ADS127L21 – Digital Filter Design

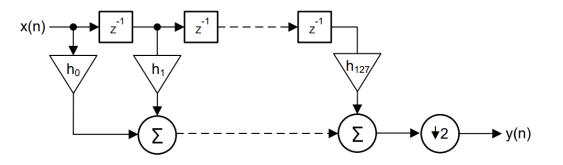
October 2023

Created by Keith Nicholas

ADS127L21 – Agenda

- ADS127L21 programmable coefficient filter options
 - Finite Input Response (FIR)
 - Infinite Input Response (IIR)
 - Convert decimal filter coefficients to fixed-point format
- ADS127L21EVM-PDK GUI Filter file format
 - MATLAB® 'fcf' file format
- IIR filter design using Bilinear transform
 - Design 10kHz 2nd order filter starting with MFB topology
 - Create 'fcf' file and evaluate using ADS127L21EVM-PDK hardware
- Filter design using MATLAB® Filter Designer
 - Design IIR 50Hz/60Hz power-line frequency notch filter for 1ksps data rate
 - Design FIR 20kHz Low pass filter for 256ksps data rate

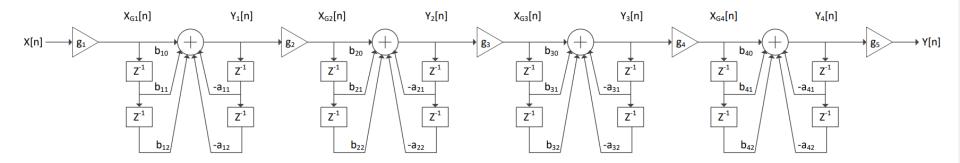
2


ADS127L21

- ADS127L21 programmable coefficient filter options
 - Finite Input Response (FIR)
 - Infinite Input Response (IIR)
 - Convert decimal filter coefficients to fixed-point format
- ADS127L21EVM-PDK GUI Filter file format
 - MATLAB[®] 'fcf' file format
- IIR filter design using Bilinear transform
 - Design 10kHz 2nd order filter starting with MFB topology
 - Create 'fcf' file and evaluate using ADS127L21EVM-PDK hardware
- Filter design using MATLAB® Filter Designer
 - Design IIR 50Hz/60Hz power-line frequency notch filter for 1ksps data rate
 - Design FIR 20kHz Low pass filter for 256ksps data rate

ADS127L21 Finite Input Response (FIR)

• FIR3 Filter Structure



- 128 coefficients h₀ through h₁₂₇
- Fixed-point 1.31 format represented as a 32b twos-complement integer
 - Represents decimal numbers in the range from -1 to +0.999999995343
- Note the decimation by 2 after the FIR3 stage; the input data rate will be 2x the final output data rate.

ADS127L21 Infinite Input Response (IIR)

• IIR Filter Structure

- Consists of 4 direct form I bi-quads, or Second order Sections (SOS)
 - Also includes five scaling factors, g_1 through g_5
- Each biquad uses 5 coefficients b_{k0} , b_{k1} , b_{k2} , a_{k1} , a_{k2} , k=1 to 4
- Fixed-point 2.30 format represented as a 32b twos-complement integer
 - Represents decimal numbers in the range from -2 to +1.999999999069

ADS127L21 – convert decimal to fixed-point

- Converting decimal to fixed-point 1.31 format.
 - 32b twos-complement 1.31 fixed-point equivalent of 0.25 decimal
 - (+0.25)*2³¹ = 536,870,912d (0x2000000h)
 - 32b twos-complement 1.31 fixed-point equivalent of -0.25 decimal
 - (-0.25)*2³¹ = -536,870,912d (0xE000000h)
- Converting decimal to fixed-point 2.30 format.
 - 32b twos-complement 2.30 fixed-point equivalent of 1.25 decimal
 - (+1.25)*2³⁰ = 1,342,177,280d (0x5000000h)
 - 32b twos-complement 2.30 fixed-point equivalent of -1.25 decimal
 - (-1.25)*2³⁰ = -1,342,177,280d (0xB000000h)

ADS127L21

- ADS127L21 programmable coefficient filter options
 - Finite Input Response (FIR)
 - Infinite Input Response (IIR)
 - Convert decimal filter coefficients to fixed-point format
- ADS127L21EVM-PDK GUI Filter file format
 - MATLAB® 'fcf' file format
- IIR filter design using Bilinear transform
 - Design 10kHz 2nd order filter starting with MFB topology
 - Create 'fcf' file and evaluate using ADS127L21EVM-PDK hardware
- Filter design using MATLAB® Filter Designer
 - Design IIR 50Hz/60Hz power-line frequency notch filter for 1ksps data rate
 - Design FIR 20kHz Low pass filter for 256ksps data rate

ADS127L21 – MATLAB[®] *fcf* file format for FIR

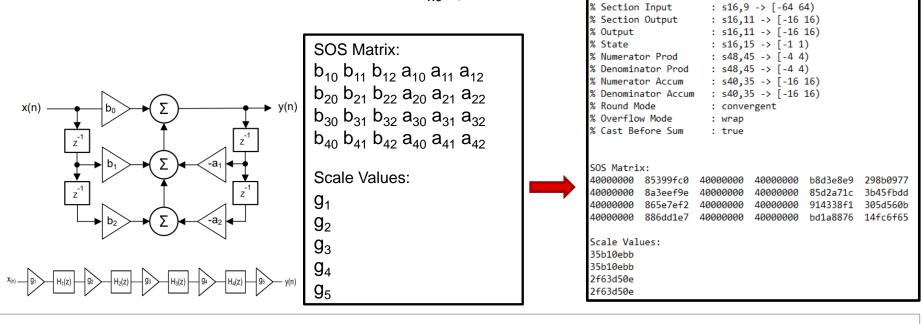
- The ADS127L21EVM-PDK-GUI supports the MATLAB[®] fcf file format
 - 32b coefficients in ASCII Hexadecimal format
 - First coefficient in file is h0, then h1, up to a maximum h127 (128 total)
 - The file does not need to include all coefficients
 - The GUI will autofill unused coefficients with default values (00000000h)
 - Lines beginning with '%' are comments and ignored by the GUI
 - Exception is Coefficient Format line

	<pre>% Generated by MATLAB(R) 9.13 and Signal Processing Toolbox 9.1. % Generated on: 01-Jun-2023 16:49:25 % Coefficient Format: Hexadecimal % Discrete-Time FIR Filter (real) % % Filter Structure : Direct-Form FIR % Filter Length : 11 % Stable : Yes % Linear Phase : Yes (Type 1) % Arithmetic : fixed % Numerator : s32,31 -> [-1 1) % Input : s16,15 -> [-1 1) % Filter Internals : Full Precision % Output : s48,46 -> [-2 2) (auto determined) % Product : s48,46 -> [-2 2) (auto determined) % Accumulator : s48,46 -> [-2 2) (auto determined) % Accumulator : s48,46 -> [-2 2) (auto determined) % Round Mode : No rounding % Overflow Mode : No overflow</pre>
h0	Numerator: 0153f90d f2a9741f 02083d1e 11c1834e 2243375b 296b7734 2243375b
h10	11c1834e 02083d1e f2a9741f 0153f90d

