

FPGA DESIGN FOR

CAPTURING DATA FROM TI
ADCS

HAMZA FRAZ

INTRODUCTION

This document is intended to explain the design used to capture data from TI ADCs into

an FPGA and then streaming it to the PC. The document has been partitioned into

following sections. Section I gives a brief overview of the test equipment setup. Section II

describes in detail the base FPGA design used to handle data after it has been captured

into the FPGA flip-flops. Section III outlines the difference between two versions of the

extended design used to capture data from Serial Output and Parallel Output ADCs.

Section IV describes in details configuration registers and the addressing scheme used.

Section V discusses the partition of design with respect to implementation and relates the

functionality to file names used in project. Appendix A contains example MATLAB

codes used to initialize and capture data from the system under different configurations.

Section I

SYSTEM OVERVIEW

Fig. 1 is a block diagram that illustrates the test equipment setup. Under the currently

used setup, the ADC under test is located on an evaluation board, separate from the

FPGA board. The Virtex 4 FPGA and the UART-to-USB Bridge are located on TI’s

TUSB 1200 evaluation board, which sits on top of the ADC board through a LVDS

connector. TUSB 1200 connects to the host computer through a USB cable and is seen by

the host computer as a COM port, after its driver installation files are in place.

Figure 1 Test Equipment Setup for ADCs

The ADCs under test can be divided into two main categories.

• Serial output ADCs

These ADCs output serial data on LVDS pairs and therefore require a SERDES

block in the FPGA for serial to parallel conversion.

• Parallel output ADCs

These ADCs output parallel data on LVDS pairs and therefore do not require any

conversion in the FPGA. However, they might source data on the LVDS lines in a

TI

ADS xxxx

Xilinx

Virtex 4

FPGA

UART to

USB Bridge

Host Computer
Clock

Generator

Input

Generator

Filter Filter

DDR fashion which requires some logic in the FPGA design that separates

positive-edge and negative-edge data.

These two categories of ADCs call for two FPGA designs customized appropriately. The

base of these two FPGA designs is the same but there are slight differences in the way

they capture data from their respective ADCs. The base design shared by the two

approaches is explained first. Different use of this base design in the two approaches is

explained later.

Section II

BASE DESIGN

Figure 2 Base Design

Fig. 2 block diagram illustrates details of the base design used to dump data captured by

the FPGA into memories.

Clock Bridge

FIFO 1

Clock Bridge

FIFO 2

Clock Bridge

FIFO 3

Clock Bridge

FIFO 4

Channel 1

Clock

Channel 2

Clock

Channel 3

Clock

Channel 4

Clock

Channel 2

Data Bus

Channel 3

Data Bus

Channel 4

Data Bus

Channel 1

Data Bus
BRAM

FIFO A

BRAM

FIFO B

BRAM

FIFO C

BRAM

FIFO D

UART Controller SPI

System

Clock

The base design gets 4 streams of data from entities that capture data from the ADC. The

data capturing entity is SERDES block from Xilinx XAPP866, if the ADC under test is a

serial output ADC. The data capture entity is a group of Xilinx ISERDES I/O primitives,

if the ADC under test is a parallel output ADC. The details of data capturing are

discussed in Section III. A description of blocks of Fig. 2 follows.

CLOCK BRIDGE FIFO

The clock bridge FIFO does precisely what its name says: it acts as a bridge for data

when it crosses clock domains from channel clock to system clock. The channel clock for

each channel can take any value less than 250 MHz and is used as the write clock for

respective channel FIFO. All channel clocks are shown in different color in Fig. 2. The

system clock is fixed at 250 MHz and is used as the read clock for all channel FIFOs. It is

represented in blue color in Fig. 2. A self-addressing FIFO design based on Xilinx

XAPP291 is used. Self-addressing FIFO uses block memories to store both data and

address information in a single memory location, thus eliminating the need for external

FIFO address counters. Each clock bridge FIFO is used for data throttling in continuous

mode and therefore has a very small size of 16x36-bits.

