
Yes, the input V_1 must work exactly as other inputs: V_0 ; $V_2 - V_7$, but when I tried to check this input the result was as shown at the table below:

Channel	Vin Positive	Vin Negative	Result	Must be
Channel 0	V_0	V_1	V_0	$V_0 - V_1$
Channel 0	V_1	V_0	$-V_0$	$V_1 - V_0$
Channel 0	V_2	V_3	$V_2 - V_3$	$V_2 - V_3$
Channel 0	V_3	V_2	$V_3 - V_2$	$V_3 - V_2$
Channel 1	V_0	V_1	$V_0 - 0v$	$V_0 - V_1$
Channel 1	V_1	V_0	$0v - V_0$	$V_1 - V_0$
Channel 1	V_2	V_3	$V_2 - V_3$	$V_2 - V_3$
Channel 1	V_3	V_2	$V_3 - V_2$	$V_3 - V_2$

Also I tried to measure the voltage on the pin V_1 as shown on the picture. When I tried to change the voltage on power supply PS_2 I saw that the voltage on this pin (V_1) changes too, but the result, given by LMP90100 remained unchanged.