ADS127L21 – MATLAB[®] fcf file format for IIR

- The ADS127L21EVM-PDK-GUI supports the MATLAB[®] fcf file format
 - 32b coefficients in ASCII Hexadecimal format
 - Lines beginning with '%' are comments and ignored
 - Exceptions are Coefficient Format and Number of Sections
 - MATLAB® includes the a_{k0} coefficients (a_{10} , a_{20} , a_{30} , a_{40})
 - The GUI will ignore the a_{10} , a_{20} , a_{30} and a_{40} coefficients as these are always decimal value +1 (4000000h) and not implemented in the ADS127L21
 - GUI supports less than 4 bi-quads and less than 5 Scale Values
 - GUI will use default values (4000000h) for unused Scale Values
 - GUI will also use default values for unused bi-quads (SOS)

% Generated by MATLAB(R) 9.13 and Signal Processing Toolbox 9.1. % Generated on: 13-Jun-2023 16:42:05


% Coefficient Format: Hexadecimal

% Filter	Structure	:	Direc	t-Form II.	Second-Or	der Sectio
	of Section					
% Stable		:	Yes			
% Linear	Phase		No			
% Arithme	tic		fixed	l		
% Numerat	or	:	s32,3	0 -> [-2 2)	
% Denomin	ator	:	s32,3	0 -> [-2 2)	
% Scale V	alues	:	s32,3	0 -> [-2 2)	
% Input		:	s16,1	5 -> [-1 1)	
				-> [-64 6		
% Section	Output	:	s16,1	1 -> [-16	16)	
% Output			s16,1	1 -> [-16	16)	
% State			s16,1	5 -> [-1 1)	
% Numerator Prod						
				5 -> [-4 4		
				5 -> [-16		
				5 -> [-16	16)	
% Round M	ode	:	conve	rgent		
	w Mode					
% Cast Be	fore Sum	:	true			
SOS Matri	x:					
		400	00000	40000000	b8d3e8e9	298b0977
				40000000		
				40000000		
40000000	886dd1e7	400	00000	40000000	bd1a8876	14fc6f65
Scale Val						
35b10ebb	ues.					
35b10ebb						
2f63d50e						
2.0505000						

ADS127L21 – MATLAB[®] fcf file format for IIR

- The ADS127L21EVM-PDK-GUI supports the MATLAB[®] *fcf* file format
 - Lines beginning with '%' are comments
 - Coefficients are defined as follows (a_{x0} ignored)

Number of Sections

% Stable

% Input

% Linear Phase

% Arithmetic

% Denominator

% Scale Values

% Numerator

: 4 : Yes

: No

: fixed

: s32,30 -> [-2 2)

: s32,30 -> [-2 2)

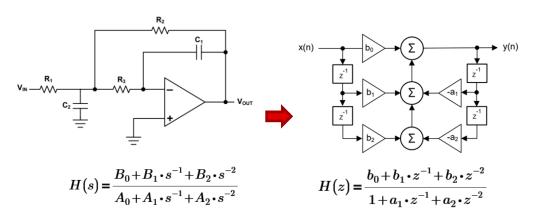
: s32,30 -> [-2 2)

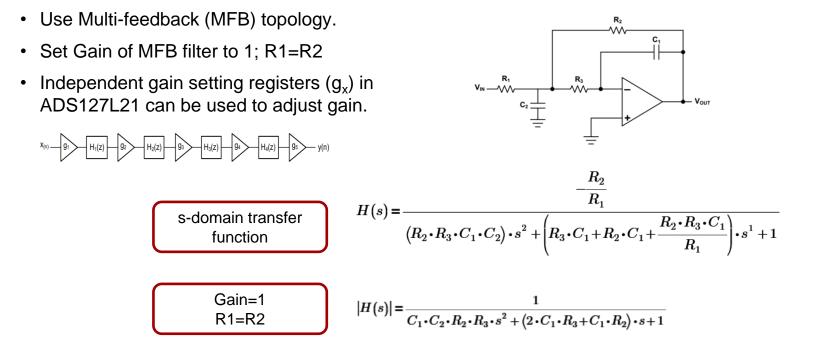
: s16,15 -> [-1 1)

ADS127L21 – MATLAB[®] fcf file format

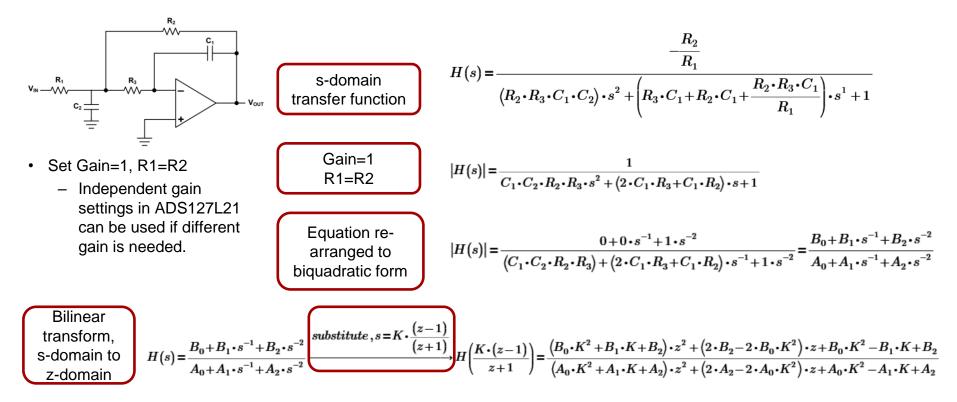
- FIR fcf file format
 - 32b 1.31 coefficients in ASCII Hexadecimal format
 - Unused coefficients should be set to 0000000h
- IIR fcf file format
 - 32b 2.30 coefficients in ASCII Hexadecimal format
 - Unused g_x , b_{10} , b_{20} , b_{30} , and b_{40} coefficients should be set to 4000000h
 - All other unused coefficients should be set to 0000000h.

