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INTRODUCTION 

This document is intended to explain the design used to capture data from TI ADCs into 

an FPGA and then streaming it to the PC. The document has been partitioned into 

following sections. Section I gives a brief overview of the test equipment setup. Section II 

describes in detail the base FPGA design used to handle data after it has been captured 

into the FPGA flip-flops. Section III outlines the difference between two versions of the 

extended design used to capture data from Serial Output and Parallel Output ADCs. 

Section IV describes in details configuration registers and the addressing scheme used. 

Section V discusses the partition of design with respect to implementation and relates the 

functionality to file names used in project. Appendix A contains example MATLAB 

codes used to initialize and capture data from the system under different configurations.  

 

Section I 

SYSTEM OVERVIEW 

Fig. 1 is a block diagram that illustrates the test equipment setup. Under the currently 

used setup, the ADC under test is located on an evaluation board, separate from the 

FPGA board. The Virtex 4 FPGA and the UART-to-USB Bridge are located on TI’s 

TUSB 1200 evaluation board, which sits on top of the ADC board through a LVDS 

connector. TUSB 1200 connects to the host computer through a USB cable and is seen by 

the host computer as a COM port, after its driver installation files are in place. 

 

 
Figure 1 Test Equipment Setup for ADCs 

 

The ADCs under test can be divided into two main categories. 

• Serial output ADCs 

These ADCs output serial data on LVDS pairs and therefore require a SERDES 

block in the FPGA for serial to parallel conversion. 

• Parallel output ADCs 

These ADCs output parallel data on LVDS pairs and therefore do not require any 

conversion in the FPGA. However, they might source data on the LVDS lines in a 
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DDR fashion which requires some logic in the FPGA design that separates 

positive-edge and negative-edge data. 

 

These two categories of ADCs call for two FPGA designs customized appropriately.  The 

base of these two FPGA designs is the same but there are slight differences in the way 

they capture data from their respective ADCs. The base design shared by the two 

approaches is explained first. Different use of this base design in the two approaches is 

explained later. 

 

Section II 

BASE DESIGN 

 

 
Figure 2 Base Design 

 

Fig. 2 block diagram illustrates details of the base design used to dump data captured by 

the FPGA into memories.  
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The base design gets 4 streams of data from entities that capture data from the ADC. The 

data capturing entity is SERDES block from Xilinx XAPP866, if the ADC under test is a 

serial output ADC. The data capture entity is a group of Xilinx ISERDES I/O primitives, 

if the ADC under test is a parallel output ADC. The details of data capturing are 

discussed in Section III. A description of blocks of Fig. 2 follows. 

 

CLOCK BRIDGE FIFO 

The clock bridge FIFO does precisely what its name says: it acts as a bridge for data 

when it crosses clock domains from channel clock to system clock. The channel clock for 

each channel can take any value less than 250 MHz and is used as the write clock for 

respective channel FIFO. All channel clocks are shown in different color in Fig. 2. The 

system clock is fixed at 250 MHz and is used as the read clock for all channel FIFOs. It is 

represented in blue color in Fig. 2. A self-addressing FIFO design based on Xilinx 

XAPP291 is used. Self-addressing FIFO uses block memories to store both data and 

address information in a single memory location, thus eliminating the need for external 

FIFO address counters. Each clock bridge FIFO is used for data throttling in continuous 

mode and therefore has a very small size of 16x36-bits. 

 

DATA SELECT MULTIPLEXER FOR BLOCK RAM 

As shown in Fig. 2, there sits a 4-to-1 16-bit multiplexer at the input of each BRAM 

FIFO which selects based on the control signals from controller, which data stream is 

presented at the input of the BRAM FIFO for storage. This multiplexer gives the 

flexibility of storing data from selected or all data streams into the dump BRAM FIFOs.  

 

BRAM FIFO 

The purpose of BRAM FIFOs shown in Fig. 2 is data storage. Therefore, they form the 

biggest component of the FPGA base design in terms of area, consuming 100% of 

BRAM resources of the Xilinx 4VLX25SF363 FPGA. 