DATA SELECT MULTIPLEXER FOR BLOCK RAM

As shown in Fig. 2, there sits a 4-to-1 16-bit multiplexer at the input of each BRAM

FIFO which selects based on the control signals from controller, which data stream is

presented at the input of the BRAM FIFO for storage. This multiplexer gives the

flexibility of storing data from selected or all data streams into the dump BRAM FIFOs.

BRAM FIFO

The purpose of BRAM FIFOs shown in Fig. 2 is data storage. Therefore, they form the

biggest component of the FPGA base design in terms of area, consuming 100% of

BRAM resources of the Xilinx 4VLX25SF363 FPGA.

Each BRAM FIFO is 16397x16-bits in size. Since, it is extremely hard to run a single

memory block of this size at 250 MHz; it has been broken down into three smaller sub-

FIFOs that are used in a piggybacked fashion. Two of these sub-FIFOs are 8191x16-bits

in size and the third one is 15x16-bits in size. All these components are generated with

Xilinx Core-Generator Wizard.

During data capture operation, the BRAM FIFOs are dumped with data sourced from the

clock-bridge FIFOs until they are completely filled. The FIFO_FULL event triggers the

controller to read data from these FIFOs and provide it to UART for transmission to the

host computer.

UART

A simple UART design provided by Xilinx has been used in the base design to interface

it to TUSB chip. The UART takes single byte of data from BRAM FIFOs and transmits it

to the host computer. It repeats this operation until the end of last BRAM FIFO is reached

and FIFO_EMPTY event commences for all BRAM FIFOs.

The UART baud clock is configurable through controller’s configuration register and can

be set to support any baud rate. More details are provided in the controller design.

SPI

A SPI interface is added to the FPGA base design to allow it to configure ADCs that need

to be initialized to appropriate modes before they can begin their normal operation. The

SPI can be configured to transmit and receive 8, 16 or 24 bits, address and data bits

combined. The data input to SPI comes from the controller.

Similar to UART, the baud rate of SPI can be configured to any value by writing to

configuration register in the controller. More details are provided in the controller design.

CONTROLLER

The controller consists of configuration logic as well as state machines that dictate the

sequence of operations for capturing and handling ADC data. The controller has been

implemented in a de-centralized fashion with each block having its control logic within

itself. The overall flow of operations is dictated by user writes to configuration registers.

Each configuration register can be written by sending an address byte and a data byte to

the FPGA UART.

The sequence of operations for capturing data from ADC and transmitting to the host

computer is illustrated in Fig. 3. The sequence shown assumes that UART configuration

registers have been configured for the required baud rate.

Fig. 4 illustrates the sequence of writes that need to be initiated by the user to transmit

data over SPI. Similarly, Fig. 5 shows the steps to vary skew on data/clock lines coming

from the ADC into the FPGA.

All of the configuration registers are readable through UART. When a register read

operation is requested, the current design of UART sends the value of the requested

register 8 times i.e. 8 identical bytes are transmitted over the UART to the host computer.

Fig. 6 illustrated steps to accomplish a read operation through UART.

Figure 3 Sequence to initiate Data Capture

Figure 4 Sequence to initiate SPI transaction

Initialize SPI

Baud rate

Initialize SPI

Data Registers

Initialize SPI

Control & Go

Write UART Reg

9 (Optional)

Write UART Reg

8

Write UART Reg

10, 11 and 12

Assert

FIFO RESET

De-Assert

FIFO RESET

Choose

Channels

Assert

GO

Write UART

Reg 0

Write UART

Reg 0

Write UART

Reg 2

Write UART

Reg 1

Read data

Figure 5 Sequence to de-skew clock/data lines from ADC

Figure 6 Sequence for Read Register operation

The configuration registers have been discussed in detail in Section IV.

Section III

EXTENDED DESIGN I

Extended design I is used when the ADC under test is a serial output ADC. A block

diagram of extended design I is shown in Fig. 7. The XAPP866 is used to convert the

serial data being sourced on LVDS pairs by the ADC, to parallel data streams. Each bit

stream at the output of XAPP866 can be treated as a data channel, synchronized to its

channel clock.