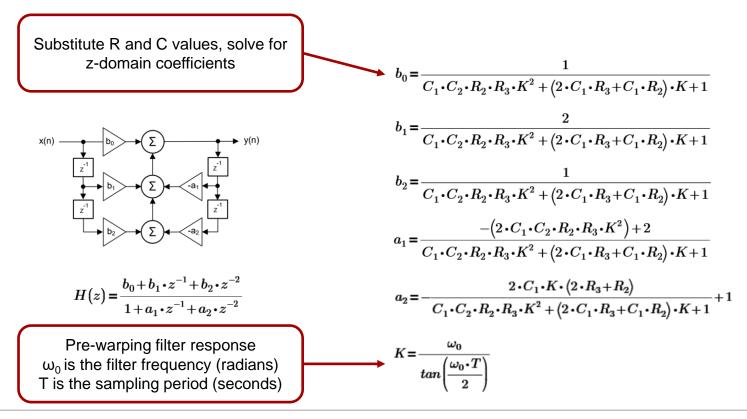
ADS127L21

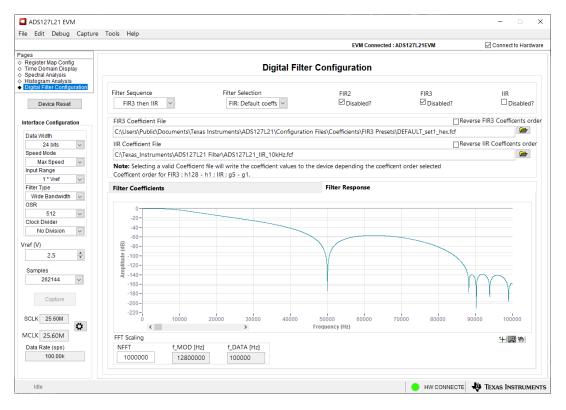

- ADS127L21 programmable coefficient filter options
 - Finite Input Response (FIR)
 - Infinite Input Response (IIR)
 - Convert decimal filter coefficients to fixed-point format
- ADS127L21EVM-PDK GUI Filter file format
 - MATLAB[®] 'fcf' file format
- IIR filter design using Bilinear transform
 - Design 10kHz 2nd order filter starting with MFB topology
 - Create 'fcf' file and evaluate using ADS127L21EVM-PDK hardware
- Filter design using MATLAB[®] Filter Designer
 - Design IIR 50Hz/60Hz power-line frequency notch filter for 1ksps data rate
 - Design FIR 20kHz Low pass filter for 256ksps data rate


- Start with continuous time design in sdomain
 - Can use filter design software, such as <u>WEBENCH® analog filter</u> <u>designer</u>
- Transform to z-domain using Bilinear Transform

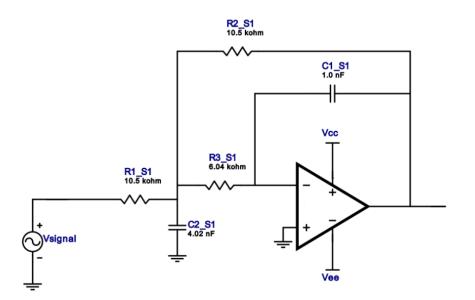
$$s = K \cdot \frac{\left(z - 1\right)}{\left(z + 1\right)}$$


- Limited to 8th order filter designs
 - IIR filter limited to 4 Bi-quads
- Can transform multi-Feedback design directly to Bi-quad coefficients

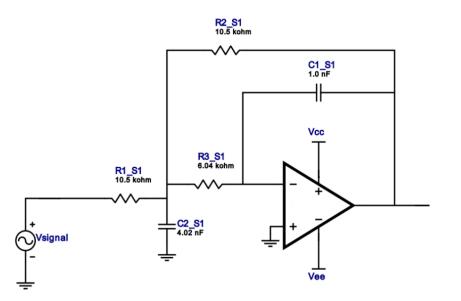


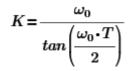


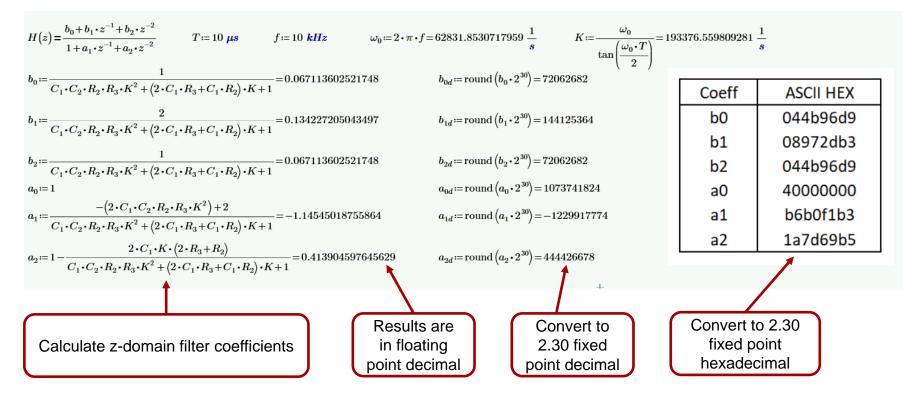
- Filter Design Criteria
 - 10kHz low-pass filter using IIR
 - Target sample rate of 100ksps
 - Example design is 2nd order Butterworth, using a single biquad
 - Can be extended to 8th order


- Design low-pass filter using <u>WEBENCH® analog filter designer</u>
 - Enter 10kHz corner frequency
 - Choose Gain=1, or 0dB
 - Set filter order to 2.
 - Choose Butterworth
 - Select Multiple Feedback Topology

Filter Design To	ool							NEW DESIGN MY
owpass Filter					FILTER TYPE	FILTER R	ESPONSE TOPOLOGY	DESIGN
Specification	÷	View						
Passband	^	Magnitude	Phase Group Delay	Step Response				
Gain (Ao) 0 (0-60)	dB V/V	. <u>*</u>	0					Q Show all
Frequency (Fp) 10000 (0.1-10M)	_ Hz *	se (dB	20					
Ripple (Rp) 0.01 (0-3)	dB	gnitude Res	30					
* Cheby's passband is set at the its ripple. All others' passband		W	40					
Stopband	^	View F	ilter Response	Order	No. of Stages	Max Q	Stopband Attenuation (dB)	Select
Filter order		В	essel	2	1	0.577	-35.870	SELECT >
2		B	utterworth	2	1	0.707	-40.000	SELECT >




- Design low-pass filter using
 <u>WEBENCH® analog filter designer</u>
 - Enter 10kHz corner frequency
 - Choose Gain=1, or 0dB
 - Set filter order to 2.
 - Choose Butterworth for this example
 - Select Multiple Feedback Topology
- Software creates design with following values:
 - R1=R2=10.5kΩ
 - R3=6.04kΩ
 - C1=1.0nF
 - C2=4.02nF



- Sample rate 100ksps
 - T=10µs
- F₀=10kHz
 - $-\omega_0=2\pi F_0$
- Use pre-warping to match gain and phase at ${\rm F_0}$
 - T is the sampling period (seconds)
 - $-\omega_0=2\pi F_0$ is the filter frequency (radians)

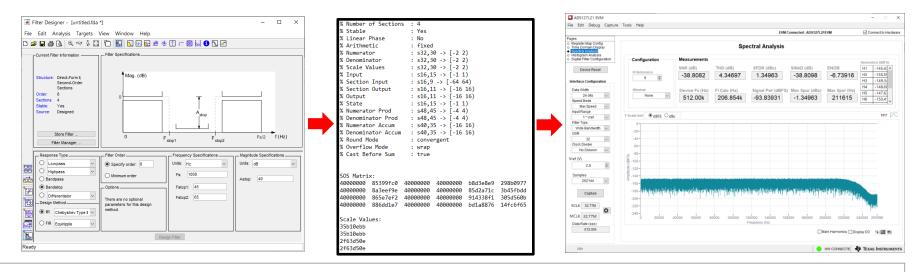
- The ADS127L21EVM-PDK-GUI supports the MATLAB® fcf file format
 - 32b coefficients in fixed point 2.30 ASCII Hexadecimal format
 - The following lines need to be added in addition to the coefficients
 - % Coefficient Format: Hexadecimal
 - % Number of Sections : 4
 - Can use any text editor to create the file, such as Notepad.
 - Save text file with *.fcf extension, ADS127L21_IIR_10kHz.fcf