 

Each BRAM FIFO is 16397x16-bits in size. Since, it is extremely hard to run a single 

memory block of this size at 250 MHz; it has been broken down into three smaller sub-

FIFOs that are used in a piggybacked fashion. Two of these sub-FIFOs are 8191x16-bits 

in size and the third one is 15x16-bits in size. All these components are generated with 

Xilinx Core-Generator Wizard. 

 

During data capture operation, the BRAM FIFOs are dumped with data sourced from the 

clock-bridge FIFOs until they are completely filled. The FIFO_FULL event triggers the 

controller to read data from these FIFOs and provide it to UART for transmission to the 

host computer. 

 

UART 

A simple UART design provided by Xilinx has been used in the base design to interface 

it to TUSB chip. The UART takes single byte of data from BRAM FIFOs and transmits it 



to the host computer. It repeats this operation until the end of last BRAM FIFO is reached 

and FIFO_EMPTY event commences for all BRAM FIFOs. 

 

The UART baud clock is configurable through controller’s configuration register and can 

be set to support any baud rate. More details are provided in the controller design. 

 

SPI 

A SPI interface is added to the FPGA base design to allow it to configure ADCs that need 

to be initialized to appropriate modes before they can begin their normal operation. The 

SPI can be configured to transmit and receive 8, 16 or 24 bits, address and data bits 

combined. The data input to SPI comes from the controller. 

 

Similar to UART, the baud rate of SPI can be configured to any value by writing to 

configuration register in the controller. More details are provided in the controller design. 

 

CONTROLLER 

The controller consists of configuration logic as well as state machines that dictate the 

sequence of operations for capturing and handling ADC data. The controller has been 

implemented in a de-centralized fashion with each block having its control logic within 

itself. The overall flow of operations is dictated by user writes to configuration registers. 

Each configuration register can be written by sending an address byte and a data byte to 

the FPGA UART. 

 

The sequence of operations for capturing data from ADC and transmitting to the host 

computer is illustrated in Fig. 3. The sequence shown assumes that UART configuration 

registers have been configured for the required baud rate.  

 

Fig. 4 illustrates the sequence of writes that need to be initiated by the user to transmit 

data over SPI. Similarly, Fig. 5 shows the steps to vary skew on data/clock lines coming 

from the ADC into the FPGA. 

 

All of the configuration registers are readable through UART. When a register read 

operation is requested, the current design of UART sends the value of the requested 

register 8 times i.e. 8 identical bytes are transmitted over the UART to the host computer. 

Fig. 6 illustrated steps to accomplish a read operation through UART.  

 



 
Figure 3 Sequence to initiate Data Capture 

 

 

 
Figure 4 Sequence to initiate SPI transaction 
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Figure 5 Sequence to de-skew clock/data lines from ADC 

 

 
Figure 6 Sequence for Read Register operation 

 

The configuration registers have been discussed in detail in Section IV. 

 

Section III 

EXTENDED DESIGN I 

Extended design I is used when the ADC under test is a serial output ADC. A block 

diagram of extended design I is shown in Fig. 7. The XAPP866 is used to convert the 

serial data being sourced on LVDS pairs by the ADC, to parallel data streams. Each bit 

stream at the output of XAPP866 can be treated as a data channel, synchronized to its 

channel clock. 

 

The output of XAPP866 can feed the input of the base design without any glue logic. The 

base design then can be configured to capture data from any channel. 

 

The system clock needed for the base design is also generated by XAPP866 and is equal 

to 200 MHz. 
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Figure 7 Extended Design I 

 

EXTENDED DESIGN II 

Extended design II is used when the ADC under test is a parallel output ADC. It can be 

used to capture data that is SDR, bit-wise DDR or sample-wise DDR. A block diagram of 

extended design II is shown in Fig. 8.  