The output of XAPP866 can feed the input of the base design without any glue logic. The

base design then can be configured to capture data from any channel.

The system clock needed for the base design is also generated by XAPP866 and is equal

to 200 MHz.

Initialize read

address reg.

Read data

Write UART Reg

3

De-select all

Data/Clk lines

Select desired

data/clk lines

Initialize DLY

Control

Write UART Reg

13, 14 and 15

Write UART Reg

5

Write UART Reg

13/14/15

Figure 7 Extended Design I

EXTENDED DESIGN II

Extended design II is used when the ADC under test is a parallel output ADC. It can be

used to capture data that is SDR, bit-wise DDR or sample-wise DDR. A block diagram of

extended design II is shown in Fig. 8.

The ADC under test drives its output data on LVDS pairs that terminate at the input of

Xilinx ISERDES primitives inside the FPGA. Each ISERDES primitive is configured to

take in DDR data and convert it into two parallel data streams. These 2 parallel data

streams form the input of base design as channel 1 and channel 2. When the ADC under

test outputs data in sample-wise DDR fashion, channel 1 and 2 should be captured into

FIFOs and retrieved. Channel 3 and channel 4 of the base design are driven by the same

data except that zeros have been inserted at every alternate bit location in the output of

the ISERDES primitives. This has been done to facilitate extraction of samples when the

ADC outputs data in bit-wise DDR fashion. Thus channel 3 and 4 should be captured into

FIFOs and retrieved when the ADC under test outputs data is bit-wise DDR.

XAPP866

SERDES

BASE

DESIGN

Ch 1

Ch 2

Ch 3

Ch 4

Ref_Clk

200 MHz

UART

SPI

A

D

C

D

A

T

A

&

C

L

O

C

K

S

Sys_Clk

200 MHz

Figure 8 Extended Design II

The system clock needed for the base design is also generated by a wrapper that

encapsulates ISERDES primitives and the base design. The system clock is equal to 250

MHz.

Section IV

REGISTER MAP

There are 16 configuration registers that need to be appropriately initialized before any

capture operation can take place. All these register can be accessed for read/write

operations. Table 1 gives a summary of all the modes that can be programmed through

the UART.

BASE

DESIGN

Ref_Clk

200 MHz

UART

A

D

C

D

A

T

A

IDLY

ISERDES

ISERDES

ISERDES

ISERDES

ISERDES

ISERDES

ISERDES

ISERDES

ISERDES

ISERDES

ISERDES

ISERDES

ISERDES

ISERDES

Zero

Insertion for

Bit-wise

DDR

SPI

DCM

Sys_Clk

250 MHz

ADC CLOCK

Table 1 Summary of Functions Supported by UART Interface

Register

Address

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

0x0 <RST>

Software Reset

0x1

X

<GO>

Start

Capture

0x2

X

<EN4>

Enable

Channel

4

<EN3>

Enable

Channel

3

<EN2>

Enable

Channel

2

<EN1>

Enable

Channel

1

0x3 X <RA>

Read Address for Controller Registers

0x4 <BRAM_FIFO_SEL> <BRAM_FIFO_SIZE>

0x5 <DYRST>

Reset IOB

Delay

<DYINC>

Inc/Dec

IOB

Delay

<DYVAL>

Inc/Dec value (0-63)

0x6 <UBAUD>

UART Baud Rate

0x7 X <CTS>

UART

<DSR>

UART

<DCD>

UART

<RI>

UART

0x8 <SPIGO>

SPI Start

<RCE>

SPI

Receive

Clock

Edge

<TCE>

SPI

Transmit

Clock

Edge

<SPIBITS>

Can be set to 8, 16 or 24

0x9 <SBAUD>

SPI Baud Rate

0xA <SPID[07:00]>

SPI Transmit data[07:00]

0xB <SPID[15:08]>

SPI Transmit data[15:08]

0xC <SPID[23:16]>

SPI Transmit data[23:16]