		SOS Matrix:	% Coeffici % Number o			imal		
Coeff	ASCII HEX	b ₁₀ b ₁₁ b ₁₂ a ₁₀ a ₁₁ a ₁₂			5:4			
b0	044b96d9	b ₂₀ b ₂₁ b ₂₂ a ₂₀ a ₂₁ a ₂₂ b ₃₀ b ₃₁ b ₃₂ a ₃₀ a ₃₁ a ₃₂	SOS Matrix 044b96d9	k: 08972db3	044b96d9	40000000	b6b0f1b2	1a7d69b5
b1	08972db3	$b_{40} b_{41} b_{42} a_{40} a_{41} a_{42}$		00000000 00000000	00000000 00000000	40000000 40000000	00000000 00000000	00000000 00000000
b2	044b96d9	Scale Values:		00000000	00000000	40000000	00000000	00000000
aO	4000000	g ₁	Scale Valu	ues:				
a1	b6b0f1b3	9 ₂	40000000 40000000					
a2	1a7d69b5	93 94	40000000					
		9 ₅	40000000					

- Start the ADS127L21EVM-PDK-GUI software and click on the Digital Filter Configuration page
- 2. Click the file button for the IIR coefficient File
- Navigate to the *.fcf file just created in the text editor and select file
- 4. Click on the Filter Response tab

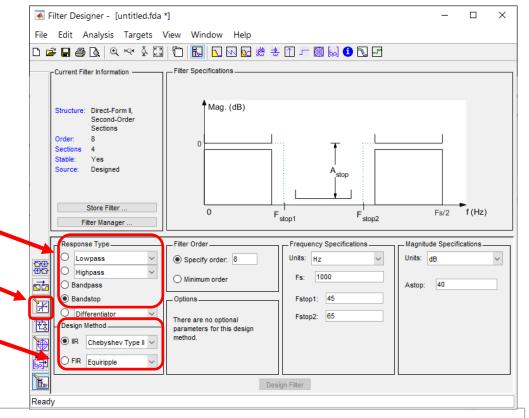
			EVM Connected : A	ADS127L21EVM	Connect to Har
les					
egister Map Config ime Domain Display		Digital Fil	ter Configuration		
Istogram Analysis		-	-		
Digital Filter Configuration	Filter Sequence	Filter Selection	FIR2	FIR3	IIR
Device Reset	FIR3 then IIR	FIR: Default coeffs	Disabled?	Disabled?	Disable
terface Configuration	FIR3 Coefficient File				erse FIR3 Coefficents
ata Width	C:\Users\Public\Documents\Tex	as Instruments\ADS127L21\Configura	ation Files\Coefficients\FIR3 Presets\	DEFAULT_set1_hex.fcf	
24 bits 🗸	IIR Coefficient File			Reve	erse IIR Coeffice to or
Speed Mode	C:\Texas_Instruments\ADS127L	21 Filter\ADS127L21_IIR_10kHz.fcf			i 🗁
Max Speed 🧹	Note: Selecting a Valid Coefficie	nt file will write the coefficient values t	o the device depending the coeffice	nt order selected	
Input Range	Coefficent order for FIR3 : h128				
ilter Type	Filter Coefficients		Filter Response		
Wide Bandwidth V			Filter Response		
DSR	FIR3 Coefficients		IIR Coefficients		
512 🗸		Coefficients	Gain Coefficients		
Clock Divider	🖞 O 🛛 🗴	0 6128	x 4000000 x 400000	002 × 40000003 × 40000	000/ x 40000005
No Division 🗸	×	0 6127			
	x				
ref (V)	x	0 h126			
ef (V) 2.5	×	0 h125	IIR Coefficients		
ef (V) 2.5	x		x 44B96D9 b10 x 40	000000 b20 × 4000000 b3	
af (V) 2.5 ▼	×	0 h126 0 h126 0 h125 0 h124	x 44B96D9 b10 x 40 x 8972DB3 b11 x	0 b21 x 0 b3	1 x 0 641
ef (V) 2.5 Samples 262144	x x x	0 h127 0 h126 0 h125 0 h124 0 h124 0 h124	x 44B96D9 b10 x 40	0 b21 x 0 b3 0 b22 x 0 b3	1 x 0 b41 2 x 0 b42
ef (V) 2.5	x x x x	0 h122 0 h125 0 h124 0 h124 0 h123 0 h123	x 44B96D9 b10 x 40 x 8972DB3 b11 x	0 b21 x 0 b3	1 x 0 b41 2 x 0 b42 1 x 0 841
ef (V) 2.5 • Samples 262144 • Capture	x x x x x x x x	0 h12 0 h12 0 h12 0 h12 0 h12 h12 0 h12 h22 0 h12	x 44B96D9 bit bit v 40 x 8972DB3 bit v x x 44B96D9 bit v x x 44B96D9 bit v x x B6B0F1B2 bit v x	0 b21 x 0 b3 0 b22 x 0 b3 0 a22 x 0 a3 0 a22 a3	1 x 0 b41 2 x 0 b42 1 x 0 a41 2
ef (V) 2.5 🔄 Samples 262144 V Capture ICLK 25.60M	х х х х х х х х х х х	0 h122 0 h128 0 h124 0 h122 0 h122 0 h122 0 h121 0 h121 0 h120 0 h120	x 44B96D9 bio x 40 x 8972DB3 bi11 x x 44B96D9 bi2 x x 86B0F1B2 aii x	0 b21 x 0 b3 0 b22 x 0 b3 0 a22 x 0 a3 0 a22 a3	1 x 0 b41 2 x 0 b42 1 x 0 a41 2
ef (V) 2.5 Samples 262144 Capture CLK 25.60M	х Х Х Х Х Х Х Х Х	0 h122 0 h125 0 h125 0 h122 0 h122 0 h122 0 h122 0 h122 0 h122 0 h120 0 h120 0 h120 0 h110 0 h118	x 44B96D9 bit bit v 40 x 8972DB3 bit v x x 44B96D9 bit v x x 44B96D9 bit v x x B6B0F1B2 bit v x	0 b21 x 0 b33 0 b22 x 0 b33 0 a22 x 0 a33 0 a22 x 0 a34 0 x 0 a34 a34	1 x 0 b41 2 x 0 b42 1 x 0 a41 2
ef (V) 2.5 Samples 262144 Capture ICLK 25.60M	х х х х х х х х х х х	0 h122 0 h128 0 h124 0 h122 0 h122 0 h122 0 h121 0 h121 0 h120 0 h120	x 44B96D9 bit bit v 40 x 8972DB3 bit v x x 44B96D9 bit v x x 44B96D9 bit v x x B6B0F1B2 bit v x	0 b2 x 0 b3 0 b2 x 0 b3 0 a21 x 0 b3 0 a21 x 0 a2 0 a21 x 0 a2 1 x 0 a2 1 x 0 b3 1 x 0 b3	1 x 0 b41 2 x 0 b42 1 x 0 a41 2
ref (V) 2.5 💮 Samples 262144 V Capture SCLK 25.60M	х Х Х Х Х Х Х Х Х	0 h122 0 h125 0 h125 0 h122 0 h122 0 h122 0 h122 0 h122 0 h122 0 h120 0 h120 0 h120 0 h110 0 h118	x 44B96D9 bit bit v 40 x 8972DB3 bit v x x 44B96D9 bit v x x 44B96D9 bit v x x B6B0F1B2 bit v x	0 b21 x 0 b33 0 b22 x 0 b33 0 a22 x 0 a33 0 a22 x 0 a34 0 x 0 a34 a34	1 x 0 b41 2 x 0 b42 1 x 0 a41 2

- 5. Set the sample rate to 100ksps
 - Set OSR to 512
- 6. Click, un-check, the IIR Disabled box
- 7. Click, check, the FIR2 and FIR3 boxes
- Set the external MCLK to 25.6M (EVM requires external clock source set to 25.6MHz)
- 9. The combined IIR filter response, FIR1 and SINC5 response is now plotted and ready for use.