 

The ADC under test drives its output data on LVDS pairs that terminate at the input of 

Xilinx ISERDES primitives inside the FPGA. Each ISERDES primitive is configured to 

take in DDR data and convert it into two parallel data streams. These 2 parallel data 

streams form the input of base design as channel 1 and channel 2. When the ADC under 

test outputs data in sample-wise DDR fashion, channel 1 and 2 should be captured into 

FIFOs and retrieved. Channel 3 and channel 4 of the base design are driven by the same 

data except that zeros have been inserted at every alternate bit location in the output of 

the ISERDES primitives. This has been done to facilitate extraction of samples when the 

ADC outputs data in bit-wise DDR fashion. Thus channel 3 and 4 should be captured into 

FIFOs and retrieved when the ADC under test outputs data is bit-wise DDR. 
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Figure 8 Extended Design II 

 

The system clock needed for the base design is also generated by a wrapper that 

encapsulates ISERDES primitives and the base design. The system clock is equal to 250 

MHz. 

 

Section IV 

REGISTER MAP  

There are 16 configuration registers that need to be appropriately initialized before any 

capture operation can take place. All these register can be accessed for read/write 

operations. Table 1 gives a summary of all the modes that can be programmed through 

the UART. 
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Table 1 Summary of Functions Supported by UART Interface 

Register 

Address 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

0x0 <RST> 

Software Reset 

0x1  

X 

  

<GO> 

Start 

Capture 

0x2  

X 

<EN4> 

Enable 

Channel 

4 

<EN3> 

Enable 

Channel 

3 

<EN2> 

Enable 

Channel 

2 

<EN1> 

Enable 

Channel 

1 

0x3 X <RA> 

Read Address for Controller Registers 

0x4 <BRAM_FIFO_SEL> <BRAM_FIFO_SIZE> 

0x5 <DYRST> 

Reset IOB 

Delay 

<DYINC> 

Inc/Dec 

IOB 

Delay 

<DYVAL> 

Inc/Dec value (0-63) 

0x6 <UBAUD> 

UART Baud Rate 

0x7 X <CTS> 

UART 

<DSR> 

UART 

<DCD> 

UART 

<RI> 

UART 

0x8 <SPIGO> 

SPI Start 

<RCE> 

SPI 

Receive 

Clock 

Edge 

<TCE> 

SPI 

Transmit 

Clock 

Edge 

<SPIBITS> 

Can be set to 8, 16 or 24 

0x9 <SBAUD> 

SPI Baud Rate 

0xA <SPID[07:00]> 

SPI Transmit data[07:00] 

0xB <SPID[15:08]> 

SPI Transmit data[15:08] 

0xC <SPID[23:16]> 

SPI Transmit data[23:16] 

0xD <DQ7> 

Select 

data line 7 

for Delay 

Adjust 

<DQ6> 

Select 

data line 

6 for 

Delay 

Adjust 

<DQ5> 

Select 

data line 

5 for 

Delay 

Adjust 

<DQ4> 

Select 

data 

line 4 

for 

Delay 

Adjust 

<DQ3> 

Select 

data 

line 3 

for 

Delay 

Adjust 

<DQ2> 

Select 

data 

line 2 

for 

Delay 

Adjust 

<DQ1> 

Select 

data 

line 1 

for 

Delay 

Adjust 

<DQ0> 

Select 

data 

line 0  

for 

Delay 

Adjust 



0xE X X <DQ13> 

Select 

data line 

13 for 

Delay 

Adjust 

<DQ12> 

Select 

data 

line 12 

for 

Delay 

Adjust 

<DQ11> 

Select 

data 

line 11 

for 

Delay 

Adjust 

<DQ10> 

Select 

data 

line 10 

for 

Delay 

Adjust 

<DQ9> 

Select 

data 

line 9 

for 

Delay 

Adjust 

<DQ8> 

Select 

data 

line 8 

for 

Delay 

Adjust 

0xF X <DQS> 

Select 

ADC 

Clock 

for 

Delay 

Adjust 

 

 

DESCRIPTION OF SERIAL REGISTERS 

Each register function is explained in detail below. 

 
Table 2 UART Register 0 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

0 <RST> 

Software Reset 

 

D7 DOWNTO D0 <RST> Software Reset for FIFOs 

0x00   Normal operation 

0xFF Software reset applied - resets all FIFO pointers and memories. 

