayMicroseconds(10);

 SPI.transfer(RDATA); // Read Data 0000 0001 (01h)
 delayMicroseconds(10);

 adc_val = SPI.transfer(0);
 adc_val <<= 8; //shift to left
 adc_val |= SPI.transfer(0);
 adc_val <<= 8;
 adc_val |= SPI.transfer(0);
 Serial.println(adc_val, HEX);

 delayMicroseconds(10);

 digitalWrite(cs, HIGH);
 SPI.endTransaction();

 //The ADS1255/6 output 24 bits of data in Binary Two's
 //Complement format. The LSB has a weight of
 //2VREF/(PGA(223 - 1)). A positive full-scale input produces
 //an output code of 7FFFFFh and the negative full-scale
 //input produces an output code of 800000h.
 if(adc_val > 0x7fffff){ //if MSB == 1
 adc_val = (16777215ul - adc_val) + 1; //do 2's complement
 }
 Serial.print("DIFF0_1: "); Serial.print(adc_val*PGAmulti_1,6); Serial.println(" Volt");
}

void DIFFdata2_3()
{
 unsigned long adc_val =0; // store reading

 digitalWrite(cs, LOW);
 SPI.beginTransaction(SPISettings(SPISPEED, MSBFIRST, SPI_MODE1)); // start SPI
 delayMicroseconds(10);
 //The most efficient way to cycle through the inputs is to
 //change the multiplexer setting (using a WREG command
 //to the multiplexer register MUX) immediately after DRDY
 //goes low. Then, after changing the multiplexer, restart the
 //conversion process by issuing the SYNC and WAKEUP
 //commands, and retrieve the data with the RDATA
 //command.
 while (digitalRead(rdy)) {} ;

 SPI.transfer(0x50 | 1); // MUX register
 SPI.transfer(0x00); // 2nd command byte, write one register only
 SPI.transfer(DIFF2_3); // write the databyte to the register
 delayMicroseconds(10);

 //SYNC command 1111 1100
 SPI.transfer(SYNC);
 delayMicroseconds(10);

 //WAKEUP 0000 0000
 SPI.transfer(WAKEUP);
 delayMicroseconds(10);

 SPI.transfer(RDATA); // Read Data 0000 0001 (01h)
 delayMicroseconds(10);

 adc_val = SPI.transfer(0);
 adc_val <<= 8; //shift to left
 adc_val |= SPI.transfer(0);
 adc_val <<= 8;
 adc_val |= SPI.transfer(0);

 delayMicroseconds(10);

 digitalWrite(cs, HIGH);
 SPI.endTransaction();
 Serial.println(adc_val);

 //The ADS1255/6 output 24 bits of data in Binary Two's
 //Complement format. The LSB has a weight of
 //2VREF/(PGA(223 - 1)). A positive full-scale input produces
 //an output code of 7FFFFFh and the negative full-scale
 //input produces an output code of 800000h.
 if(adc_val > 0x7fffff){ //if MSB == 1
 adc_val = (16777215ul - adc_val) + 1; //do 2's complement
 }
 Serial.print("DIFF2_3: ");
 Serial.print(adc_val*PGAmulti_1,5);
 Serial.println(" Volt");
}

void loop()
{

// while (Serial.available() > 0)
// {
 AIN_0_COM();
 //DIFFdata0_1();
 //delay(100);
 //ReadReg_STATUS();
 delay(100);
 digitalWrite(cs, HIGH);
// }
[bookmark: _GoBack]}