ADS127L21

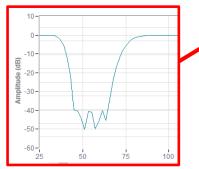
- ADS127L21 programmable coefficient filter options
 - Finite Input Response (FIR)
 - Infinite Input Response (IIR)
 - Convert decimal filter coefficients to fixed-point format
- ADS127L21EVM-PDK GUI Filter file format
 - MATLAB[®] 'fcf' file format
- IIR filter design using Bilinear transform
 - Design 10kHz 2nd order filter starting with MFB topology
 - Create 'fcf' file and evaluate using ADS127L21EVM-PDK hardware
- Filter design using MATLAB® Filter Designer
 - MATLAB® Filter Design overview
 - Design IIR 50Hz/60Hz power-line frequency notch filter for 1ksps data rate
 - Design FIR 20kHz Low pass filter for 256ksps data rate

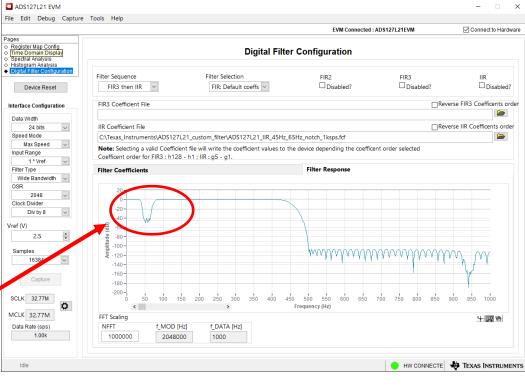
ADS127L21 – MATLAB® filter design overview


- MATLAB® is the preferred tool to directly design IIR and FIR filters
 - The following examples use MATLAB® version R2022b, but any version can be used
 - In addition to the MATLAB[®] software, you will need the following add-on packages
 - Signal Processing Toolbox, which includes the Filter Designer tool
 - Fixed-Point Designer, which converts to fixed point coefficients and ASCII HEX exports

ADS127L21 – MATLAB® filter design overview

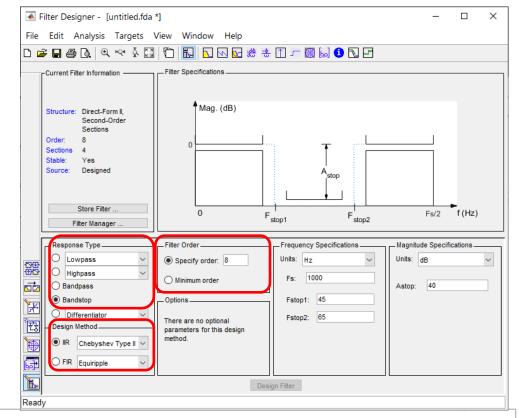
- Filter Designer is a graphical design tool that enables the creation of multiple filter types.
 - Supports creation of Lowpass, Highpass, Bandpass, and Bandstop profiles
 - Quantization of filter coefficients and export to ADS127L21EVM-PDK-GUI
 - The tool supports creation of both IIR and FIR filter types




ADS127L21

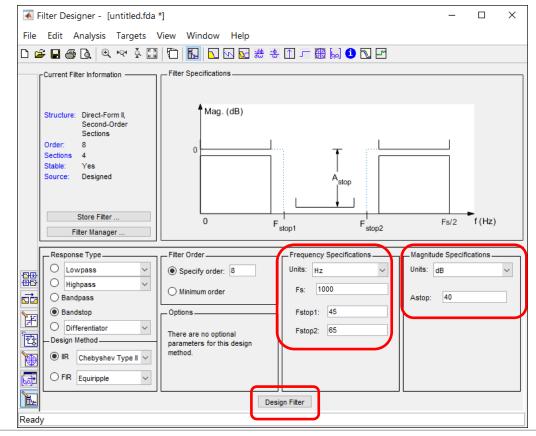
- ADS127L21 programmable coefficient filter options
 - Finite Input Response (FIR)
 - Infinite Input Response (IIR)
 - Convert decimal filter coefficients to fixed-point format
- ADS127L21EVM-PDK GUI Filter file format
 - MATLAB[®] 'fcf' file format
- IIR filter design using Bilinear transform
 - Design 10kHz 2nd order filter starting with MFB topology
 - Create 'fcf' file and evaluate using ADS127L21EVM-PDK hardware
- Filter design using MATLAB® Filter Designer
 - MATLAB[®] Filter Design overview
 - Design IIR 50Hz/60Hz power-line frequency notch filter for 1ksps data rate
 - Design FIR 20kHz Low pass filter for 256ksps data rate

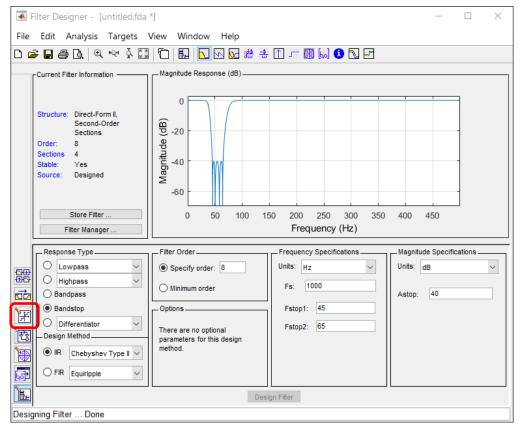
- Filter Design Criteria
 - 50/60Hz notch filter using IIR
 - Target sample rate of 1ksps
 - Limited to 8th order, or 4
 Second-order-Sections
 - Filter Designer tool creates filter notch from 45Hz to 65Hz with 40dB of attenuation



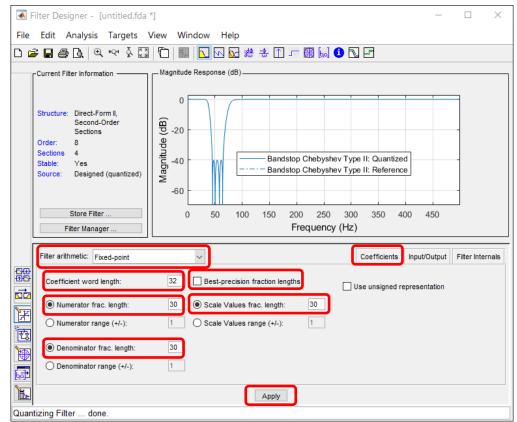
- 1. Open MATLAB®
- 2. In the Command Window, type filterDesigner and press Enter
 - This will launch the Filter
 Designer tool that is part of the Signal Processing
 Toolbox
- 3. Wait for Filter Designer to load