The reset is NOT self clearing and requires the user to de-assert it, 

after it has been asserted. 

0xFF Default value. 

 
Table 3 UART Register 1 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

1  

X 

  

<GO> 

Start 

Capture 

 

D0   <GO> 



1 Enables data capture into FIFOs. This bit self clears to 0 after all 

FIFOs have been filled up and the UART has transmitted all data 

to the host computer. 

0 Default value. 

 
Table 4 UART Register 2 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

2  

X 

<EN4> 

Enable 

Channel 

4 

<EN3> 

Enable 

Channel 

3 

<EN2> 

Enable 

Channel 

2 

<EN1> 

Enable 

Channel 

1 

 

D3 DOWNTO D0 <EN4:1> Channel Enables For Base Design 

0x0   No Data is captured into BRAM FIFOs. 

0x1   Data from Channel 1 is captured into all BRAM FIFOs. 

0x2   Data from Channel 2 is captured into all BRAM FIFOs. 

0x4   Data from Channel 3 is captured into all BRAM FIFOs. 

0x8   Data from Channel 4 is captured into all BRAM FIFOs. 

0x3 Data from Channels 1 and 2 is captured into BRAM FIFOs 1, 2 

and 3, 4 respectively. 

0xC Data from Channels 3 and 4 is captured into BRAM FIFOs 1, 2 

and 3, 4 respectively. 

0xF Data from Channels 1, 2, 3 and 4 is captured into BRAM FIFOs 1, 

2, 3, 4 respectively. 

0x0 Default value. 

 
Table 5 UART Register 3 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

3 X <RAC> 

Read Address for Controller 

Registers 

 

D3 DOWNTO D0 <RAC> Read Address Register 

0x0   Sends value of UART register 0 to the host computer. 

0x1   Sends value of UART register 1 to the host computer. 

0x2   Sends value of UART register 2 to the host computer. 

0x3   Sends value of UART register 3 to the host computer. 

0x4   Sends value of UART register 4 to the host computer. 

0x5   Sends value of UART register 5 to the host computer. 

0x6   Sends value of UART register 6 to the host computer. 

0x7   Sends value of UART register 7 to the host computer. 



0x8   Sends value of UART register 8 to the host computer. 

0x9   Sends value of UART register 9 to the host computer. 

0xA   Sends value of UART register 10 to the host computer. 

0xB   Sends value of UART register 11 to the host computer. 

0xC   Sends value of UART register 12 to the host computer. 

0xD   Sends value of UART register 13 to the host computer. 

0xE   Sends value of UART register 14 to the host computer. 

0xF   Sends value of UART register 15 to the host computer. 

0x0   Default value. 

 
Table 6 UART Register 4 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

4 <BRAM_FIFO_SEL> <BRAM_FIFO_SIZE> 

 

D3 DOWNTO D0 <BRAM_FIFO_SIZE> Size of BRAM FIFO that is to be 

transmitted over UART 

0x8   Default value. 

0x1   2K samples (4KB) from each of selected BRAM FIFO 

0x2   4K samples (8KB) from each of selected BRAM FIFO 

0x4   8K samples (16KB) from each of selected BRAM FIFO 

0x8   (16K+13) samples (32KB+26) from each of selected BRAM FIFO 

 

D7 DOWNTO D4 <BRAM_FIFO_SEL> Select BRAM FIFOs that are to be 

transmitted overUART 

D7 
1   Default value. 

1   Select BRAM_FIFO 4 

0   De-select BRAM_FIFO 4 

 

D6 
1   Default value. 

1   Select BRAM_FIFO 3 

0   De-select BRAM_FIFO 3 

 

D5 
1   Default value. 

1   Select BRAM_FIFO 2 

0   De-select BRAM_FIFO 2 

 

D4 
1   Default value. 

1   Select BRAM_FIFO 1 

0   De-select BRAM_FIFO 1 



**See Appendix B for a table of register 4 values suitable for capturing data from ADCs, 

with respect to register 2.  