0xD <DQ7>

Select

data line 7

for Delay

Adjust

<DQ6>

Select

data line

6 for

Delay

Adjust

<DQ5>

Select

data line

5 for

Delay

Adjust

<DQ4>

Select

data

line 4

for

Delay

Adjust

<DQ3>

Select

data

line 3

for

Delay

Adjust

<DQ2>

Select

data

line 2

for

Delay

Adjust

<DQ1>

Select

data

line 1

for

Delay

Adjust

<DQ0>

Select

data

line 0

for

Delay

Adjust

0xE X X <DQ13>

Select

data line

13 for

Delay

Adjust

<DQ12>

Select

data

line 12

for

Delay

Adjust

<DQ11>

Select

data

line 11

for

Delay

Adjust

<DQ10>

Select

data

line 10

for

Delay

Adjust

<DQ9>

Select

data

line 9

for

Delay

Adjust

<DQ8>

Select

data

line 8

for

Delay

Adjust

0xF X <DQS>

Select

ADC

Clock

for

Delay

Adjust

DESCRIPTION OF SERIAL REGISTERS

Each register function is explained in detail below.

Table 2 UART Register 0

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

0 <RST>

Software Reset

D7 DOWNTO D0 <RST> Software Reset for FIFOs

0x00 Normal operation

0xFF Software reset applied - resets all FIFO pointers and memories.

The reset is NOT self clearing and requires the user to de-assert it,

after it has been asserted.

0xFF Default value.

Table 3 UART Register 1

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

1

X

<GO>

Start

Capture

D0 <GO>

1 Enables data capture into FIFOs. This bit self clears to 0 after all

FIFOs have been filled up and the UART has transmitted all data

to the host computer.

0 Default value.

Table 4 UART Register 2

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

2

X

<EN4>

Enable

Channel

4

<EN3>

Enable

Channel

3

<EN2>

Enable

Channel

2

<EN1>

Enable

Channel

1

D3 DOWNTO D0 <EN4:1> Channel Enables For Base Design

0x0 No Data is captured into BRAM FIFOs.

0x1 Data from Channel 1 is captured into all BRAM FIFOs.

0x2 Data from Channel 2 is captured into all BRAM FIFOs.

0x4 Data from Channel 3 is captured into all BRAM FIFOs.

0x8 Data from Channel 4 is captured into all BRAM FIFOs.

0x3 Data from Channels 1 and 2 is captured into BRAM FIFOs 1, 2

and 3, 4 respectively.

0xC Data from Channels 3 and 4 is captured into BRAM FIFOs 1, 2

and 3, 4 respectively.

0xF Data from Channels 1, 2, 3 and 4 is captured into BRAM FIFOs 1,

2, 3, 4 respectively.

0x0 Default value.

Table 5 UART Register 3

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

3 X <RAC>

Read Address for Controller

Registers

D3 DOWNTO D0 <RAC> Read Address Register

0x0 Sends value of UART register 0 to the host computer.

0x1 Sends value of UART register 1 to the host computer.

0x2 Sends value of UART register 2 to the host computer.

0x3 Sends value of UART register 3 to the host computer.

0x4 Sends value of UART register 4 to the host computer.

0x5 Sends value of UART register 5 to the host computer.

0x6 Sends value of UART register 6 to the host computer.

0x7 Sends value of UART register 7 to the host computer.

0x8 Sends value of UART register 8 to the host computer.

0x9 Sends value of UART register 9 to the host computer.

0xA Sends value of UART register 10 to the host computer.

0xB Sends value of UART register 11 to the host computer.

0xC Sends value of UART register 12 to the host computer.

0xD Sends value of UART register 13 to the host computer.

0xE Sends value of UART register 14 to the host computer.

0xF Sends value of UART register 15 to the host computer.

0x0 Default value.

Table 6 UART Register 4

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

4 <BRAM_FIFO_SEL> <BRAM_FIFO_SIZE>

D3 DOWNTO D0 <BRAM_FIFO_SIZE> Size of BRAM FIFO that is to be

transmitted over UART

0x8 Default value.