📣 MATLAB R	2022b		
HOME	PLOTS	APPS	
New New Script Live Scri	New Open pt • •	C Find Files	Save Workspace 🔊 Run and Time
🗢 🌩 🖬 🔊	🕞 🕨 C: 🕨 Tex	as_Instrumen	nts 🕨 ADS127L21 Filter
Current Folder		\odot	Command Window
📄 Name 🔺			New to MATLAB? See resources for Getting Started.
🗷 📙 Backup			∫ÿ >> filterDesigner


- 4. Select <u>Bandstop</u> under Response Type
- 5. Select <u>IIR</u> and <u>Chebyshev</u> <u>Type II</u> under Design Method
- 6. Select <u>Specify order</u> under Filter Order and enter 8
 - ADS127L21 IIR filter uses 4 bi-quad sections (or Second order Sections), for a total filter order of 8

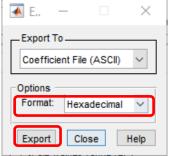

31

- 7. Enter Fs: 1000 (Hz) under Frequency Specifications
- Enter Fstop1: 45 (Hz) and Fstop2: 65 (Hz) under Frequency Specifications
 - 45Hz to 65Hz covers variation in line frequency
- 9. Enter Astop: 40 (dB) under Magnitude Specifications
 - Higher attenuation results in wider transition bands
- 10. Click the 'Design Filter' button.


- 11. Filter Designer will now display the Magnitude response
 - You can now make adjustments and recalculate the response if needed
- 12. Click the 'Set quantization parameters' button 🖭
 - The initial design uses floating point math. The quantization tool enables fixed point design

- 13. Select Fixed-point on the Filter arithmetic selection
- 14. Enter 32 for Coefficient word length in the Coefficients tab
- 15. Uncheck the Best-precision fraction lengths box
- 16. Enter 30 for:
 - Numerator fraction length
 - Denominator fraction length
 - Scale Values fraction length

17. Click the 'Apply' button


- 18. The Magnitude Response display now plots both the original floating point (Reference) and fixed-point (Quantized) results.
- 19. Select File->Export

承 Filter Designer - [untitled.fda *]	_		×
File Edit Analysis Targets View Window Help			
New Session Ctrl+N 🖟 🗇 📼 🖼 🗹			
Open Session Ctrl+O			
Save Session Ctrl+S			
Save Session As	-	7	
Store Filter			
Import Filter from Workspace Ctrl+I		-	
Import Filter from XILINX Coefficient (.COE) File			
Export to Simulink Model Bandstop Chebyshev Type II: Quantized		-	
Export Ctrl+E Bandstop Chebyshev Type II: Reference			
Generate MATLAB Code		-	
Print Preview			
	450		
Print to Figure Frequency (Hz)			
Close Fitter anthmetic: Fixed-point	Output	Filter Inter	a a la
	Output	Filler litter	nais
Coefficient word length: 32 Best-precision fraction lengths Use unsigned represent	ntation		
Alumentes free length: 20 Casts Values free length: 20			
Image: State values range 30 Image: State values range 30 Image: State values range 1 Image: State values range 1			
Denominator frac. length:			
Apply			
Quantizing Filter done.			

- 20. Under Export pop-up window, Export To, select Coefficient File (ASCII)
- 21. Under Options, Format, select Hexadecimal
- 22. Click the Export button
- 23. Choose directory and file name, save as default *.fcf file name
 - ADS127L21_IIR_45Hz_65Hz_notch_1ksps.fcf

🛛 Export 🛛 — 🗆 🗙
Export To
Workspace 🗸
Workspace
Coefficient File (ASCII)
MAT-File
Variable Names
SOS Matrix: SOS
Scale Values: G
Overwrite Variables
Export Close Help

ADS127L21 – 50/60Hz IIR notch filter design

- 24. Start the ADS127L21EVM-PDK-GUI software and click on the Digital Filter Configuration page
- 25. Click the file button for the IIR coefficient File
- 26. Navigate to the *.fcf file just created in MATLAB[®] and select file
- 27. Click on the Filter Response tab

ADS127L21 EVM				- 🗆 ×
File Edit Debug Capture	e Tools Help			
		EVM Connected : A	DS127L21EVM	Connect to Hardware
Pages ♦ Register Map Config ♦ Time Domain Display ♦ Spectral Applysic	Digital Filt	er Configuration		
 Time Domain Display Beached Analysis Histogram Analysis Device Reset Interface Configuration Data Widh Data Widh Speed Analysis Histogram Analysis Interface Configuration Data Widh Speed Analysis Input Finite Filter Type Wide Bandwidth ∨ OS S2 ∨ Clock DMder No DMision ∨ Vref (V) 2.5 ♥ Samples 16384 ∨ Capture	Digital Filt Filter Sequence Filter Selection FIR3 then IIR Filter Selection FIR3 Coefficient File Filter Selection FIR3 Coefficient File Filter Selection C:\Texas_Instruments\ADS127L21_custom_filter\ADS127L21_IIR_45H: Note: seecting a valid Coefficient file Coefficient order for FIR3 : h1 : IIR : g5 - g1. Filter Coefficients Filter Coefficients FIR3 Coefficients SeefFifAB25_state × FFFFB680_state × FFFFB680_state × 800 × FFFFB680_state × FFFFD0DE9 × SEFFF0309_state × SEFFF0309_state	FIR2 Disabled? z_65Hz_notch_1ksps.fd or the device depending the coefficient Filter Response IR Coefficients Gain Coefficients X_3D228985_1 × 3D22896 IIR Coefficients X_40000000 vio × 400 × 85399FC0 vio × 400 × 85399FC0 vio × 400 × 8000000 vio × 400	Reve at order selected	x 40000000000 x 886DD1E761
SCLK 32.77M MCLK 32.77M Data Rate (sps)	x 33A9A http x FFFCA90A ¹¹² x FFF98363	x 3961AC2C x 3C7	IIR CRC	x 32BA207A
•	× FFFCA90A ¹¹⁸		IIR CRC × 8E	

ADS127L21 – 50/60Hz IIR notch filter design

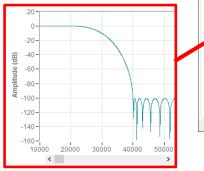
28. Set the sample rate to

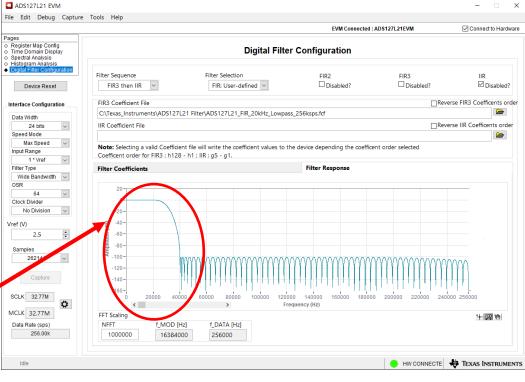
1ksps

- Set OSR to 2048
- Set Clock Divider to Div by 8
- 29. Click, un-check, the IIR Disabled box
- 30. The combined FIR Wideband filter and IIR filter response are now plotted and ready for use.