 
Table 7 UART Register 5 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

5 <DYRST> 

Reset IOB 

Delay 

<DYINC> 

Inc/Dec 

IOB 

Delay 

<DYVAL> 

Inc/Dec value (0-63) 

 

This register is used only in the extended FPGA design for parallel output ADCs. 

 

D5 DOWNTO D0 <DYVAL> Delay Value 

0x00-0x3F Contains the value by which the tap pointer of the selected IOB is 

to be incremented/decremented, depending on <DYINC>. 

0x00 Default value. 

 

D6 <DYINC> Increment/Decrement Delay 

0 Decrements tap pointer of selected IOB <DYVAL>. 

1 Increments tap pointer of selected IOB by <DYVAL>. 

0 Default value. 

 

D7 <DYRST> Delay Value Reset To Default 

0 Normal Operation. 

1 Resets the tap pointer of selected IOB to default value. 

0 Default value. 

 
Table 8 UART Register 6 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

6 <UBAUD> 

UART Baud Rate 

 

D7 DOWNTO D0 <UBAUD> UART Clock Divider Register 

0x00-0xFF Contains the dividing factor to generate UART baud clock from 

system clock. The value is calculated by (ROUND(SYS_CLK 

/(16*REQ_BAUD_RATE)) – 1). The SYS_CLK is 250 MHz in 

extended FPGA design for parallel output ADCs and is 200 MHz 

in extended FPGA design for serial output ADCs. 

0x87/0x6C The default value for this register is set to achieve a baud rate of 

115200 bps and is different in both extended designs. 

 



Table 9 UART Register 7 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

7 X <CTS> 

UART 

<DSR> 

UART 

<DCD> 

UART 

<RI> 

UART 

 

D0   <RI>  Modem Control Signal 

1   Drives 1 on UART modem control signal RI. 

0   Drives 0 on UART modem control signal RI. 

1   Default value. 

 

D1   <DCD>  Modem Control Signal 

1   Drives 1 on UART modem control signal DCD. 

0   Drives 0 on UART modem control signal DCD. 

1   Default value. 

 

D2   <DSR>  Modem Control Signal 

1   Drives 1 on UART modem control signal DSR. 

0   Drives 0 on UART modem control signal DSR. 

1   Default value. 

 

D3   <CTS>  Modem Control Signal 

1   Drives 1 on UART modem control signal CTS. 

0   Drives 0 on UART modem control signal CTS. 

1   Default value. 

 
Table 10 UART Register 8 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

8 <SPIGO> 

SPI Start 

<RCE> 

SPI 

Receive 

Clock 

Edge 

<TCE> 

SPI 

Transmit 

Clock 

Edge 

<SPIBITS> 

Can be set to 8, 16 or 24 

 

D4 DOWNTO D0 <SPIBITS> SPI Frame Size 

0x08   SPI frame size is 8 bits, including all data and address bits. 

0x10   SPI frame size is 16 bits, including all data and address bits. 

0x18   SPI frame size is 24 bits, including all data and address bits. 

0x00   Default value 

 

D5   <TCE> Transmit Clock Edge 

1   Transmits data to SPI slave at positive edge of SPI clock. 



0   Transmits data to SPI slave at negative edge of SPI clock. 

0   Default value. 

 

D6   <RCE> Receive Clock Edge 

1   Receives data from SPI slave at positive edge of SPI clock. 

0   Receives data from SPI slave at negative edge of SPI clock. 

0   Default value. 

 

D7   <SPIGO> Initiate SPI Transaction 

1 Initiates an SPI transaction. The bits self clears to 0 when the 

transaction is complete. 

0 Default value. 

 
Table 11 UART Register 9 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

9 <SBAUD> 

SPI Baud Rate 

 

D7 DOWNTO D0 <SBAUD> SPI Clock Divider Register 

0x00-0xFF Contains the dividing factor to generate SPI baud clock from 

system clock.  

0x63 Default value. 

 
Table 12 UART Register 10 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

A <SPID[07:00]> 

SPI Transmit data[07:00] 

 

D7 DOWNTO D0 <SPID[07:00]> SPI Frame data 

0x00-0xFF These are the 8 LSBs of the SPI frame that is to be transferred to 

SPI slave device. 