0x1 2K samples (4KB) from each of selected BRAM FIFO

0x2 4K samples (8KB) from each of selected BRAM FIFO

0x4 8K samples (16KB) from each of selected BRAM FIFO

0x8 (16K+13) samples (32KB+26) from each of selected BRAM FIFO

D7 DOWNTO D4 <BRAM_FIFO_SEL> Select BRAM FIFOs that are to be

transmitted overUART

D7
1 Default value.

1 Select BRAM_FIFO 4

0 De-select BRAM_FIFO 4

D6
1 Default value.

1 Select BRAM_FIFO 3

0 De-select BRAM_FIFO 3

D5
1 Default value.

1 Select BRAM_FIFO 2

0 De-select BRAM_FIFO 2

D4
1 Default value.

1 Select BRAM_FIFO 1

0 De-select BRAM_FIFO 1

**See Appendix B for a table of register 4 values suitable for capturing data from ADCs,

with respect to register 2.

Table 7 UART Register 5

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

5 <DYRST>

Reset IOB

Delay

<DYINC>

Inc/Dec

IOB

Delay

<DYVAL>

Inc/Dec value (0-63)

This register is used only in the extended FPGA design for parallel output ADCs.

D5 DOWNTO D0 <DYVAL> Delay Value

0x00-0x3F Contains the value by which the tap pointer of the selected IOB is

to be incremented/decremented, depending on <DYINC>.

0x00 Default value.

D6 <DYINC> Increment/Decrement Delay

0 Decrements tap pointer of selected IOB <DYVAL>.

1 Increments tap pointer of selected IOB by <DYVAL>.

0 Default value.

D7 <DYRST> Delay Value Reset To Default

0 Normal Operation.

1 Resets the tap pointer of selected IOB to default value.

0 Default value.

Table 8 UART Register 6

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

6 <UBAUD>

UART Baud Rate

D7 DOWNTO D0 <UBAUD> UART Clock Divider Register

0x00-0xFF Contains the dividing factor to generate UART baud clock from

system clock. The value is calculated by (ROUND(SYS_CLK

/(16*REQ_BAUD_RATE)) – 1). The SYS_CLK is 250 MHz in

extended FPGA design for parallel output ADCs and is 200 MHz

in extended FPGA design for serial output ADCs.

0x87/0x6C The default value for this register is set to achieve a baud rate of

115200 bps and is different in both extended designs.

Table 9 UART Register 7

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

7 X <CTS>

UART

<DSR>

UART

<DCD>

UART

<RI>

UART

D0 <RI> Modem Control Signal

1 Drives 1 on UART modem control signal RI.

0 Drives 0 on UART modem control signal RI.

1 Default value.

D1 <DCD> Modem Control Signal

1 Drives 1 on UART modem control signal DCD.

0 Drives 0 on UART modem control signal DCD.

1 Default value.

D2 <DSR> Modem Control Signal

1 Drives 1 on UART modem control signal DSR.

0 Drives 0 on UART modem control signal DSR.

1 Default value.

D3 <CTS> Modem Control Signal

1 Drives 1 on UART modem control signal CTS.

0 Drives 0 on UART modem control signal CTS.

1 Default value.

Table 10 UART Register 8

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

8 <SPIGO>

SPI Start

<RCE>

SPI

Receive

Clock

Edge

<TCE>

SPI

Transmit

Clock

Edge

<SPIBITS>

Can be set to 8, 16 or 24

D4 DOWNTO D0 <SPIBITS> SPI Frame Size

0x08 SPI frame size is 8 bits, including all data and address bits.

0x10 SPI frame size is 16 bits, including all data and address bits.

0x18 SPI frame size is 24 bits, including all data and address bits.

0x00 Default value

D5 <TCE> Transmit Clock Edge

1 Transmits data to SPI slave at positive edge of SPI clock.

0 Transmits data to SPI slave at negative edge of SPI clock.

0 Default value.

D6 <RCE> Receive Clock Edge

1 Receives data from SPI slave at positive edge of SPI clock.

0 Receives data from SPI slave at negative edge of SPI clock.

0 Default value.

D7 <SPIGO> Initiate SPI Transaction

1 Initiates an SPI transaction. The bits self clears to 0 when the

transaction is complete.