File Edit Debug Capture Tools Help	
EVM Connected : ADS127L21EVM Zonnect	to Hardware
Pages	
○ Register lag Config § Time Demain Display Digital Filter Configuration	
Filter Sequence Filter Selection FIR2 FIR3 IIR	
Device Reset FIR3 then IIR V FIR: Default coeffs V Disabled? Disabled?	sabled?
Interface Configuration FIR3 Coefficient File	
Data Width	
24 bits 🔽 IIR Coefficient File 🗌 Reverse IIR Coefficient	nts order
Speed Mode C:\Texas_Instruments\ADS127L21_custom_filter\ADS127L21_IIR_45Hz_65Hz_notch_1ksps.fcf	>
Max Speed V	-
input Range Coefficient order for FIR3 : h128 - h1 : IR : g5 - g1. Coefficient order for FIR3 : h128 - h1 : IR : g5 - g1.	
Filter Type Filter Coefficients Filter Response	
Mide Pandusidh va	
OSR	
Clock Divider	
Div by 8 -20	
Vref (V) @ -60- 2.5 Ø -80- samples 9-10-	
Samples 9 -120	
16384 -140-	
-100-	
Capture -180-	
-200 -	
SCLK 32.77M 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 10	00
Frequency (Hz)	
MCLK 32.77M FFT Scaling + 2	10
Data Rate (sns) NFFT f_MOD [Hz] f_DATA [Hz]	
1.00k 1000000 2048000 1000	
Idle 🔴 HW CONNECTE 🐺 TEXAS IN:	TRUMENTS

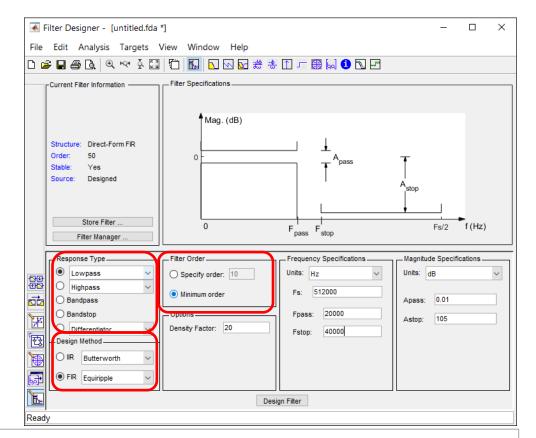
ADS127L21


- ADS127L21 programmable coefficient filter options
 - Finite Input Response (FIR)
 - Infinite Input Response (IIR)
 - Convert decimal filter coefficients to fixed-point format
- ADS127L21EVM-PDK GUI Filter file format
 - MATLAB[®] 'fcf' file format
- IIR filter design using Bilinear transform
 - Design 10kHz 2nd order filter starting with MFB topology
 - Create 'fcf' file and evaluate using ADS127L21EVM-PDK hardware


• Filter design using MATLAB® Filter Designer

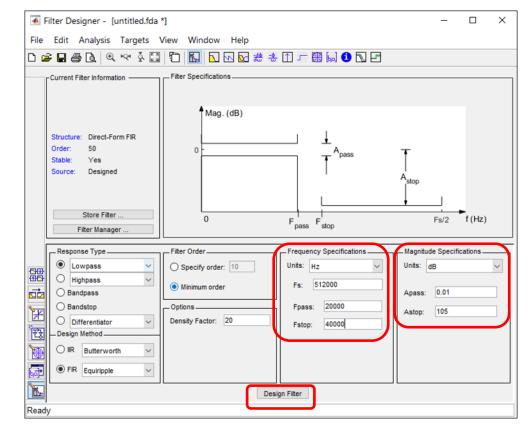
- MATLAB[®] Filter Design overview
- Design IIR 50Hz/60Hz power-line frequency notch filter for 1ksps data rate
- Design FIR 20kHz Low pass filter for 256ksps data rate

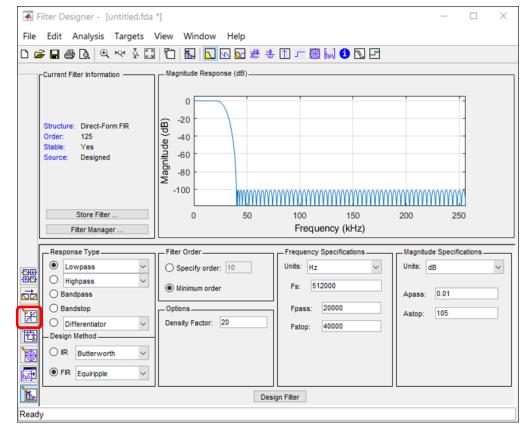
- Filter Design Criteria
 - 20kHz lowpass filter using FIR
 - Target sample rate of 256ksps
 - Limited to maximum of 128 coefficients
 - Filter Designer tool creates
 20kHz lowpass with ≥100dB
 of attenuation



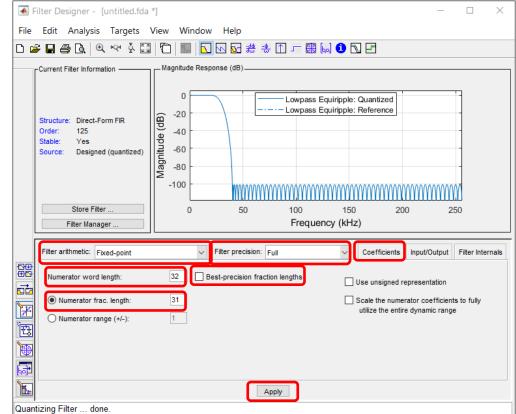
- 1. Open MATLAB®
- 2. In the Command Window, type filterDesigner and press Enter
 - This will launch the Filter
 Designer tool that is part of the Signal Processing
 Toolbox
- 3. Wait for Filter Designer to load

A MATLAB R2022b					
HOME	PLOTS	APPS			
New New Script Live Scri	New Open pt • •	C Find Files	Save Workspace 🔊 Run and Time		
🗢 🌩 🖬 🔊	🕞 🕨 C: 🕨 Tex	as_Instrumen	nts 🕨 ADS127L21 Filter		
Current Folder		\odot	Command Window		
📄 Name 🔺			New to MATLAB? See resources for Getting Started.		
🗷 📙 Backup			∫ÿ >> filterDesigner		


- 4. Select <u>Lowpass</u> under Response Type
- 5. Select <u>FIR</u> and <u>Equiripple</u> under Design Method
- 6. Select <u>Minimum order</u> under Filter Order
 - This option allows setting of desired passband ripple and stopband attenuation
 - Requires iterating transition bandwidth (Fpass-Fstop) until order is ≤127, or number of coefficients ≤128

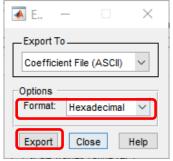

42

- 7. Enter Fs: 512000 (Hz) under Frequency Specifications
 - Final sample rate is 256kHz, Fs=2*256kHz to account for 2x decimation
- 8. Enter Fpass: 20000 (Hz) and Fstop: 40000 (Hz) under Frequency Specifications
- Enter Apass: 0.01 and Astop: 105 (dB) under Magnitude Specifications
- 10. Click the 'Design Filter' button.