 
Table 13 UART register 11 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

B <SPID[15:08]> 

SPI Transmit data[15:08] 

 

D7 DOWNTO D0 <SPID[15:08]>  SPI Frame data 



0x00-0xFF These are the next 8 bits of the SPI frame that is to be transferred 

to SPI slave device. 

 
Table 14 UART Register 12 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

C <SPID[23:16]> 

SPI Transmit data[23:16] 

 

D7 DOWNTO D0 <SPID[23:16]>  SPI Frame data 

0x00-0xFF These are the last 8 bits of the SPI frame that is to be transferred to 

SPI slave device. 

 
Table 15 UART Register 13 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

D <DQ7> 

Select 

data 

line 7 

for 

Delay 

Adjust 

<DQ6> 

Select 

data 

line 6 

for 

Delay 

Adjust 

<DQ5> 

Select 

data 

line 5 

for 

Delay 

Adjust 

<DQ4> 

Select 

data 

line 4 

for 

Delay 

Adjust 

<DQ3> 

Select 

data 

line 3 

for 

Delay 

Adjust 

<DQ2> 

Select 

data 

line 2 

for 

Delay 

Adjust 

<DQ1> 

Select 

data 

line 1 

for 

Delay 

Adjust 

<DQ0> 

Select 

data 

line 0  

for 

Delay 

Adjust 

 

This register is used only in the extended FPGA design for parallel output ADCs. 

 

D0   <DQ0> Select ADC Bit 0 

1 Selects bit 0 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D1   <DQ1>  Select ADC Bit 1 

1 Selects bit 1 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D2   <DQ2>  Select ADC Bit 2 

1 Selects bit 2 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D3   <DQ3>  Select ADC Bit 3 



1 Selects bit 3 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D4   <DQ4>  Select ADC Bit 4 

1 Selects bit 4 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D5   <DQ5>  Select ADC Bit 5 

1 Selects bit 5 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D6   <DQ6>  Select ADC Bit 6 

1 Selects bit 6 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D7   <DQ7>  Select ADC Bit 7 

1 Selects bit 7 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 
Table 16 UART Register 14 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

E X X <DQ13> 

Select 

data 

line 13 

for 

Delay 

Adjust 

<DQ12> 

Select 

data 

line 12 

for 

Delay 

Adjust 

<DQ11> 

Select 

data 

line 11 

for 

Delay 

Adjust 

<DQ10> 

Select 

data 

line 10 

for 

Delay 

Adjust 

<DQ9> 

Select 

data 

line 9 

for 

Delay 

Adjust 

<DQ8> 

Select 

data 

line 8 

for 

Delay 

Adjust 

 

This register is used only in the extended FPGA design for parallel output ADCs. 

 

D0   <DQ8>  Select ADC Bit 8 

1 Selects bit 8 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D1   <DQ9>  Select ADC Bit 9 



1 Selects bit 9 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D2   <DQ10>  Select ADC Bit 10 

1 Selects bit 10 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D3   <DQ11>  Select ADC Bit 11 

1 Selects bit 11 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D4   <DQ12>  Select ADC Bit 12 

1 Selects bit 12 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

D5   <DQ13>  Select ADC Bit 13  

1 Selects bit 13 of the parallel data coming from ADC for skew 

adjust. The value of skew adjust is dictated by UART register 5.  

0 Default value. 

 
Table 17 UART Register 15 

Register 

Address 

in Hex 

 

Register Functions 

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0 

F X <DQS> 

Select 

ADC 

Clock 

for 

Delay 

Adjust 

 

This register is used only in the extended FPGA design for parallel output ADCs. 

 

D0   <DQS> Select ADC Clock 

1 Selects DRY signal coming from the ADC for skew adjust. The 

value of skew adjust is dictated by UART register 5.  