0 Default value.

Table 11 UART Register 9

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

9 <SBAUD>

SPI Baud Rate

D7 DOWNTO D0 <SBAUD> SPI Clock Divider Register

0x00-0xFF Contains the dividing factor to generate SPI baud clock from

system clock.

0x63 Default value.

Table 12 UART Register 10

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

A <SPID[07:00]>

SPI Transmit data[07:00]

D7 DOWNTO D0 <SPID[07:00]> SPI Frame data

0x00-0xFF These are the 8 LSBs of the SPI frame that is to be transferred to

SPI slave device.

Table 13 UART register 11

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

B <SPID[15:08]>

SPI Transmit data[15:08]

D7 DOWNTO D0 <SPID[15:08]> SPI Frame data

0x00-0xFF These are the next 8 bits of the SPI frame that is to be transferred

to SPI slave device.

Table 14 UART Register 12

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

C <SPID[23:16]>

SPI Transmit data[23:16]

D7 DOWNTO D0 <SPID[23:16]> SPI Frame data

0x00-0xFF These are the last 8 bits of the SPI frame that is to be transferred to

SPI slave device.

Table 15 UART Register 13

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

D <DQ7>

Select

data

line 7

for

Delay

Adjust

<DQ6>

Select

data

line 6

for

Delay

Adjust

<DQ5>

Select

data

line 5

for

Delay

Adjust

<DQ4>

Select

data

line 4

for

Delay

Adjust

<DQ3>

Select

data

line 3

for

Delay

Adjust

<DQ2>

Select

data

line 2

for

Delay

Adjust

<DQ1>

Select

data

line 1

for

Delay

Adjust

<DQ0>

Select

data

line 0

for

Delay

Adjust

This register is used only in the extended FPGA design for parallel output ADCs.

D0 <DQ0> Select ADC Bit 0

1 Selects bit 0 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D1 <DQ1> Select ADC Bit 1

1 Selects bit 1 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D2 <DQ2> Select ADC Bit 2

1 Selects bit 2 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D3 <DQ3> Select ADC Bit 3

1 Selects bit 3 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D4 <DQ4> Select ADC Bit 4

1 Selects bit 4 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D5 <DQ5> Select ADC Bit 5

1 Selects bit 5 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D6 <DQ6> Select ADC Bit 6

1 Selects bit 6 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D7 <DQ7> Select ADC Bit 7

1 Selects bit 7 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

Table 16 UART Register 14

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

E X X <DQ13>

Select

data

line 13

for

Delay

Adjust

<DQ12>

Select

data

line 12

for

Delay

Adjust

<DQ11>

Select

data

line 11

for

Delay

Adjust

<DQ10>

Select

data

line 10

for

Delay

Adjust

<DQ9>

Select

data

line 9

for

Delay

Adjust

<DQ8>

Select

data

line 8

for

Delay

Adjust

This register is used only in the extended FPGA design for parallel output ADCs.

D0 <DQ8> Select ADC Bit 8

1 Selects bit 8 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D1 <DQ9> Select ADC Bit 9

1 Selects bit 9 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D2 <DQ10> Select ADC Bit 10

1 Selects bit 10 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D3 <DQ11> Select ADC Bit 11

1 Selects bit 11 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D4 <DQ12> Select ADC Bit 12

1 Selects bit 12 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

D5 <DQ13> Select ADC Bit 13

1 Selects bit 13 of the parallel data coming from ADC for skew

adjust. The value of skew adjust is dictated by UART register 5.

0 Default value.

Table 17 UART Register 15

Register

Address

in Hex

Register Functions

A3-A0 D7 D6 D5 D4 D3 D2 D1 D0

F X <DQS>

Select

ADC

Clock

for

Delay

Adjust

This register is used only in the extended FPGA design for parallel output ADCs.

D0 <DQS> Select ADC Clock

1 Selects DRY signal coming from the ADC for skew adjust. The

value of skew adjust is dictated by UART register 5.