- 11. Filter Designer will now display the Magnitude response
 - You can now make adjustments and recalculate the response if needed
 - Filter Order = 125 (<128)</p>
- 12. Click the 'Set quantization parameters' button 🔚
 - The initial design uses floating point math. The quantization tool enables fixed point design

- 13. Select Fixed-point on the Filter arithmetic selection
- 14. Select Filter precision: Full
- 15. Enter 32 for Numerator word length in the Coefficients tab
- 16. Uncheck the Best-precision fraction lengths box
 - Leave other boxes unchecked
- 17. Enter 31 for Numerator fraction length
- 18. Click the 'Apply' button


- 19. The Magnitude Response display now plots both the original floating point (Reference) and fixed-point (Quantized) results.
- 20. Select File->Export

✓ Filter Designer - [untitled.fda *]	-		×			
File Edit Analysis Targets View Window Help						
New Session Ctrl+N 🖟 🗇 🗂 🖃 😡 🛈 🔂 🖃						
Open Session Ctrl+O						
Save Session Ctrl+S						
Save Session As		7				
Store Filter		_				
Import Filter from Workspace Ctrl+1						
Import Filter from XILINX Coefficient (.COE) File						
Export to Simulink Model		1				
Export Ctrl+E		-				
Generate MATLAB Code	~~~~	00				
Print Preview	mmmm					
	200 2	50				
Print to Figure Frequency (KHZ)	Print to Figure Frequency (kHz)					
Close						
Filter anthmetic: Fixed-point V Filter precision: Full V Coefficients	s Input/Output	Filter Inte	ernals			
Numerator word length: 32 Best-precision fraction lengths	Bit Numerator word length: 32 Best-precision fraction lengths Use unsigned representation					
Numerator frac. length: 31	nerator coefficient tire dynamic range					
Numerator range (+/-): 1	and dynamic rung					
□						
Apply						
Quantizing Filter done.						

- 21. Under Export pop-up window, Export To, select Coefficient File (ASCII)
- 22. Under Options, Format, select Hexadecimal
- 23. Click the Export button
- 24. Choose directory and file name, save as default *.fcf file name
 - ADS127L21_FIR_20kHz_Lowpass_256ksps.fcf

🐼 Export 🛛 —				
Export To				
Workspace	\sim			
Workspace				
Coefficient File (ASCII)				
MAT-File				
Variable Names				
SOS Matrix: SOS				
Scale Values: G				
Overwrite Variables				
Export Close Help				

25. Start the ADS127L21EVM-PDK-GUI software and click on the Digital Filter Configuration page

- 26. Click the file button for the FIR coefficient File
- 27. Navigate to the *.fcf file just created in MATLAB[®] and select file
- 28. Click on the Filter Response tab

ADS127L21 EVM				– 🗆 🗙
File Edit Debug Capture	Tools Help			
		EVM Connected : ADS127	21EVM	Connect to Hardware
Pages ♦ Register Map Config ♦ Time Domain Display ♦ Spectral Analysis	Digital Filt	er Configuration		
Digital Filter Configuration Device Reset	Filter Sequence Filter Selection FIR3 then IIR FIR: Default coeffs	FIR2 Disabled?	FIR3 Disabled?	IIR ☑ Disabled?
Interface Configuration	FIR3 Coefficient File		Reverse	e FIR3 Coefficents order
Data Width	C:\Texas_Instruments\ADS127L21 Filter\ADS127L21_FIR_20kHz_Lowpa	ss_256ksps.fcf		
24 bits 🗸 Speed Mode	IIR Coefficient File		Reverse	e IIR Coefficents order
High Speed Input Range 1 * Vref	Note: Selecting a valid Coefficient file will write the coefficient values to Coefficent order for FIR3 : h128 - h1 ; IIR : g5 - g1.	the device depending the coefficent orde	selected	
Filter Type Wide Bandwidth v OSR 32 v Clock Divider Div by 2 v Vref (V) 2.5 t	First Coefficients	Filter Resoonse IIR Coefficients Gain Coefficients X 4000000; X 4000000; X 4 IIR Coefficients	000000a × 4000000	Q⊨ × 400000Q.5
Samples 262144 V Capture SCLK 32.77M MCLK 32.77M Data Rate (sps) 256.00k	x 9608 #122 x AB67 #127 x 8F22 #121 x 2145 #120 x FFFF42C6-119 #120 x FFFFBDD8A118 x x FFFFBDD8 v	IIR Coefficients x 40000000 to x x 40000000 to x x 0 to x 0 x 0 x 0 to x 0 x 0 x 0 x 0 to x 0 to x 0 x	b21 x 0 b31 x b22 x 0 b32 x a27 x 0 a37 x a22 x 0 a37 x a23 x 0 a32 x	0 b41 0 b42 0 841 40 841
Idle			HW CONNECTE	TEXAS INSTRUMENTS

29. Set the sample rate to 256ksps

- Set OSR to 64

30. Set Filter Selection to:

- FIR: User-defined
- 31. The FIR Wideband filter response is now plotted and ready for use.

ADS127L21 EVM					– 🗆 🗙
File Edit Debug Capture	Tools Help				
			EVM Connected :	ADS127L21EVM	Connect to Hardware
Pages					
 ♦ Register Map Config ♦ Time Domain Display ♦ Spectral Analysis 		Digital Filte	r Configuration		
Histogram Analysis					
Digital Filter Configuration	Filter Sequence	Filter Selection	FIR2	FIR3	IIR
Device Reset	FIR3 then IIR	FIR: User-defined 🔽	Disabled?	Disabled?	Disabled?
Interface Configuration	FIR3 Coefficient File			Rever	se FIR3 Coefficents order
Data Width	C:\Texas_Instruments\ADS127L	1 Filter\ADS127L21_FIR_20kHz_Lowpa	ss_256ksps.fcf		
24 bits 🗸	IIR Coefficient File			Rever	se IIR Coefficents order
Speed Mode					
Max Speed 🗸	Note: Selecting a valid Coefficier	t file will write the coefficient values to t	he device depending the coeffice	nt order selected	
Input Range	Coefficent order for FIR3 : h128		,		
1 * Vref Viele Filter Type			Filter Response		
Hiter Type Wide Bondwidth	Filter Coefficients		Filter Response		
OSR					
64	20-				
	0-				
No Division 🗸	-20-				
Vref (V)	-40-				
2.5	-00- -00- -00- -00- -00- -00- -00- -00				
2.0	-80-				
Samples	Ē -00-				
262144 🗸	≪ -100-	MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	იიიიიიიიიიიიიი	000000000000000000000000000000000000000	000
	-120 -			<u>▎▝▝▝▝▝?</u> ▎ <u>▎</u> ▎ <u></u>	(Y Y I
Capture	-140-		╻╻╴╹╹╹╹╹╹╹╹╹╹╹╹╹		
	-160-	allaha sa kuta sa	a su na mandri da	11.11.11.11.11	
SCLK 32.77M	0 20000 4000	0 60000 80000 100000 1200	00 140000 160000 180000	200000 220000 24000	0 256000
•	<	> Fr	equency (Hz)		
MCLK 32.77M	FFT Scaling				+ 🔊 👳
Data Rate (sps)	NFFT f_MOD [H] f_DATA [Hz]			-1-10 8-2 1 (184)
256.00k	1000000 1638400				
Idle				HW CONNECTE	TEXAS INSTRUMENTS

Thanks for your time!

© Copyright 2023 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