0 Default value. 

 

Section V 



FILE STRUCTURE FOR EXTENDED DESIGN I 

� AppsToplevel.vhd 

� evbif.v 

� evbif_spi.v 

• spi_clkgen.v 

• spi_shift.v 

� evbif_obufdes.v 

• obufdes_safifo.v 

o bram16x36.v 

� evbif_uart.v 

• uart_baudgen.v 

• uart_tx.v 

o kcuart_tx.v 

• uart_rx.v 

o kcuart_rx.v 

� evbif_ctrl.v 

� evbif_dumpmem.v 

• dumpmem_blk.v 

o fifo32b.v 

o fifo16kb.v 

 

FILE STRUCTURE FOR EXTENDED DESIGN II 

� ads5463_toplevel.v 

� ads5463_ddrif.v 

� ddrif_infrastructure.v 

• clocks_sysdcm.v 

� ddrif_idelay_ctrl.v 

� ddrif_top_0.v 

• ddrif_iobs_0.v 

o ddrif_data_path_iobs_0.v 

� evbif.v 

� evbif_spi.v 

• spi_clkgen.v 

• spi_shift.v 

� evbif_obufdes.v 

• obufdes_safifo.v 

o bram16x36.v 

� evbif_uart.v 

• uart_baudgen.v 

• uart_tx.v 

o kcuart_tx.v 

• uart_rx.v 

o kcuart_rx.v 

� evbif_ctrl.v 



� evbif_dumpmem.v 

• dumpmem_blk.v 

o fifo32b.v 

o fifo16kb.v 

 

Appendix A 

Example MATLAB function for Initializing a UART port 

 

function s = InitUART(baud); 
s = serial('COM9', 'BaudRate', baud); 
s.InputBufferSize = 131400; 
s.ReadAsyncMode = 'continuous'; 
s.BytesAvailableFcnCount = ((8*1024-1)*2+16-1)*4*2; 
s.BytesAvailableFcnMode = 'byte'; 
s.BytesAvailableFcn = @instrcallback; 
fopen(s); 
get(s,{'BaudRate','DataBits','Parity','StopBits','Terminator'}) 
end 

 

Example MATLAB function for Capturing Data from UART port 

 

function CaptureData(chnl_cnfg, s) 
a = uint8(chnl_cnfg); % chnl_cnfg Є { 1, 2, 4, 8, 3, 12, 15} 
b = uint8(255); 
fwrite(s,[0 b 0 0 2 a 1 1]); 
end 
 

Example MATLAB function for Reading Data from UART port 

 

function ReadUARTBuffer(filename,s) 
fid1 = fopen(filename,'w'); 
in = fread(s,s.BytesAvailable/2,'uint16'); 
out = swapbytes(uint16(in)); 
fprintf(fid1,'%x\n',out); 
fclose(fid1); 
end 
 

Appendix B 

Register 2 = 0xF (Multiple SDR Streams/Using XAPP866) 

Register 4 =  



xxxx_0001 2K samples (4KB) from each selected blocks 
xxxx_0010 4K samples (8KB) from each selected blocks 
xxxx_0100 8K samples (16KB) from each selected blocks 
xxxx_1000 (16K + 13) samples (32KB + 26) from each selected blocks 
 

 

Register 2 = 0x3/0xC (DDR ADC) 

Register 4 =  
0101_0001 2K samples (4KB) each from block 1 and 3 
0101_0010 4K samples (8KB) each from block 1 and 3 
0101_0100 8K samples (16KB) each from block 1 and 3 
0101_1000 (16K+13) samples (32KB + 26) each from block 1 and 3 
1111_1000 (16K+13) samples (32KB + 26) each from block 1,2,3 and 4 
 

Register 2 = 0x1/0x2/0x4/0x8 (SDR) 

Register 4 =  
0001_0001 2K samples (4KB) from block 1 
0001_0010 4K samples (8KB) from block 1 
0001_0100 8K samples (16KB) from block 1 
0001_1000 (16K+13) samples (32KB + 26) from block 1 
0011_1000 (16K+13) samples (32KB + 26) each from block 1 and 2 
0111_1000 (16K+13) samples (32KB + 26) each from block 1,2 and 3 
1111_1000 (16K+13) samples (32KB + 26) each from block 1,2,3 and 4 