0 Default value.

Section V

FILE STRUCTURE FOR EXTENDED DESIGN I

� AppsToplevel.vhd

� evbif.v

� evbif_spi.v

• spi_clkgen.v

• spi_shift.v

� evbif_obufdes.v

• obufdes_safifo.v

o bram16x36.v

� evbif_uart.v

• uart_baudgen.v

• uart_tx.v

o kcuart_tx.v

• uart_rx.v

o kcuart_rx.v

� evbif_ctrl.v

� evbif_dumpmem.v

• dumpmem_blk.v

o fifo32b.v

o fifo16kb.v

FILE STRUCTURE FOR EXTENDED DESIGN II

� ads5463_toplevel.v

� ads5463_ddrif.v

� ddrif_infrastructure.v

• clocks_sysdcm.v

� ddrif_idelay_ctrl.v

� ddrif_top_0.v

• ddrif_iobs_0.v

o ddrif_data_path_iobs_0.v

� evbif.v

� evbif_spi.v

• spi_clkgen.v

• spi_shift.v

� evbif_obufdes.v

• obufdes_safifo.v

o bram16x36.v

� evbif_uart.v

• uart_baudgen.v

• uart_tx.v

o kcuart_tx.v

• uart_rx.v

o kcuart_rx.v

� evbif_ctrl.v

� evbif_dumpmem.v

• dumpmem_blk.v

o fifo32b.v

o fifo16kb.v

Appendix A

Example MATLAB function for Initializing a UART port

function s = InitUART(baud);
s = serial('COM9', 'BaudRate', baud);
s.InputBufferSize = 131400;
s.ReadAsyncMode = 'continuous';
s.BytesAvailableFcnCount = ((8*1024-1)*2+16-1)*4*2;
s.BytesAvailableFcnMode = 'byte';
s.BytesAvailableFcn = @instrcallback;
fopen(s);
get(s,{'BaudRate','DataBits','Parity','StopBits','Terminator'})
end

Example MATLAB function for Capturing Data from UART port

function CaptureData(chnl_cnfg, s)
a = uint8(chnl_cnfg); % chnl_cnfg Є { 1, 2, 4, 8, 3, 12, 15}
b = uint8(255);
fwrite(s,[0 b 0 0 2 a 1 1]);
end

Example MATLAB function for Reading Data from UART port

function ReadUARTBuffer(filename,s)
fid1 = fopen(filename,'w');
in = fread(s,s.BytesAvailable/2,'uint16');
out = swapbytes(uint16(in));
fprintf(fid1,'%x\n',out);
fclose(fid1);
end

Appendix B

Register 2 = 0xF (Multiple SDR Streams/Using XAPP866)

Register 4 =

xxxx_0001 2K samples (4KB) from each selected blocks
xxxx_0010 4K samples (8KB) from each selected blocks
xxxx_0100 8K samples (16KB) from each selected blocks
xxxx_1000 (16K + 13) samples (32KB + 26) from each selected blocks

Register 2 = 0x3/0xC (DDR ADC)

Register 4 =
0101_0001 2K samples (4KB) each from block 1 and 3
0101_0010 4K samples (8KB) each from block 1 and 3
0101_0100 8K samples (16KB) each from block 1 and 3
0101_1000 (16K+13) samples (32KB + 26) each from block 1 and 3
1111_1000 (16K+13) samples (32KB + 26) each from block 1,2,3 and 4

Register 2 = 0x1/0x2/0x4/0x8 (SDR)

Register 4 =
0001_0001 2K samples (4KB) from block 1
0001_0010 4K samples (8KB) from block 1
0001_0100 8K samples (16KB) from block 1
0001_1000 (16K+13) samples (32KB + 26) from block 1
0011_1000 (16K+13) samples (32KB + 26) each from block 1 and 2
0111_1000 (16K+13) samples (32KB + 26) each from block 1,2 and 3
1111_1000 (16K+13) samples (32KB + 26) each from block 1,2,3 and 4

